

D3.1.
Methods for Interoperability and Integration.

December 2016

Ref. Ares(2016)7203948 - 31/12/2016

D 3.1: Methods for Interoperability and Integration

INTER-IoT

INTER-IoT aim is to design, implement and test interoperability tools, a framework and

a methodology that will allow interoperability among different Internet of Things (IoT)

platforms.

Most current existing IoT developments are based on “closed-loop” concepts, focusing

on a specific purpose and being isolated from the rest of the world. Integration between

heterogeneous elements is usually done at device or network level, and is just limited to

data gathering. Our belief is that a multi-layer approach to the integration of different IoT

devices, networks, platforms, services and applications will allow a global continuum of

data, infrastructures and services. Additionally, a reuse and integration of existing and

future IoT systems will be facilitated, enabling the creation of a de facto global ecosystem

of interoperable IoT platforms.

In the absence of global IoT standards, INTER-IoT results will allow any company to

design and develop new IoT devices or services, leveraging on the existing ecosystem,

and bringing them to market quickly.

INTER-IoT has been financed by the Horizon 2020 initiative of the European

Commission, contract 687283.

D 3.1: Methods for Interoperability and Integration

1 / 220

INTER-IoT

Methods for Interoperability and Integration.

Version: 1.0

Security: Public

December 31, 2016

The INTER-IoT project has been financed by the Horizon 2020 initiative of the European Commission, contract 687283

D 3.1: Methods for Interoperability and Integration

2 / 220

Disclaimer

This document contains material, which is the copyright of certain INTER-IoT consortium parties, and may not

be reproduced or copied without permission.
The information contained in this document is the proprietary confidential information of the INTER-IoT

consortium (including the Commission Services) and may not be disclosed except in accordance with the

consortium agreement.
The commercial use of any information contained in this document may require a license from the proprietor

of that information.
Neither the project consortium as a whole nor a certain party of the consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.
The information in this document is subject to change without notice.

D 3.1: Methods for Interoperability and Integration

3 / 220

Executive Summary

The aim of Deliverable 3.1, entitled “Methods for Interoperability and Integration”, is to document the

initial collection of the INTER-LAYER interoperability mechanisms. The deliverable is the first version

of a series of three (i.e. D3.1 will be followed by D3.2 and D3.3). The deliverable reports the initial

version of the interfaces, entities and block diagrams. It reports the technical work performed in five

tasks, T3.1 (Definition and Analysis of Methods for Device Layer Interoperability and Integration, M5-

M30); T3.2 (Definition and Analysis of Methods for Networking Layer Interoperability and Integration,

M5-M30); T3.3 (Definition and Analysis of Methods for Middleware Layer Interoperability and

Integration, M5-M30); T3.4 (Definition and Analysis of Methods for Application Service Layer

Interoperability and Integration, M5-M30) and T3.5 (Definition and Analysis of Methods for Data and

Semantics Layer Interoperability and Integration, M5-M30). Next versions of the deliverable will

include also the work developed in T3.6 (Definition and Analysis of Methods for Cross-Layer

Interoperability and Integration, M13-M30).

The methods have been based in the initial description of the layered architecture provided in the

Description of the Action, and have been built based on the requirements gathered in the execution

of T2.3 and delivered in D2.3 (INTER-IoT Requirements and Business Analysis, M9). The different

components of INTER-LAYER described in the deliverable have been influenced by the stakeholders

and the use cases and scenarios described in D2.4 (Use cases and scenarios, M12) in order to be

in line with the proposed pilots.

INTER-IoT addresses a challenging objective to create an interoperable Internet of Things (IoT)

ecosystem that will allow for the collaboration of vertical IoT platforms towards the creation of cross-

domain applications. Thus, it designs an interoperable mediation component (i.e INTER-LAYER to

enable the discovery and sharing of connected devices across existing and future IoT platforms for

rapid development of cross-platform IoT applications. INTER-IoT allows flexible and voluntary

interoperability at different layers. This layered approach can be achieved by introducing an

incremental deployment of INTER-IoT functionality across the platform’s space, which will in effect

influence the level of platform collaboration and cooperation with other platforms. INTER-IoT does

not pretend to create a new IoT platform but an interoperability structure to interconnect different IoT

platforms, devices, applications and other IoT artifacts.

Syntactic and semantic interoperability represent the essential interoperability mechanisms in the

future INTER-IoT ecosystem, while organizational/enterprise interoperability has different

structures/layers to enable platform providers to choose an adequate interoperability model for their

business needs. It will be supported by INTER-FW, developed in WP4 that may allow the

development of new applications and services atop INTER-LAYER and INTER-METH, developed in

WP5, to provide a methodology in order to coordinate interoperability.

The document lists an initial collection of the interoperability mechanisms, building blocks and

interfaces supported by sequence diagrams with a special focus in three of the layers: Device to

Device layer with the virtual gateway; Middleware layer with the MW2MW component and the Data

and Semantics layer with the Inter Platform Semantic Mediator (IPSM). The Network to Network

layer provides an initial solution based on SDN and NFV, however it will require the final

implementation of the virtual gateway to be completed. And also the Application and Services layer

may require the results from the M2MW and IPSM in order to implement the existing solution.

The requirements and prioritization from the feedback gathered from stakeholders indicated that the

mainly needed interoperability mechanisms are related with the device, middleware and semantics

D 3.1: Methods for Interoperability and Integration

4 / 220

layers, however the other two layers (i.e. Network and Application and Services) have also been

addressed and mechanisms researched and proposed.

We report a comprehensive list of mechanisms and components and put them in relation to

requirements and software components in the different layers. The main task of these components

is to facilitate syntactic and semantic interoperability of IoT platforms at the identified layers. Each

interoperability component may offer an API in order that the upper layers in an incremental

approach or applications and services may use the interoperability mechanisms. In this document

we include sequence diagrams depicting component interaction for interoperability.

The document also reports an initial view on components and envisioned functionality needed for

the INTER-LogP and INTER-Health domains. The aim in those two domain-specific solutions is to

offer dynamic access and configuration of devices in environments hosting a number of platforms.

Additionally, we consider INTER-DOMAIN as the environment in which both domains and platforms

from the open call will interoperate.

Finally, the document analyzes relevant work in the area of IoT interoperability, with focus on

interoperability mechanisms; projects with similar goals as INTER-IoT, and platforms by INTER-IoT

partners aiming to become part of the future INTER-IoT ecosystem. We can conclude that the

proposed functional layered stack with five layers (D2D, N2N, MW2MW, AS2AS and DS2DS) is in

accordance with the AIOTI proposed architecture, although INTER-IoT plans to extend different

aspects, e. g. related with platform federation, roaming, or offloading.

D 3.1: Methods for Interoperability and Integration

5 / 220

List of Authors

Organisation Authors Main organisations’ contributions

VPF Miguel Llop, Pablo Giménez,

Alexandre Sánchez, Mª Luisa

Escamilla, Eduardo Olmeda

INTER-LogP influence in the layers

Requirements review and link

MW2MW, AS2AS and DS2DS contrib.

UPV Carlos E. Palau, Benjamín

Molina, Eneko Olivares, Regel

González-Usach, Andreu

Belsa, Jara Suárez de Puga,

Blanca Terol

Coordination of the document

D2D, N2N, MW2MW, AS2AS, DS2DS

contribution

AS2AS coordination

UNICAL Giancarlo Fortino, Wilma

Russo, Gianluca Aloi,

Pasquale Pace, Raffaele

Gravina

D2D, N2N, MW2MW contribution

PRO Miguel Montesinos, Christophe

Joubert, Amelia del Rey,

Miguel A. Llorente

MW2MW, AS2AS, DS2DS

contribution

Link with INTER-FW

Software architecture coordination

TU/e George Exarchakos, Antonio

Liotta, Tim van der Lee

D2D, N2N and AS2AS contribution

XLAB Mariano Cecowski, Robert

Plestenjak

D2D, MW2MW and DS2DS contrib.

MW2MW coordination

SRIPAS Katarzyna Wasielewska-

Michniewska, Paweł Szmeja,

Wiesław Pawłowski, Maria

Ganzha, Marcin Paprzycki

D2D, N2N, MW2MW, AS2AS, DS2DS

contribution

DS2DS coordination

RINICOM Garik Markarian

Eric Carlson

D2D, N2N, MW2MW, AS2AS, DS2DS

contribution

N2N coordination

TI Carlo Aldera, Alberto Delpiano,

Fabio D’Ercoli, Giovanna Larini

D2D and N2N contribution

INTER-Health influence in the layers

NEWAYS Ron Schram, Roel Vossen,

Johan Schabbink, Frans

Gevers

D2D, N2N, MW2MW contribution

D2D coordination

ABC Alessandro Bassi, Jitka

Slechtova

D2D, N2N, MW2MW contribution

D 3.1: Methods for Interoperability and Integration

6 / 220

Change control datasheet

Version Changes Chapters Pages

0.1.0 Created base structure - 20

0.2.0 Completed introduction and
first version state of the art

1, 2 121

0.3.0 First version of specifications 3 163

0.3.1 Second version of state of the
art. Completed conclusions.

2, 4 183

0.3.2 Second version of
specifications. Completed
annex.

3, 6 207

0.3.3 Completed missing parts.
Format whole document.

All 215

1.0 Reviewed whole document.
Minor changes. Ready for
submission.

All 222

D 3.1: Methods for Interoperability and Integration

7 / 220

Contents

Executive Summary .. 3

List of Authors ... 5

Change control datasheet ... 6

Contents ... 7

List of Figures ... 10

Acronyms .. 12

1 Introduction .. 14

1.1 INTER-LAYER Overview .. 15

1.2 Definitions and terminology ... 17

1.3 Constraints based on Requirements ... 19

1.3.1 Minimum requirements for the INTER-LogP pilot ... 20

1.3.2 Minimum requirements for the INTER-Health pilot ... 20

2 State of the Art ... 22

2.1 Device Interoperability (D2D) .. 22

2.1.1 Common Approaches .. 22

2.1.2 Literature review .. 24

2.1.2.1 Implementation of Gateways .. 24

2.1.2.2 Specifications and protocols ... 24

2.1.2.3 Existing Gateway access networks .. 28

2.1.3 Summary Table ... 33

2.2 Network Interoperability (N2N) .. 33

2.2.1 Common Approaches .. 34

2.2.2 Literature review .. 34

2.2.2.1 SDN ... 34

2.2.2.2 SDR ... 39

2.2.2.3 Other Issues ... 41

2.2.3 Summary table... 44

2.3 Middleware Interoperability (MW2MW) ... 46

2.3.1 Common Approaches .. 46

2.3.2 Literature review .. 47

2.3.2.1 Message Oriented Middlewares ... 47

2.3.2.2 Existing Platform middlewares ... 55

2.3.2.3 Existing Cloud platform services... 63

2.3.2.4 Others .. 66

2.3.3 Summary table... 67

D 3.1: Methods for Interoperability and Integration

8 / 220

2.4 Application & Services Interoperability (AS2AS) ... 68

2.4.1 Common Approaches .. 69

2.4.2 Literature review .. 69

2.4.2.1 Service Virtualization .. 69

2.4.2.2 Service Catalogue and Service Discovery .. 71

2.4.2.3 Wrapping Technologies and the IoT ... 73

2.4.2.4 Service Composition .. 76

2.4.2.4.1 Mash-up ... 76

2.4.2.4.2 Service Orchestration ... 79

2.4.2.4.3 Service Choreography .. 84

2.4.2.5 Tools .. 85

2.4.3 Summary table... 91

2.5 Data & Semantics Interoperability (DS2DS) .. 92

2.5.1 Introduction .. 92

2.5.2 Literature review .. 93

2.5.2.1 IoT semantics ... 93

2.5.2.2 Service description semantics .. 95

2.5.2.3 Semantic aspects of relevant IoT platforms .. 97

2.5.2.4 Semantic and ontological tools ... 99

2.5.3 Semantics in INTER-IoT layers .. 103

2.5.4 Summary table... 103

3 INTER-LAYER Specifications .. 107

3.1 D2D proposed solution ... 107

3.1.1 Architecture ... 108

3.1.2 Components .. 111

3.1.3 Use Cases ... 118

3.2 N2N proposed solution ... 130

3.2.1 Architecture ... 130

3.2.2 Technologies ... 134

3.2.3 Components .. 136

3.2.4 Use Cases ... 142

3.3 MW2MW proposed solution .. 144

3.3.1 Architecture ... 145

3.3.2 Components .. 147

3.3.3 Use cases .. 153

3.4 AS2AS proposed solution ... 164

3.4.1 Architecture ... 165

D 3.1: Methods for Interoperability and Integration

9 / 220

3.4.2 Components .. 167

3.4.3 Use cases .. 171

3.4.4 Technologies ... 178

3.5 DS2DS proposed solution ... 184

3.5.1 Architecture ... 185

3.5.2 Technologies ... 186

3.5.3 Acronyms... 187

3.5.4 Components .. 187

3.5.1 Use cases .. 192

3.6 INTER-Layer relation with INTER-Framework... 197

4 Conclusions ... 200

5 References .. 202

6 Annex .. 210

6.1 INTER-LogP pilot requirements table .. 210

6.2 INTER-Health pilot requirements table .. 212

D 3.1: Methods for Interoperability and Integration

10 / 220

List of Figures

Figure 1: Layer structure of INTER-IoT layered-oriented approach (INTER-LAYER). 15
Figure 2: SDN network architecture example. ... 35
Figure 3: Ideal SDR components. ... 40
Figure 4: 10GEA scheme comparison of traditional and TEO NIC. ... 43
Figure 5: Multi-layer diagram of IoT use-cases and technologies. ... 46
Figure 6: A two-server Kafka cluster with two partitions each, and two consumer groups with 2 and

4 consumers respectively. Source: https://kafka.apache.org/ .. 48
Figure 7: ZeroMQ general schema. Source: http://www.aosabook.org/en/zeromq.html 50
Figure 8: Main parts of Apache ActiveMQ. Source: http://activemq.apache.org/ 51
Figure 9: Example of Mosquitto broker events. Source: https://goo.gl/SNGCBe/ 53
Figure 10: OpenDDS Extensible Transport Framework. Source: http://opendds.org/ 53
Figure 11: FI-WARE IoT Broker internal scheme. Source:

https://forge.fiware.org/plugins/mediawiki/wiki/fiware .. 55
Figure 12: OpenIoT architecture. Source: https://goo.gl/HTF4In ... 56
Figure 13: Buttler's layers technologies. Source: D3.1 Architectures of BUTLER Platforms and

Initial Proofs of Concept. ... 58
Figure 14: SOFIA2's conceptual blocks. Source: http://sofia2.com/ ... 59
Figure 15: OneM2M Services Set. Source: OneM2M TS-0001: Functional Architecture

http://www.onem2m.org/ ... 60
Figure 16: 3 devices communicating through the virtual channel through p2p links. Source: Lioy, M.

(2011), Peer-to-Peer Technology Driving Innovative User Experiences in Mobile. 61
Figure 17: AWS IoT internal structure. Source: https://aws.amazon.com 63
Figure 18: Generic IoT solution reference architecture used by Azure. Source:

https://docs.microsoft.com .. 64
Figure 19: IoT Cloud Connect Architecture Overview. Source:

https://www.ciscoknowledgenetwork.com/ .. 66
Figure 20: iServe architecture. Source: http://iserve.kmi.open.ac.uk/ .. 73
Figure 21: Wrapping of Internet of Things with Webble Technology. ... 75
Figure 22: High-level architecture of FIWARE mediator and aggregator. Source:

https://goo.gl/Ggd9Zl ... 77
Figure 23: Glue.things overview. Source: http://www.gluethings.com/ ... 78
Figure 24: Health Mashup system overview. Source: [35] ... 79
Figure 25: Orchestrator scheme. ... 79
Figure 26: FIWARE orchestrator. Source: D2.2.2 FI-WARE High-level Description 80
Figure 27: Sensinact orchestrator. Source: https://goo.gl/dquUM2 .. 81
Figure 28: Choreography scheme. .. 84
Figure 29: Node-RED dashboard. Source: http://nodered.org/ .. 86
Figure 30: Apache NiFi. Source: https://blogs.apache.org/nifi/ .. 87
Figure 31: Project Flogo. Source: http://www.flogo.io/ ... 88
Figure 32: NoFlo. Source: http://noflojs.org/ .. 89
Figure 33: Intel(r) IoT Services Orchestration Layer Source: http://01org.github.io/intel-iot-services-

orchestration-layer/ ... 91
Figure 34: Gateway architecture overview (in yellow: components that can be implemented but at

least one is needed for a functional system, blocks with red border are optional and can be

implemented when needed). ... 109
Figure 35: Gateway architecture split into two parts, the physical part for the embedded device and

the part that can be executed in a virtual container. .. 110
Figure 36: Device Registry sequence diagram. ... 119

D 3.1: Methods for Interoperability and Integration

11 / 220

Figure 37: Platform Registry sequence diagram. .. 121
Figure 38: Device Trigger sequence diagram. ... 122
Figure 39: Dispatcher to MW platform sequence diagram. .. 123
Figure 40: Dispatcher to Rules Engine sequence diagram. ... 124
Figure 41: Platform request sequence diagram. .. 125
Figure 42: Platform response to Actuator sequence diagram. ... 127
Figure 43: Non-Standard AN initialization sequence diagram.. 129
Figure 44: N2N proposed solution architecture for SDN. ... 131
Figure 45: SDR Transmitter Dataflow. ... 132
Figure 46: SDR Receiver Dataflow. .. 133
Figure 47: Packet Flow through the processing pipeline inside the virtual switch. Source:

https://goo.gl/SoIPHl ... 135
Figure 48: MW2MW architecture overview (green arrows: data streams from platform to upper

layers; red arrows: permanent data streams from the Platform Request Manager to the Bridges -

used for platform reqests; dashed black arrows: stream orchestration; black arrows: API calls –

may be implemented through streams as well). .. 146
Figure 49: MW01, Subscription Request Configuration including IPSM. 154
Figure 50: MW02, Subscription Data Flow with Semantic Translation. .. 155
Figure 51: MW08, Subscription Data Flow with no IPSM .. 156
Figure 52: MW05, Unsubscribe from topic. ... 157
Figure 53: MW06, Flow Creation Including IPSM. ... 158
Figure 54: MW04, Resource discovery. .. 160
Figure 55: MW03, Query for temperature readings in a geographical area (lat, lon, r) 162
Figure 56: MW07, MW2MW sends information to device(s) .. 164
Figure 57: AS2AS architecture overview. .. 166
Figure 58: AS2AS Service Cataloguing. .. 172
Figure 59: AS2AS Service Discovery. ... 173
Figure 60: AS2AS Service Composition. ... 175
Figure 61: Request query to AS2AS. .. 177
Figure 62: DS2DS architecture overview .. 186
Figure 63: IPSM Alignment configuration. ... 193
Figure 64: IPSM communication channel configuration. .. 194
Figure 65: Semantic translation through IPSM communication channels. 196
Figure 66: INTER-FW diagram. ... 198

D 3.1: Methods for Interoperability and Integration

12 / 220

Acronyms

AIOTI Alliance for Internet of Things Innovation

BIP Best Ideas and Projects

EC European Commission

IERC European Research Cluster on the Internet of Things

EPI European Platforms Initiative

INTER-LAYER INTER-IoT Layer integration tools

INTER-FW INTER-IoT Interoperable IoT Framework

INTER-METH INTER-IoT Engineering Methodology

INTER-LogP INTER-IoT Platform for Transport and Logistics

INTER-Health INTER-IoT Platform for Health monitoring

INTER-META-ARCH INTER-IoT Architectural meta-model for IoT interoperable platforms

INTER-META-DATA INTER-IoT Metadata-model for IoT interoperable semantics

INTER-API INTER-IoT Programming library

INTER-CASE
INTER-IoT Computer Aided Software Engineering tool for

integration

INCOSE The International Council on Systems Engineering

IoT Internet of Things

ITU International Communications Union

SDO Standard Development Organisation

SDR Software Defined Radio

IOT-A Internet of Things - Architecture

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

SPEM Software and Systems Process Engineering Meta-model

M2M Machine to Machine

RFID Radio Frequency IDentification

MAC Media Access Control address

SDN Software Defined Networking

W3C World Wide Web Consortium

SSN Semantic Sensor Network

SAREF Smart Appliances REFerence

OGC Open Geospatial Consortium

LTE Long-Term Evolution networks

DSL Digital Subscriber Lines

D 3.1: Methods for Interoperability and Integration

13 / 220

CAN Controller Area Network

API Application Programming Interface

CRUD Create, Read, Update and Delete

SDO Standards Developing Organization

GOIoTP Generic Ontology for IoT Platforms

SDN Software Defined Network

SDR Software Defined Radio

NFV Network Function Virtualization

AGC Automatic Gain Control

ADC Analog to Digital Converter

DAC Digital to Analog Converter

MVC Model, View, Controller

IoS Internet of Services

QoS Quality of Service

QoE Quality of Experience

D 3.1: Methods for Interoperability and Integration

14 / 220

1 Introduction

Internet of things (IoT) covers a wide range of devices, protocols, technologies, networks,

middleware, applications, systems and data that present vast heterogeneity. As a consequence of

this heterogeneous nature and the lack of a global IoT standard, instead of the achievement of

seamless integration among IoT systems, vertical silos proliferate. Interconnection and

interoperability are critical aspects in IoT, as well as one of the most difficult challenges to face in

IoT environments.

Whereas integration between heterogeneous elements is usually done at device or network level,

and it is limited to data collection, INTER-IoT offers a layer-oriented solution to allow interoperability

among IoT platforms and systems at different layers or levels. INTER-IoT will offer an open

framework (INTER-FW) and methodology (INTER-METH) to guarantee a seamless integration of

heterogeneous IoT technologies. This solution can be applied to any application domain and across

domains in which there is a need for interconnection and/or interoperability.

INTER-IoT will facilitate the formation of interoperable IoT ecosystems, make the design of IoT

devices, smart objects or services easier to companies and developers, and support launching them

to the market quickly to a broader client base. In the long term, the ability for applications to connect

to and interact with heterogeneous smart objects, will become a huge enabler for new products and

services.

INTER-IoT benefits at different layers or levels will be:

• At the Device level: the seamless inclusion of new IoT devices and their interoperation

with already existing heterogeneous ones, allowing a fast growth of smart objects

ecosystems.

• At the Networking level: seamless support for smart objects mobility (roaming) and

information routing. This will allow the design and implementation of fully connected

ecosystems.

• At the Middleware level: a seamless resource discovery and management system for

smart objects and their basic services, to allow the global exploitation of smart objects in

large scale IoT systems.

• At the Application and Services level: the discovery, use, import, export and

combination of heterogeneous services between different IoT platforms.

• At the Data and Semantics level: a common interpretation of data and information from

different platforms and heterogeneous data sources, providing semantic interoperability.

D 3.1: Methods for Interoperability and Integration

15 / 220

Figure 1: Layer structure of INTER-IoT layered-oriented approach (INTER-LAYER).

1.1 INTER-LAYER Overview

INTER-IoT presents a layer-oriented solution for interoperability, to provide interoperability at any

layer and across layers among different IoT systems and platforms. Contrary to a more general

global approach, an INTER-IoT approach has a higher potential in order to provide interoperability.

It facilitates a tight bidirectional integration, higher performance, complete modularity, high

adaptability and flexibility, and presents increased reliability.

This layer-oriented solution is achieved through INTER-LAYER. INTER-LAYER includes several

interoperability solutions dedicated to specific layers (as depicted in Figure 1): Device-to-Device

(D2D), Networking-to-Networking (N2N), Middleware-to-Middleware (MW2MW), Application &

Services-to-Application & Services (AS2AS), Data & Semantics-to-Data & Semantics (DS2DS).

Each interoperability infrastructure layer has a strong coupling with adjacent layers and provides an

interface. Interfaces will be controlled by a meta-level framework to provide global interoperability.

Every interoperability mechanism can be accessed through an API. The interoperability

infrastructure layers can communicate and interoperate through the interfaces. This cross-layering

allows to achieve a deeper and more complete integration.

D 3.1: Methods for Interoperability and Integration

16 / 220

The different INTER-LAYER layers are detailed here:

Device layer (D2D): Currently applications and platforms are tightly coupled, preventing their

interaction with other applications and platforms, sensors and actuators communicate only within

one system, certain platforms do not implement some important services (i.e. discovery), or do so in

an incompatible way. Roaming elements can be missing or inaccessible. IoT Device software is

never platform independent as companies create proprietary software. These facts present

enormous difficulties for the achievement of interoperability. At the device level, D2D solution will

allow the seamless inclusion of novel IoT devices and their interoperation with already existing ones

(legacy). D2D interoperability will allow a fast growth of smart objects ecosystems. As a potential

solution INTER-IoT proposes a D2D gateway that allows any type of data forwarding, making the

device layer flexible by decoupling the gateway into two independent parts: a physical part that only

handles network access and communication protocols, and a virtual part that handles all other

gateway operations and services. When connection is lost, the virtual part remains functional and

will answer the API and Middleware requests. The gateway will follow a modular approach to allow

the addition of optional service blocks, to adapt to the specific case.

Network layer (N2N): Currently the immense amount of traffic flows generated by smart devices is

extremely hard to handle. The scalability of the IoT systems is difficult. Also creating the

interconnections between gateways and platforms is a complex task. N2N solution aims to provide

seamless support for smart objects mobility and information routing. It will also allow offloading and

roaming, what implies the interconnection of gateways and platforms through the network. The

approximation that INTER-IoT propose uses paradigms such as SDN and NFV, and achieves

interoperability through the creation of a virtual network, with the support of the N2N API. The N2N

solution will allow the design and implementation of fully interconnected ecosystems.

Middleware layer (MW2MW): At the middleware level INTER-IoT solution will enable seamless

resource discovery and management system for the IoT devices in heterogeneous IoT platforms.

Interoperability at the middleware layer is achieved through the establishment of an abstraction layer

and the attachment of IoT platforms to it. Different modules included at this level will provide services

to manage the virtual representation of the objects, creating the abstraction layer to access all their

features and information. Among the offered services, we find the component-based interoperability

solutions within the middleware based on communication using mediators, bridges and brokers, is

found. Brokers are accessible through a general API. Interoperability at this layer will allow a global

exploitation of smart objects in large scale multi-platform IoT systems.

Application & Services layer (AS2AS): INTER-IoT will enable the use of heterogeneous services

among different IoT platforms. Our approach will allow discovery, catalogue and composition of

services from different platforms. AS2AS will also provide an API as an integration toolbox to facilitate

the development of new applications that integrate existing heterogeneous IoT services.

Semantics & Data layer (DS2DS): INTER-IoT solution for the DS2DS layer will allow a common

interpretation of data and information among different IoT systems and heterogeneous data sources,

achieving semantic interoperability. It will be based on semantic translation of IoT platforms’

ontologies to/from a common IPSM modular ontology. The Inter Platform Semantic Mediator (IPSM)

component will be responsible for performing ontology-to-ontology translations of the information

using ontology alignments. It will be necessary to define explicit OWL-demarcated semantics for

each IoT artifact that would like to interoperate, communicate and collaborate.

CROSS-LAYER will cover and guarantees non-functional aspects that must be present across all

layers: trust, security, privacy, and quality of service (QoS).

D 3.1: Methods for Interoperability and Integration

17 / 220

1.2 Definitions and terminology

The following definitions will be explained in order to better understand contents of the next sections

of this deliverable (alphabetically ordered).

CEP (Complex Event Processing)

Complex event processing is realized in analytic tools that enable processing and analysis of data

on a real-time or a near-real-time basis, driving timely decision making and action.

CEP is relevant for the IoT in its ability to recognize patterns in massive data sets at low latency

rates. A CEP tool identifies patterns by using a variety of techniques such as filtering, aggregation,

and correlation to trigger automated action or flag the need for human intervention.

Constrained Devices

Small devices with limited CPU, memory, and power resources that can belong to a network, creating

a constrained network that is characterized by unreliable or lossy communication channels, limited

and unpredictable bandwidth and a highly dynamic topology.

Event

Event is something notable that happens. It can be represented as an object that encodes or records

an event, generally for the purpose of computer processing. Events can contain data, are immutable,

but more than one event may record the same activity. It should be noted that events are highly

context dependent.

Interoperability

The characteristic of a network system or protocol whose interfaces are completely understood to

work with other systems or protocols, present or future, in either implementation or access without

any restrictions.

Mash-up

Composing a new service/application/data from existing applications/services (MACs; Mashable

Application Components).

Ontology

Explicit specification of shared conceptualization. In the area of science and technology, this concept

refers to a structure that provides a vocabulary for a domain of interest, in addition to the meaning

of the entities that are present in that vocabulary. Typically, within an ontology the entities are

grouped, organized into a hierarchy, related to other entities, and subdivided according to different

notions of similarity.

Ontology alignment

The process of finding correspondences between two or more ontologies. The result of this process

is an alignment i.e. a set of correspondences between entities (atomic alignment) or groups of

entities and sub-structures (complex alignment) from different ontologies. A correspondence can be

either a predicate about similarity, called a matching, or a logical axiom mapping.

Typically, the used mapping axioms are equivalence and subsumption. In practice, ontology

alignment tools often state a degree of confidence for every correspondence in the mapping. An

equivalence axiom with a degree of confidence is very close in meaning to a predicate about

similarity (a matching). The terms mapping and matching are often not distinguished in the

D 3.1: Methods for Interoperability and Integration

18 / 220

terminology used by the alignment tools. A set of correspondences can be called alignment,

matching, or mapping practically interchangeably.

Ontology merging

The process of combining two, or more, ontologies into one. Consequently, the resulting ontology

stores knowledge from all merged ones. Merging often utilizes a set of alignments to create deep

interconnections between ontologies and, in the end, merge them into one.

Semantics

The study of meaning and relationships between meanings.

Semantic interoperability

The ability of information systems and the business processes they support to exchange information

with unambiguous, shared meaning. In the context of semantic interoperability, topics such as

ontology alignment, matching, and merging need to be disambiguated. These terms are closely

related and sometimes used interchangeably. For each there are many, sometimes overlapping,

definitions.

Semantic model

Specifies the terms and concepts used to describe an area of knowledge. A semantic model usually

includes concepts in the domain of interest, relationships between them, their properties, and their

values. Usually this is expressed as an ontology.

Semantic Sensor Net Ontology

The Semantic Sensor Net Ontology (SSN) is a W3C standard describing sensors and observations,

and related concepts, defined in OWL. It does not describe time, locations, etc.

The Mihini agent is an Eclipse additional that can be used as a mediator between an M2M service

and applications running on an embedded gateway, while M3DA is a protocol optimized for the

transport of binary IoT data and the management of devices by permitting the exchange of

instructions and typed data between actors in a bandwidth friendly manner.

Semantic translation

Semantic translation is an application of ontology alignment. The goal is to enable one-way or two-

way understanding between software artifacts that implement differing semantics. This is directly

applicable to multiple domains such as IoT, bioinformatics and others, because there are competing

ontologies that describe the same or a very similar area of knowledge.

Service

Loosely-coupled computing tasks communicating over the Internet that play a growing part in

business-to-business interactions. Services are the mechanism by which needs and capabilities are

brought together.

Service choreography

Service choreography captures collaborative processes involving multiple services and especially

their interactions seen from a global perspective. While service orchestration relies on a centralized

point of view of a single participant, the service choreography is based on a global perspective of

the involved participants.

D 3.1: Methods for Interoperability and Integration

19 / 220

Service composition

A service composition is an aggregate of services collectively composed to automate a particular

task. To qualify as a composition, at least two participating services plus one composition initiator

need to be present.

Service orchestration

The orchestration of services is the task aiming at invoking a set of services in a structured way. It

comprises a centralized entity, called the orchestration engine, that can be seen as a conductor

driving his musicians.

Synchronization

Messages being sent between two parties can be exchanged in a synchronous or asynchronous

way. In the synchronous scenario, the sender remains connected to the receiver until the latter

confirms the successful exchange of the message. Before that confirmation is received, the sender

process ‘blocks’ its execution abstaining from sending any further messages.

In the asynchronous scenario, the sender does not wait for the receiver to acknowledge the message

but continues its execution and might send additional messages to the receiver. The receiver is then

expected to send an acknowledgement to the sender once it makes sure the messages was

successfully transmitted.

1.3 Constraints based on Requirements

During the first phase of the project numerous requirements have been collected either from

stakeholders or from the pilot needs. These requirements became the foundation of our

interoperability architecture solution. For that propose they had to be divided into several categories

in order to assign them to and apply them in each of the INTER-LAYER solution tiers.

Additionally, an initial prioritization of the requirements took place, based on their importance for the

achievement of the layer objectives.

In a later stage, another more specific prioritization took place based on the remarks of the

stakeholders and several revisions of the requirements obtained from the first iteration. The latter

prioritization was constructed under the MoSCoW methodology [1] that assigned one of four

available priority values: Must, Should, Could and Not to have.

The structured set of requirements is being used for the design and composition of the solutions

placed in each step of INTER-LAYER.

Prioritized and categorized requirements will be refered in the Section 3 of this document, and related

with each of the components that constitute the INTER-IoT layered interoperability approach.

INTER-IoT has two pilots INTER-LogP, as an interoperable solution in the sea port scenario, for port

management, and INTER-Health, associated with the domain of e-Health. These pilots will be

extensively explained and detailed in the corresponding deliverables specifically devoted to them. It

is important to note that a wide group of requirements had been identified specifically for each of the

pilot use cases. Pilots performance and success is strongly dependent on the accomplishment of

the aforementioned requirements.

D 3.1: Methods for Interoperability and Integration

20 / 220

The following two subsections are focused on the relation of pilot specific requirements and the

proposed interoperability solution that is described in this deliverable. Below we explain how our

interoperability approach intends to accomplish the relevant requirements for each pilot. In the first

version of this deliverable the most critical requirements are presented, but a list of them is expected

to be extended and modified in future iterations of the INTER-IoT solution.

1.3.1 Minimum requirements for the INTER-LogP pilot

The requirements of INTER-LogP pilot cover the functional and non-functional needs that our

interoperability solution has to solve. Those requirements can be found in the annex organised

according to the MoSCoW prioritization. In this section all requirements referenced in brackets refer

to the Table 10 in section 6.1 (Annex)

Requirements under the categorization of ‘Must’ have to be implemented in the final pilot solution. It

must be note that this group is essential for critical interoperability aspects [248,249], such as the

access to services and resources from different IoT platforms, and the common semantic

understanding between them. Other relevant aspects reflected into this categorization of maximum

priority are the communication with Legacy Systems [193] and the need and importance of object

virtualization [193].

All these requirements have been considered in the first iteration of the INTER-IoT interoperability

solution. They had been considered in the solutions proposed in section 3, to allow the

accomplishment of the most important needs. They had been considered in the proposed solutions

of section 3, to allow to satisfy the most important necessities of the pilots. These needs will be

solved with the interoperability solutions of each layer. As an example illustrating this statement, it

can be noted that platform access is essential in D2D and N2N, that present the need for connecting

with the different IoT platforms. As well MW2MW and AS2AS require to access to resources and

services from other IoT platforms. Semantic support in all layers, and the integration of Semantic

Mediators in MW2MW to perform semantic translations is necessary for the DS2DS solution.

Virtualization is a crucial element in all layers.

INTER-LogP requirements under the Should categorization will be integrated in the final iteration of

INTER-LogP, but taking into account that they can be dispensable, if a major reason justifies their

exclusion. The majority of requirements from this categorization are related with interoperability

[252,166,194,167], functional aspects such as alert management [84,168], communication and

response time [54] and the creation and monitoring of geofences [195]. Those requirements are

present in this document, although new ones may appear in further iterations of INTER-IoT solution.

Finally, it must be noted that some INTER-LogP requirements are desirable, but not strictly

necessary for the development of the INTER-LogP solution. This group attain a lower priority:

‘Could’, such is the case of QoS [81]. They are referred in this deliverable as they have relevant role

and significance for some important INTER-Layer aims, such as the interoperability at the network

level.

1.3.2 Minimum requirements for the INTER-Health pilot

This subsection points out the most important requirements for the INTER-Health pilot and their

relation with the INTER-IoT interoperability solution. Those requirements can be found in the annex

organised according to the MoSCoW prioritization. In this section all requirements referenced in

brackets refer to the Table 11 in section 6.1 (Annex).

'Must’ categorization correspond to requirements that have to be integrated in the final

implementation of the pilot. INTER-Health requirements under this categorization are commented in

D 3.1: Methods for Interoperability and Integration

21 / 220

the following lines. In this group, it has been pointed out the necessity of a User Access Gateway

[176], to solve interoperability needs among devices, IoT platforms and applications. As well as the

need of semantic support [106], that will be solved in DS2DS layer.

Among the functional needs with maximum priority are those associated with response time and

availability of sensors [71,127], as well as the ones regarding security and privacy [103,145,146,218].

These latter requirements will be applied in the first iterations of the solution, although they will be

mostly developed at the CROSS-LAYER level, which is not covered here.

The requirements under the ‘Should’ categorization should be integrated into the final solution, but

they could be dispensable and might even not be implemented if a strong reason justifies that

decision. The majority of the requirements in this group are related with interoperability

[107,101,102]. In particular, to the exchange of information among platforms and special measures

between different platforms. They are addressed by MW2MW and AS2AS, with the semantic support

of DS2DS if explicit semantic annotation of the analysed data is required.

Finally, standards for medical transfer of medical information [164] have to be taken into account, as

well as, standards for handling and managing the user access [174, 177,172, 173]. It must be noted

that the particular needs associated with medical environments require the existence of several strict

requirements related to security and authentication, and this fact is also reflected within the set of

requirements that are given above.

D 3.1: Methods for Interoperability and Integration

22 / 220

2 State of the Art

This section presents a state of the art in regard of interoperability. It is structured following the layer

categorization of INTER-LAYER approach, as it is focused on the interoperability at the

aforementioned different levels of IoT systems: Device, Network, Middleware, Application &

Services, Data & Semantics.

Each subsection describes the problem, context, and currently available tools and solutions

regarding interoperability for each particular layer, that may be considered in the INTER-IoT solution,

together with a description of the layer. As well, a literature review is expounded. Additionally, for a

quick overview of concepts referring to a particular layer, a summary table can be found at the end

of each section.

2.1 Device Interoperability (D2D)

The D2D interoperability in this section is about:

 the ability to share information and services,

 the ability of two or more devices, systems or its components to exchange and use

information,

 the ability of devices to provide and receive services from other devices.

In IoT this is typically achieved through a gateway. An IoT Gateway has the ability to allow different

devices using the same or different access networks to communicate to other devices and through

the northbound API to the middleware or other applications. These devices can be sensors,

actuators or prosumers (sensor and actuator) and the gateway can provide other services such as

device discovery, QoS, security, cache storage, and so on.

2.1.1 Common Approaches

In order to understand common approaches for device to device interoperability, first we have to

understand the classification of devices in the IoT environment. Attending the RFC 7228 of IETF for

the Terminology for Constrained-Node Networks.

Constrained devices might be gathering information in diverse configurations and sending the

information to one or more servers. They might also act on information, by performing some physical

action, including displaying it. Constrained devices may work under severe resource constraints such

as limited battery and computing power, little memory, and insufficient wireless bandwidth and ability

to communicate. Other entities on the network might have more computational and communication

resources and could support the interaction between the constrained devices and applications in

more traditional networks.

Despite the overwhelming variety of Internet-connected devices that can be envisioned, it may be

worthwhile to have some succinct terminology for different classes of constrained devices. The class

designations in Table 1 may be used as rough indications of device capabilities:

D 3.1: Methods for Interoperability and Integration

23 / 220

Name Data Size (e.g RAM) Code Size (e.g. Flash)

Class 0, C0 << 10KB << 100KB

Class 1, C1 ~10KB ~100KB

Class 2, C2 ~50KB ~250KB

Table 1: classification of constrained devices. Source: http://www.rfc-base.org/txt/rfc-
7228.txt

 Class 0 devices are very constrained sensor-like motes. Severely constrained in memory

and processing capabilities most likely they will not have the resources required to

communicate directly with the Internet in a secure manner. They will participate in Internet

communications with the help of larger devices acting as proxies, gateways, or servers and

will most likely be preconfigured with a very small dataset.

 Class 1 devices are quite constrained in code space and processing capabilities, such that

they cannot easily talk to other Internet nodes employing a full protocol stack such as using

HTTP, Transport Layer Security (TLS), and related security protocols and XML-based data

representations. However, they are capable enough to use a protocol stack specifically

designed for constrained nodes (such as the Constrained Application Protocol (CoAP) over

UDP) and participate in meaningful conversations without the help of a gateway node. In

particular, they can provide support for the security functions required on a large network.

Therefore, they can be integrated as fully developed peers into an IP network, but they need

to be parsimonious with state memory, code space, and often power expenditure for protocol

and application usage.

 Class 2 devices are less constrained and fundamentally capable of supporting most of the

same protocol stacks as used on notebooks or servers. However, even these devices can

benefit from lightweight and energy-efficient protocols and from consuming less bandwidth.

Furthermore, using fewer resources for networking leaves more resources available to

applications. Thus, using the protocol stacks defined for more constrained devices on Class

2 devices might reduce development costs and increase the interoperability.

With respect to examining the capabilities of constrained nodes, particularly for Class 1 devices, it is

important to understand what type of applications they are able to run and which protocol

mechanisms would be most suitable. Because of memory and other limitations, each specific Class

1 device might be able to support only a few selected functions needed for its intended operation. In

other words, the set of functions that can actually be supported is not static per device type: devices

with similar constraints might choose to support different functions. Even though Class 2 devices

have some more functionality available and may be able to provide a more complete set of functions,

they still need to be assessed for the type of applications they will be running and the protocol

functions they would need. To be able to derive any requirements, the operational scenarios need

to be analyzed. Use cases may combine constrained devices of multiple classes as well as more

traditional Internet nodes.

Having this constrains in mind at the device layer we can detect 2 different scenarios of

interoperability:

The first scenario is the one in which the sensor and the actuator are connected to the same device

and the actuator has to respond to triggers from the sensor. This kind of interoperability can be

D 3.1: Methods for Interoperability and Integration

24 / 220

routed in the device itself, only database values have to be synchronized with Cloud systems. The

Device Manager will be responsible to handle this task and route the sensor signal to the actuator.

The Device Manager will be the module that directs traffic to the appropriate port.

The other scenario is when the sensor is on one device and the actuator at another device, in this

case we will always need to pass the Gateway. The middleware provides a bridge to allow different

platforms to communicate to each other without interference from higher layers. Again, at device

level the Device Manager will be responsible for routing the sensor signal to the northbound Gateway

together with appropriate identification and other header information like sensor type, priority, etc.

and maybe initiate security protocols.

2.1.2 Literature review

Some of the projects that have been working on the development of gateways with several

connection interfaces and services as well as technologies for device connection are summarized in

this section.

2.1.2.1 Implementation of Gateways

Eclipse Kura

Eclipse Kura1 aims at offering a Java/OSGi-based container for M2M applications running in service

gateways. Kura provides or, when available, aggregates open source implementations for the most

common services needed by M2M applications. Kura components are designed as configurable

OSGi Declarative Service exposing service API and raising events. While several Kura components

are in pure Java, others are invoked through JNI and have a dependency on the Linux operating

system.

OM2M Gateway

OM2M2 provides an open source service platform for M2M interoperability based on the oneM2M

standard. OM2M follows a RESTful approach with open interfaces to enable developing services

and applications independently of the underlying network. It proposes a modular architecture running

on top of an OSGi layer, making it highly extensible via plugins. It supports multiple protocol bindings

such as HTTP and CoAP. Various interworking proxies are provided to enable seamless

communication with vendor-specific technologies such as Zigbee and Phidgets devices.

2.1.2.2 Specifications and protocols

Open Mobile Alliance

OMA3 was formed by the world’s leading mobile operators, device and network suppliers, information

technology companies and content providers as the industry focal point for the development of

mobile service enabler specifications. OMA is a non-profit organization that delivers open

specifications for creating interoperable services that work across all geographical boundaries, on

1 http://www.eclipse.org/kura/
2 http://www.eclipse.org/om2m/
3 http://openmobilealliance.org/

D 3.1: Methods for Interoperability and Integration

25 / 220

any bearer network. OMA’s specifications support the billions of new and existing terminals across

a variety of wireless networks, including traditional cellular operator networks and emerging networks

supporting machine-to-machine device communications for the Internet of Things (IoT).

Random phase multiple access

Random phase multiple access (RPMA)4 is a low-power wide-area channel access method used

exclusively for machine-to-machine (M2M) communication on the Internet of Things (IoT).

RPMA is a technology communication system employing direct-sequence spread spectrum (DSSS)

with multiple accesses. RPMA technology employs tight transmit power control and high receiver

sensitivity (-142dBm) with a total 172 dB link budget. RPMA utilizes the 2.4 GHz band, a globally

available cost free spectrum. RPMA self modulates to find clear signal both on the network and

device level. It is also optimized for maximum coverage and battery efficiency, as opposed to cellular

which is designed for high throughput but requires a lot of power. To save battery life it has a special

connection protocol in which access points ping the device, checks the device status receives any

data, and then closes the connection. It is estimated that the majority of M2M and IoT connections

need this kind of low data throughput, high battery life connectivity.

RPMA is currently used in 38 private networks worldwide. The 2.4 GHz spectrum is available

worldwide and is cost-free to use. RPMA access points can cover 300 square miles. It would take

30 cellular towers to cover the same area. Ingenu5, who owns RPMA, reportedly has access points

covering 450 square miles each. RPMA is deployed in both the public Machine Network, as well as

private networks.

RPMA's uplink is 624 kbit/s and downlink is 156 kbit/s, which is about 10 times the speed of dialup

internet. When moving, RPMA's speeds drop, as is typical for wireless connections, to 2kbit/s. These

speeds are adequate for the majority of IoT applications being faster than 2G and orders of

magnitude faster than Sigfox.

SWAP/HomeRF

Initially called Shared Wireless Access Protocol (SWAP) and later just HomeRF6, this open

specification allowed PCs, peripherals, cordless phones and other consumer devices to share and

communicate voice and data in and around the home without the complication and expense of

running new wires. HomeRF combined several wireless technologies in the 2.4 GHz ISM band,

including IEEE 802.11 FH (the frequency-hopping version of wireless data networking) and DECT

(the most prevalent digital cordless telephony standard in the world) to meet the unique home

networking requirements for security, quality of service (QoS) and interference immunity.

CoAP

Constrained Application Protocol (CoAP)7 is a software protocol intended to be used in very simple

electronics devices, allowing them to communicate interactively over the Internet. It is particularly

targeted for small, low-power sensors, switches, valves and similar components that need to be

controlled or supervised remotely, through standard Internet networks. CoAP is an application layer

4 __, “Random Phase Multiple Access”, available at https://goo.gl/sGZMQR, last revised 15 Dec. 2016
5 http://www.ingenu.com/
6 __, “HomeRF”, available at https://en.wikipedia.org/wiki/HomeRF, last revised 15 Dec. 2016
7 __, “Constrained Application Protocol”, available at https://en.wikipedia.org/wiki/Constrained_Application_Protocol,

last revised 15 Dec. 2016

D 3.1: Methods for Interoperability and Integration

26 / 220

protocol that is intended for use in resource-constrained internet devices, such as WSN nodes. CoAP

is designed to easily translate to HTTP for simplified integration with the Web, while also meeting

specialized requirements such as multicast support, very low overhead, and simplicity. Multicast, low

overhead, and simplicity are extremely important for Internet of Things (IoT) and Machine-to-

Machine (M2M) devices, which tend to be deeply embedded and have much less memory and power

supply than traditional internet devices have. Therefore, efficiency is very important. CoAP can run

on most devices that support UDP or a UDP analogue.

The Internet Engineering Task Force (IETF) Constrained RESTful environment (CoRE) Working

Group has done the major standardization work for this protocol. In order to make the protocol

suitable to IoT and M2M applications, various new functionalities have been added. The core of the

protocol is specified in RFC 7252; important extensions are in various stages of the standardization

process.

XMPP

Extensible Messaging and Presence Protocol (XMPP)8 is a communications protocol for message-

oriented middleware based on XML (Extensible Markup Language). It enables the near-real-time

exchange of structured yet extensible data between any two or more network entities. Originally

named Jabber, the protocol was developed by the Jabber open-source community in 1999 for near

real-time instant messaging (IM), presence information, and contact list maintenance. Designed to

be extensible, the protocol has been used also for publish-subscribe systems, signalling for VoIP,

video, file transfer, gaming, the Internet of Things (IoT) applications such as the smart grid, and

social networking services.

Unlike most instant messaging protocols, XMPP is defined in an open standard and uses an open

systems approach of development and application, by which anyone may implement an XMPP

service and interoperate with other organizations' implementations. Because XMPP is an open

protocol, implementations can be developed using any software license; although many server,

client, and library implementations are distributed as free and open-source software, numerous

freeware and commercial software implementations also exist.

The Internet Engineering Task Force (IETF) formed an XMPP working group in 2002 to formalize

the core protocols as an IETF instant messaging and presence technology. The XMPP Working

group produced four specifications (RFC 3920, RFC 3921, RFC 3922, RFC 3923), which were

approved as Proposed Standards in 2004. In 2011, RFC 3920 and RFC 3921 were superseded by

RFC 6120 and RFC 6121 respectively, with RFC 6122 specifying the XMPP address format. In 2015,

RFC 6122 was superseded by RFC 7622. In addition to these core protocols standardized at the

IETF, the XMPP Standards Foundation (formerly the Jabber Software Foundation) is active in

developing open XMPP extensions.

XMPP-based software is deployed widely across the Internet, and by 2003, was used by over ten

million people worldwide, according to the XMPP Standards Foundation.

8 __, “XMPP”, available at https://en.wikipedia.org/wiki/XMPP, last revised 15 Dec. 2016

D 3.1: Methods for Interoperability and Integration

27 / 220

DDS

The Data Distribution Service for Real-Time Systems (DDS)9 is an Object Management Group

(OMG) machine-to-machine middleware "m2m" standard that aims to enable scalable, real-time,

dependable, high-performance and interoperable data exchanges between publishers and

subscribers. DDS addresses the needs of applications like financial trading, air-traffic control, smart

grid management, and other big data applications. The standard is used in applications such as

smartphone operating systems, transportation systems and vehicles, software-defined radio, and by

healthcare providers. DDS may also be used in certain implementations of the Internet of Things.

AMQP

The Advanced Message Queuing Protocol (AMQP)10 is an open standard application layer protocol

for message-oriented middleware. The defining features of AMQP are message orientation, queuing,

routing (including point-to-point and publish-and-subscribe), reliability and security.

AMQP mandates the behaviour of the messaging provider and client to the extent that

implementations from different vendors are interoperable, in the same way as SMTP, HTTP, FTP,

etc. have created interoperable systems. AMQP is a wire-level protocol, a description of the format

of the data that is sent across the network as a stream of octets. Consequently, any tool that can

create and interpret messages that conform to this data format can interoperate with any other

compliant tool irrespective of implementation language.

MQTT

MQTT11 (formerly MQ Telemetry Transport) is an ISO standard (ISO/IEC PRF 20922) publish-

subscribe-based "lightweight" messaging protocol for use on top of the TCP/IP protocol. It is

designed for connections with remote locations where a "small code footprint" is required or the

network bandwidth is limited. The publish-subscribe messaging pattern requires a message broker.

The broker is responsible for distributing messages to interested clients based on the topic of a

message. Andy Stanford-Clark and Arlen Nipper of Cirrus Link Solutions authored the first version

of the protocol in 1999.

The specification does not specify the meaning of "small code footprint" or the meaning of "limited

network bandwidth". Thus, the protocol's availability for use depends on the context. In 2013, IBM

submitted MQTT v3.1 to the OASIS specification body with a charter that ensured only minor

changes to the specification could be accepted. MQTT-SN is a variation of the main protocol aimed

at embedded devices on non-TCP/IP networks, such as ZigBee.

Alternative protocols include the Advanced Message Queuing Protocol, the IETF Constrained

Application Protocol and XMPP.

9 __, “Data Distribution Service”, available at https://en.wikipedia.org/wiki/Data_Distribution_Service, last revised 15

Dec. 2016
10 __, “Advanced Message Queuing Protocol”, available at

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol, last revised 15 Dec. 2016
11 __, “MQTT”, available at https://en.wikipedia.org/wiki/MQTT, last revised 15 Dec. 2016

D 3.1: Methods for Interoperability and Integration

28 / 220

2.1.2.3 Existing Gateway access networks

WiFi (IEEE 802.11.x)

Wi-Fi or WiFi is a technology that allows electronic devices to connect to a Wireless Local Area

Network (WLAN), mainly using the 2.4 gigahertz (12 cm) UHF and 5 gigahertz (6 cm) SHF ISM radio

bands. It is usually password protected, but may be open, which allows any device within its range

to access the resources of the WLAN network. This technology is based on the Institute of Electrical

and Electronics Engineers' (IEEE) 802.11 standards.

A wide variety of devices can be connected by this including personal computers, video-game

consoles, smartphones, digital cameras, tablet computers digital audio players and modern printers,

and sensors and other any other smart object Wi-Fi compatible. Devices can connect to the Internet

via a WLAN network and a wireless access point. Such an access point (or hotspot) has a range of

about ~20 meters indoors and a greater range outdoors. Hotspot coverage can be as small as a

single room with walls that block radio waves, or as large as many square kilometers achieved by

using multiple overlapping access points.

Wi-Fi is less secure than wired connections, such as Ethernet, precisely because an intruder does

not need a physical connection. Web pages that use TLS are secure, but unencrypted Internet

access can easily be detected by intruders. Because of this, Wi-Fi has adopted various encryption

technologies (WEP, WPA, WPA2, WPS). The Wi-Fi Alliance has updated its test plan and

certification program to ensure all newly certified devices resist attacks.

IEEE 802.15.4

It is a standard which specifies the PHY and MAC layers for low-rate WPAN. It is maintained by the

IEEE 802.15 working group, and define the basis for the ZigBee, ISA100.11a, WirelessHART, MiWi,

and Thread specifications, each of which further extends the standard by developing the upper

layers.

It is focused on low-cost, low-speed ubiquitous communication between devices and can be

contrasted with other approaches, such as Wi-Fi, which offer more bandwidth and require more

power. The basic framework conceives a 10-meter communications range with a transfer rate of 250

kbit/s.

The aim is to achieve extremely low manufacturing and operation costs and technological simplicity,

without sacrificing flexibility or generality.

Important features include:

 Real-time suitability by reservation of guaranteed time slots.

 Collision avoidance through CSMA/CA.

 Integrated support for secure communications.

 Power management functions such as link quality and energy detection.

 Three possible frequency bands for operation (868/915/2450 MHz).

Other higher-level layers and interoperability sublayers are not defined in the standard.

Specifications, such as 6LoWPAN and ZigBee are built on this standard. RIOT, TinyOS, Unison

RTOS, DSPnano RTOS and Contiki operating systems also use a few items of IEEE 802.15.4

hardware and software.

D 3.1: Methods for Interoperability and Integration

29 / 220

DASH7

At the beginning was an international standard describing diverse RFID technology, each utilizing a

unique frequency range. Later it becomes an open source Wireless Sensor and Actuator Network

protocol, which operates in the 433 MHz, 868 MHz and 915 MHz unlicensed ISM band/SRD band.

DASH712 provides; multi-year battery life, range of up to 2 km, low latency for connecting with moving

things, a very small open source protocol stack, AES 128-bit shared key encryption support, and

data transfer of up to 167 kbit/s. The DASH7 Alliance Protocol is the name of the technology

promoted by the non-profit consortium called the DASH7 Alliance.

The main pillar of this standard is the BLAST networking technology:

 Bursty: Data transfer is abrupt and does not include content such as video, audio, or other

isochronous forms of data

 Light: For most applications, packet sizes are limited to 256 bytes. Transmission of multiple,

consecutive packets may occur but is generally avoided if possible.

 Asynchronous: DASH7's main method of communication is by command‐response, which

by design requires no periodic network "hand-shaking" or synchronization between devices.

 Stealth: DASH7 does not use discovery beacons, end nodes can choose to respond only to

pre-approved devices.

 Transitional: A DASH7 system of devices is inherently mobile or transitional. Unlike other

wireless technologies DASH7 is upload-centric, not download-centric, thus devices do not

need to be managed extensively by fixed infrastructure (i.e. base stations) to respond only to

pre‐approved devices.

EnOcean

EnOcean13 is an energy harvesting wireless technology which covers the first three layers of the OSI

protocol stack. The transmit range goes up to 30 meter in buildings and up to 300 meter outdoor.

Even the main using is for building automation is also applied to other applications in industry,

transportation, logistics and smart homes.

Modules based on EnOcean technology combine micro energy converters with ultra-low power

electronics, and enable wireless communications between battery-less wireless sensors, switches,

controllers and gateways. And it operates in 868 MHz in Europe generating a signal of astonishing

range from an extremely small amount of energy.

INSTEON

Insteon14 is a home automation and domotics technology that enables low-cost devices, light

switches, lights, thermostats, leak sensors, remote controls, motion sensors, and other electrically

powered devices to interoperate through power lines(PL), radio frequency (RF) communications, or

both. It employs a dual-mesh networking topology in which all devices are peers and each device

independently transmits, receives, and repeats messages.

12 http://www.dash7-alliance.org/
13 https://www.enocean.com/
14 http://www.insteon.com/

D 3.1: Methods for Interoperability and Integration

30 / 220

NFC

The set of communication protocols known as Near-field communication15 enable two electronic

devices, one of them usually a portable, on-move device such as a smartphone, to establish link

communication through the air by bringing them within about 4 cm of each other. So is a technology

of proximity that allows these two devices to exchange data if they are in a small range, using

electromagnetic induction between two loop antennas, operating within the globally available

unlicensed radio frequency ISM band of 13.56MHz on ISO/IEC 18000-3 air interface at rates from

106 to 424 kbit/s.

NFC-enabled devices can be equipped with apps for future use of the data exchanged and full NFC

device can work in three modes:

 NFC card emulation: devices act like smart cards, allowing users to perform payments or

ticketing

 NFC reader/writer: for reading information stored on inexpensive NFC tags embedded in

labels or smart posters

 NFC peer-to-peer: two devices communicate in an ad-hoc mode.

NFC standards cover communications protocols and data exchange formats, and are based on

existing RFID standards including ISO/IEC 14443 and FeliCa.

Bluetooth BLE

Bluetooth16 Smart technology operates in the same spectrum range (the 2.400 GHz-2.4835 GHz

ISM band) as Classic Bluetooth technology, but uses a different set of channels. Instead of the

Classic Bluetooth 79 1-MHz channels, Bluetooth Smart has 40 2-MHz channels. Within a channel,

data is transmitted using Gaussian frequency shift modulation, similar to Classic Bluetooth's Basic

Rate scheme. The bit rate is 1Mbit/s, and the maximum transmit power is 10 mW.

Bluetooth Smart uses frequency hopping to counteract narrowband interference problems. Classic

Bluetooth also uses frequency hopping but the details are different; as a result, while both FCC and

ETSI classify Bluetooth technology as an FHSS scheme, Bluetooth Smart is classified as a system

using digital modulation techniques or a direct-sequence spread spectrum.

SigFox

SigFox17 is a global IoT network operator. It uses differential binary phase-shift keying (DBPSK) in

one direction and Gaussian frequency shift keying (GFSK) in the other direction. SigFox and their

partners set up antennas on towers (like a cell phone company) and receives data transmissions

from devices such as parking sensors or water meters. In Europe use the narrow frequency band

around 868MHZ.

Its wireless systems send quite small amount of data, 12 bytes, and in a very slow mode, using the

aforementioned standard radio transmission methods.

This technology fits perfectly for any application that needs to send small, lossy and infrequent bursts

of data. Within the network the signal is typically sent a few times to ensure the reception but some

15 http://nearfieldcommunication.org/
16 https://www.bluetooth.com/
17 https://www.sigfox.com/

D 3.1: Methods for Interoperability and Integration

31 / 220

drawbacks or limitations are given such as shorter battery life and inability to guarantee the receiving

of a message by the tower.

A bi-directional network has not been designed yet, but SigFox said they will be working over this

technology. If they are successful in deploying a two-way network, this will enable a wider variety of

applications on their networks, though it will not have a symmetrical link because of the underlying

technology they have chosen.

ZigBee

ZigBee18 is a low-cost/low-power wireless mesh network standard targeted at the wide development

of long battery life devices in wireless control and monitoring applications. Zigbee devices have low

latency, which further reduces average current. ZigBee operates in the industrial, scientific and

medical (ISM) radio bands: 2.4 GHz in most jurisdictions worldwide; 784 MHz in China, 868 MHz in

Europe and 915 MHz in the USA and Australia. Data rates vary from 20 kbit/s (868 MHz band) to

250 kbit/s (2.4 GHz band).

The ZigBee network layer natively supports both star and tree networks, and generic mesh

networking. Every network must have one coordinator device, tasked with its creation, the control of

its parameters and basic maintenance. Within star networks, the coordinator must be the central

node. Both trees and meshes allow the use of ZigBee routers to extend communication at the

network level.

ZigBee builds on the physical layer and media access control defined in IEEE standard 802.15.4 for

low-rate WPANs. The specification includes four additional key components: network layer,

application layer, ZigBee device objects (ZDOs) and manufacturer-defined application objects which

allow for customization and favor total integration. ZDOs are responsible for some tasks, including

keeping track of device roles, managing requests to join a network, as well as device discovery and

security.

LTE/LTE-A/LTE-M

Generation of cellular standards for mainly smartphone data exchange. LTE is standard for high-

speed wireless communication for mobile phones and data terminals. It is based on the GSM/EDGE

and UMTS/HSPA network technologies, increasing the capacity and speed using a different radio

interface together with core network improvements. The LTE-A is a major enhancement of the

standard before. Those two works perfectly with device with enough resources but, to include them

in the IoT paradigm they develop a parallel standard focused in M2M communication.

LTE-M, which is an abbreviated version of LTE-MTC (or “machine-type communications”), is a part

of 3GPP’s release 12 and 13, and it is still under consideration. The LTE channel is made up of

resource blocks of about 230 kHz of spectrum, and LTE-M is part of the 1.4 mHz block, comprised

of six resource blocks. LTE-M is more energy efficient because of its extended discontinuous

repetition cycle (DRX), which means the endpoint can communicate with the tower or the network

on how often it will wake up to listen for the downlink. LTE-PSM from Rel 12 (power-saving mode)

had a similar feature, but extended DRX was created specifically for LTE-M in Rel 13.

The advantage of LTE-MTC for M2M communications is that it works within the normal construct of

LTE networks. In other words, a cellular carrier like AT&T only has to upload new baseband software

onto its base stations to turn on LTE-M and won’t have to spend any money on new antennas. It’s

18 http://www.zigbee.org/

D 3.1: Methods for Interoperability and Integration

32 / 220

also five times simpler than a category 4 receiver—like that found in user equipment like a cell

phone—because it needs only to understand and digitize 1.4 mHz of the channel instead of 20 mHz.

LTE-M has a little higher data rate than NB-LTE-M and NB-IoT, but it is able to transmit fairly large

chunks of data. Thus, it can be used for applications such as tracking objects, wearables, energy

management, utility metering, and city infrastructure.

LoRa

LoRa19 is a Low Power Wide Area Network (LPWAN) specification focused on wireless devices with

battery restrictions. This specification tries to provide seamless interoperability among smart Things

without the need of complex local installations and gives back the freedom to the user, developer,

businesses enabling the roll out of Internet of Things. LoRaWAN network architecture is typically laid

out in a star-of-stars topology in which gateways is a transparent bridge relaying messages between

end-devices and a central network server in the backend. Gateways are connected to the network

server via standard IP connections while end-devices use single-hop wireless communication to one

or many gateways. All end-point communication is generally bi-directional, but also supports

operation such as multicast enabling software upgrade over the air or other mass distribution

messages to reduce the on air communication time. Communication between end-devices and

gateways is spread out on different frequency channels and data rates. The selection of the data

rate is a trade-off between communication range and message duration. Due to the spread spectrum

technology, communications with different data rates do not interfere with each other and create a

set of "virtual" channels increasing the capacity of the gateway. LoRaWAN data rates range from

0.3 kbps to 50 kbps. To maximize both battery life of the end-devices and overall network capacity,

the LoRaWAN network server is managing the data rate and RF output for each end-device

individually by means of an adaptive data rate (ADR) scheme. The result is a network ideal for

Internet of Things (IoT), metering, security, asset tracking, and machine-to-machine (M2M)

applications.

ANT

ANT20 is a proprietary wireless communication protocol stack that operates on the 2.4 GHz ISM

band. ANT is oriented towards the usage with sensors and health applications. The range of ANT is

30 meters at 0 dBm.

Each ANT node can transmit, receive or be set up as bi-directional channels. ANT accommodates

three types of messaging, Broadcast, acknowledgements and bursts (max 20 kbit/s). Possible

topologies with ANT are point to point, tree, and mesh. A maximum of 65533 nodes set in one

network.

Each transmission occurs in an interference free time slot within the defined frequency band. The

radio transmits for less than 150 μs allowing a single channel to be divided into multiple time slots.

6LowPan (IETF)

IPv6 over Low power Wireless Personal Area Networks (6LowPan)21 allows IPv6 packets to be sent

and received over IEEE 802.15.4 based networks. Some of the functions included; adapting the

packet sizes of the two networks, address resolution in hierarchical manner, differing device designs,

19 https://www.lora-alliance.org
20 https://www.thisisant.com/
21 https://datatracker.ietf.org/wg/6lowpan/charter/

D 3.1: Methods for Interoperability and Integration

33 / 220

differing focus on parameter optimization, adaptation layer for interoperability and packet formats,

addressing management mechanism, routing consideration for mesh topologies (LOADng and RPL),

device and services discovery and other security issues.

Thread (Thread Group)

Thread22 is an effort of over 50 companies to standardize on a closed-documentation, royalty-free

protocol running over 6LoWPAN to enable home automation. Thread however is IP-addressable,

with cloud access and AES encryption. It supports over 250 devices on a network with mesh

topology.

Z-Wave (Z-Wave Alliance)

Z-Wave23 is a wireless communication protocol for home automation, oriented to the residential

control and automation market and intended to provide simple and reliable method to wirelessly

control lighting, HVAC, security systems, home cinema, etc.

2.1.3 Summary Table

Protocol COAP MQTT XMPP AMQP DDS

Transport UDP TCP TCP TCP TCP

UDP

Publish/Subscribe

Request/Response

Security DTLS SSL SSL SSL SSL

DTLS

QoS

Header Size 4 2 - 8 -

Low Power and

Lossy

Excellent Good Fair Fair Poor

Architecture Tree Tree Client-

server

P2P Bus

Table 2: Comparison between device IoT protocols.

2.2 Network Interoperability (N2N)

We understand the network level of an IoT deployment as the protocols, systems, and devices that

work on the layer 2 and 3 of the OSI protocol stack. At this level we have to contemplate

pervasiveness and ubiquitous networks aspects as this is not as a traditional network. The

particularity of the IoT network is the treatment of many different types of data flows as well as

22 http://threadgroup.org/
23 http://z-wavealliance.org/

D 3.1: Methods for Interoperability and Integration

34 / 220

protocols to support communication. Also, the integration of new devices on the scheme, that need

to communicate with each other, make the interoperation on the N2N layer more difficult.

In this particular case we describe the interoperability between networks or parts of the network that

belong to an IoT deployment. To that end, together with the aspects considered before we have to

take into account particular characteristics to be achieved on this layer, such as the mobility of

objects through different access networks, secure seamless mobility and the backing of real time

data among the network. The operation in highly constrained environment is also an important issue

to analyze. And finally, the use of really heterogeneous protocols (6LowPAN, RPL, LoRa, SIGFox,

etc) and mechanisms (tunneling mechanisms over IP, GRE and 6LoWPAN, etc) on IoT network level

are problems we desire to solve with a proposed interoperability solution.

The interoperability solution will be based on software defined paradigms but mainly on two

approaches: SDR for interoperability on access network and SDN/NFV for the core network.

2.2.1 Common Approaches

To achieve network to network interoperability, the solution we propose is based on the philosophy

of SDN, and extension of its capabilities as:

 Decoupling of data plane from logical plane using the well-studied protocol OpenFlow.

 Virtualizing network services at the top of the architecture.

 Implementation of techniques for traffic engineering to handle different flows of data

generated by sensors depending on its priority.

Additionally, we wish to provide interoperability at the network access, using SDR. Finally, together

with this vision, we will handle the seamless mobility and the offloading of information with an

extension of these aforementioned approaches.

However, before getting into detail of the proposed interoperability solution, we will describe and

explain how these technologies operate and make a literature review of the projects which main

function is the implementation of them.

2.2.2 Literature review

In this section we provide a brief summary about concepts, technologies or projects, needed for the

proper understanding of the interoperability solution.

2.2.2.1 SDN

Regarding the communication between different networks or even with the communication of

different elements within a network, we present new paradigms in networking to be used in the N2N

layer of the INTER-IoT project: the concepts of Network Functions Virtualization (NFV) and Software

Defined Networks (SDN).

The NFV idea is to virtualize network functions and components that we can find within a network.

Such real elements as firewalls, routers, switches, load balancers, etc can be located in central or

distributed equipment and control, in a virtual manner, all the underlined network [2]. To that end,

D 3.1: Methods for Interoperability and Integration

35 / 220

there is no need to deploy the physical elements and the same functions can be performed also

unfolding new network functions and services software based.

The hardware that contains all these functions can be on one or several servers, with a processor,

capable enough to manage several virtual machines or virtual elements which represent the

aforementioned physical entities.

On the other hand, we have the software defined network concept that presents a new network

architecture where the data plane and the control plane are decoupled (so they work separately).

The intelligence and network state, as well as the management and routing algorithm are centralized

and the underlying network infrastructure is abstracted from the applications and services. This

separation allows the virtualization of the different components of the network, being NFV and SDN

highly compatible and complementary [3].

Figure 2: SDN network architecture example.

During the first steps of the communication networks, those were thought as a circuit switching

approach and, as data traffic were introduced and increased, the attempts to adapt the infrastructure

led to a new packet switching paradigm in order to improve the system, enhancing the experiences

of the users and reducing the delays arisen by the network. However, the data traffic keeps growing,

within new technologies as streaming and big data traffic. The amount of data carried by the networks

is rushing levels never seen before and demands a better management to provide more reliability,

robustness security and quality of service for users and other smart objects connected to them.

Additionally, this growth of the traffic implies the inclusion of more network elements making more

complex networks, less manageable and hardly scalable [4].

With this picture in mind the Stanford University [5] created a new network paradigm which aims to

solve these limitations, firstly breaking the complexity of traditional network, simplifying it by

crumbling the vertical integration of the network elements, and secondly centralizing the logic that

those traditional network elements possess.

The main principle of these networks is to decouple the data and control plane so that, on one side,

the elements that compose them, as switches, routers, etc., become mere forwarders which route

the information in a nimbly an efficient manner. Forwarding decisions are then flow based. And, on

the other side, the whole logic of routing, algorithms and other services previously provided by

firewalls, middleboxes, IPS, etc. are transferred to a single point of control which is the decision-

maker. An example of this architecture can be observed in Figure 2.

D 3.1: Methods for Interoperability and Integration

36 / 220

Even an amount of the approaches of SDN have been designed following these basic guidelines,

the most remarkable is the provided by ONF (Open networking foundation), founded as a result of

thin paradigm, and following the architecture proposed by OpenFlow. This view of the SDN is

introduced in what follows.

According to OpenFlow on the data plane all the elements of the network, whether real or virtualized,

become mere OF-enable switches, whose main function is to receive the flow of packets through

one of its interfaces, check the flow tables stored inside and resend the packets following an order.

Inside the switch there must be, at least, one flow table and it should have, at least, one flow entry.

The flow entries have three main fields; statistics, rule and action. When a packet arrives to the

switch a specific field is matched against the rule and, if there is a match, the determined action is

performed. This could be; resend by a selected interface, send to the controller or drop, among

others. Additionally, the third parameter is used to collect statistics and information about the number

and type of packets that has been forwarding. With this, the controller has a better overview about

the state of the network and the flows that are being carried [5].

For the logic plane we could find the controller where all switches are connected to, this is the engine

of the system, and more complex to develop. In case no matches were found in the table switch by

the packet, the switch sends the register number and contain of the packet to the controller to decide

which action should be performed. For this purpose, all switches are connected to one or more

controllers through a secure channel, TCP/TLS, and communicate each other by OpenFlow protocol,

to exchange the packets, tables and orders that have to be executed by the switches.

However, this controller or NOS (Network Operating System) has more services inside, as network

operative software that can be divided in three main parts:

 Southbound Interface: the connection with the forwarding devices through a secure channel

is implemented by the southbound API which allows the entrance of OpenFlow packets into

the controller and formalizes the way the control and data planes interact.

 Controller core: we can see this part as the brain or engine of the controller, where all logic

rest.

 Northbound Interface: the NOS can offer an API to the application developers.

The following sections summarize all the technologies until these days related with SDN.

Network Operating Systems

PicOS: A SDN OS for white box switches Layer-2/3 feature set with support for OpenFlow, OVSDB,

and other protocols.

OpenNetworkLinux: A Linux distribution for "bare metal" switches, that is, network forwarding

devices built from commodity components.

OpenSwitch: A linux network operating system from Hewlett-Packard. OpenSwitch provides a fully-

featured L2/L3 control plane stack, traditional and programmatic, declarative control plane.

Installation Environment

ONIE Open Network Install Environment (ONIE) defines an open "install environment" for bare metal

network switches, such as existing ODM switches and the upcoming OCP Network Switch design.

ONIE enables a bare metal network switch ecosystem where end users have a choice among

different network operating systems.

Virtual Switches

D 3.1: Methods for Interoperability and Integration

37 / 220

Open vSwitch24 is a production quality, multilayer virtual switch designed to enable massive network

automation through programmatic extension, supporting standard management interfaces and

protocols. Between its features we can find:

 Security: VLAN isolation and traffic filtering among others.

 Monitoring: Netflow, sFlow, SPAN, RSPAN, among others.

 QoS: traffic queuing and shaping.

 Automated Control: OpenFlow/OVSDB management protocol among others.

Indigo is an open source project aimed at enabling support for OpenFlow on physical and hypervisor

switches. This is the most used and extended implementation but we can find CPqD that is an

OpenFlow 1.3 compatible user-space software switch implementation, Lagopus is high-

performance software OpenFlow 1.3 switch and, also, LINC-Switch a pure OpenFlow software

switch written in Erlang and Snabbswitch an open source virtualized Ethernet networking stack.

Network Virtualization

In case of virtualization of the network we have tools as FlowVisor, an OpenFlow controller that acts

as a hypervisor/proxy between a switch and multiple controllers that can slice multiple switches in

parallel, effectively slicing a network, or OpenVirtex also a network hypervisor that can create

multiple virtual and programmable networks on top of a single physical infrastructure.

Protocols

The main protocol used for communication between planes is OpenFlow25, a communications

protocol that gives access to the forwarding plane and its remote programming of a network switch

or router over the network. The OF standard is the first SDN standard and vital element of an open

SDN architecture [5], with its variation for management and configuration OF-Config. Also we can

find OVSDB communication protocol which is used to manage the OpenvSwitch database.

Controllers

A list of most used open protocols is below:

 NOX - An open source development platform for C++-based software-defined networking

(SDN) control applications.

 NodeFlow - An OpenFlow Controller for Node.js.

 ONOS - Is defined as a network operating system designed for high availability, performance,

scale-out and rich abstractions. Additionally, ONOS has useful Northbound abstractions and

APIs to enable easier application development and Southbound abstractions and interfaces

to allow for control OpenFlow-ready and legacy devices.

 OpenDaylight- Is an Open Source project with a modular, pluggable, and flexible controller

platform at its core. This controller is implemented mainly in software and is contained within

its own JVM. As such, it can be deployed on any hardware and operating system platform

that supports Java.

24 http://www.openvswitch.org/
25 https://www.opennetworking.org/

D 3.1: Methods for Interoperability and Integration

38 / 220

 POX - A networking software platform written in Python.

 Ryu - Component-based software defined networking framework.

 Floodlight - A java-based OpenFlow controller.

 Vyatta - The first commercial Controller built directly from OpenDaylight.

 OpenContrail - A SDN project that utilizes SDN & NFV and provides all the necessary

components for network virtualization.

 IRIS - A Recursive SDN Openflow Controller created by SDN Research Section, ETRI.

 Open MUL - A lightweight SDN/Openflow controller written almost entirely in C from scratch.

 Beehive Network Controller Is a distributed SDN controller built on top of Beehive. It

supports OpenFlow but can be easily extended for other southbound protocols.

 Ravel A software-defined networking (SDN) controller that uses a standard SQL database

to represent the network.

Simulators/Emulators

The main tool used for simulation of virtual SDN network is Mininet26. Mininet is a network emulation

orchestration system. It runs a collection of end-hosts, switches, routers, and links on a single Linux

kernel. It uses lightweight virtualization to make a single system look like a complete network, running

the same kernel, system, and user code. Other options include OpenNet a simulator for software-

defined wireless local area network, EstiNet a world-renowned software tool for network planning

and Ns-3 a discrete-event network simulator that supports openflow environment.

Languages

The most extended one to configure and include rules in an OpenFlow enabled switch is Pyretic.

Also we have Frenetic a programming language and Runtime System derived from the one named

before and, finally, P4 a declarative language for expressing how packets are processed by the

pipeline of a network forwarding element such as a switch, NIC, router or network function appliance.

Libraries

There are different libraries focused on extending and simplifying the functionalities of Open Flow,

such as:

 Loxigen: a tool that generates OpenFlow protocol libraries for a number of languages,

 Openfaucet: a pure Python implementation of the OpenFlow 1.0.0 protocol, based on

Twisted,

 Oflib-node - an OpenFlow protocol library for NodeJS. providing conversion between

OpenFlow wire protocol messages and JavaScript objects,

 OpenFlowJ a Java implementation of low-level OpenFlow packet marshalling/unmarshalling

and IO operations,

 Nettle a Haskell library for working with the OpenFlow protocol and finally,

26 http://mininet.org/

D 3.1: Methods for Interoperability and Integration

39 / 220

 OCaml OpenFlow a serialization and protocol library for OpenFlow.

Test

Among the available testing tools for the SDN deployments are:

 Oftest: a simple OpenFlow Testing Framework,

 STS a SDN Troubleshooting System, simulates network devices, allowing programmatically

test cases generation,

 Nice-of a tool to test OpenFlow controller application for the NOX controller platform,

 OpenSDNCore a virtualization Testbed for NFV/SDN Environment.

NFV

Finally, we present the most used frameworks to virtualize the different functions of a network

performed usually for physical devices:

 Neutron-OpenStack27 - Neutron is an OpenStack module project to provide “networking as

a service” (NaaS) between interface devices managed by other OpenStack services (e.g.

Nova), focused on layers L2-L3 of the OSI stack and technology agnostic.

 MANO - Open Source Mano is an ETSI-hosted project to develop an Open Source NFV

Management and Orchestration software stack aligned with ETSI NFV.

 OPNFV - It is focused on building NFV Infrastructure (NFVI) and Virtualized Infrastructure

Management (VIM) creates a reference NFV platform to accelerate the transformation of

enterprise and service provider networks. OPNFV works upstream with other open source

communities to bring both contributions and learnings from its work directly to those

communities in the form of blueprints, patches, and new code. More recently, OPNFV has

extended its portfolio of forwarding solutions to include FD.io and ODP, is able to run on both

Intel and ARM commercial and white-box hardware, and includes Management and Network

Orchestration (MANO) components primarily for application composition and management.

2.2.2.2 SDR

Software defined radio (SDR) holds a promising future due to its inherent flexibility, which is the

natural outcome of replacing discrete analog radio components by digital signal processing (DSP)

in software. Some of the key advantages obtained by this functional transition from the analog to

digital domains are that these digitized sections become impervious to temperature changes,

component manufacturing variation, allow for re-configurability / re-programmability and, in the case

of SDR, allow linear phase filters design to improve performance. These capabilities have several

very interesting implications as they may be considered a building block for other technological

concepts, such as the cognitive radio, advanced spread spectrum and software defined antennas

including digital beamforming.

A truly idealized SDR scheme would, on the transmitter side, attach a DAC (digital to analog

converter) under software control directly to an antenna and hence produce the RF signal directly.

On the receiver side an ADC would connect directly to the antenna and sample the RF signal directly;

27 http://www.openstack.org/

D 3.1: Methods for Interoperability and Integration

40 / 220

the samples would then be processed to extract the data. However due the practical limitations in

DAC/ADC components this idealized SDR is not possible at the frequencies commonly used for

modern everyday communication.

Therefore, we need to consider a more generalized and practical SDR scheme, depicted in Figure

3, which consists of three main units: (i) a reconfigurable digital radio (ii) a software tunable analog

radio and (iii) a software tunable antenna system.

Figure 3: Ideal SDR components.

The precise division of functional responsibilities associated with the reconfigurable digital radio and

tunable analog radio, shown in Figure 3 may be dependent on many implementation details such as

transmission data rates and technology available. However, broadly speaking, the reconfigurable

digital radio will be dealing with both the transmitter and receiver baseband signal processing.

Transmitter functions that may be performed by this block include modulation, symbol mapping,

precoding, error control encoding, scrambling, digital filtering and possibly up-conversion to an IF

(intermediate frequency). The computationally more demanding digital receiver processing functions

may include demodulation, symbol de-mapping, error control decoding, equalization, descrambling,

digital filtering, fine/course carrier synchronization, symbol synchronization and digital down-

conversion, among others.

The function responsibilities for the software tunable analog radio, also known as the frequency agile

RF frontend, are RF down-conversion, analog filtering, impedance matching, amplification,

automatic gain control (AGC), programmable frequency synthesis and ADC/DAC control.

From the above description, we can see that the division of radio functionality between the tunable

analog radio section and the digital radio section can conceptually occur in several places e.g. this

partition may occur at the baseband, intermediate frequency or RF stages. This process of the digital

realm gradually taking on more of the roles of the analog is, in this context, sometimes called the

‘SDR paradigm’.

The last point concerning Figure 3 is that the software tunable antenna is there to allow the antenna

to efficiently radiate RF over a wide range of frequencies. However, it is worth mentioning that this

tunable antenna may be either replaced with a switched antenna system or, omitted and a standard

broadband antenna used instead which satisfies the design requirements.

From the above discussion, we can see that implementing an SDR, if we assume a simple antenna,

requires a two key blocks: a processor and an analog radio. One question that now arises is; what

implementation platform options exist for these blocks and how do we chose between them? Well,

D 3.1: Methods for Interoperability and Integration

41 / 220

that it depends what the purpose of the SDR radio is. For instance, a hobbyist may want to build an

SDR for listening to aircraft ADS-B data and this could be achieved with a Raspberry-Pi and a Stratux

1090ES $35 dongle, alternatively, at the other end of the complexity scale a software defined military

radar may require specialised hardware, a large team of people and many millions of dollars. In each

of these cases the key blocks mentioned would be implemented on completely different hardware

and software platforms. We briefly assess some typical options in a little more detail.

2.2.2.3 Other Issues

QoS

Quality of Service (QoS) has always been a domain of extensive analysis and study by the moment

different devices got connected. Due to the layered architecture of networks, applications do not

have the power to modify the underlying protocols. They have to rely on the capability of the

underlying networks to satisfy the requirements of the generated traffic. These requirements are

quantifiable and could be e.g. low latency, high packet delivery ratio, low packet loss etc. QoS is the

term to represent this capability of networks.

QoS allows for an explosion and coexistence of new applications with different requirements over

the same networks. It helps network schedulers prioritize traffic flows according to their

requirements. Though many technologies i.e. (G)MPLS emerged to supported guaranteed quality of

service for certain applications, e.g. video conferencing, they are not extensively used. Progress in

L1&L2 network engineering allowed overprovisioning of resources which made those technologies

in many cases obsolete. Moreover, as network diversity was increasing, ensuring end to end latency

across different protocol stacks and devices was becoming more and more difficult.

Yet, QoS is coming back with higher intensity as Industrial Internet of Things introduces new

possibilities and challenges. IoT has the capability to penetrate deeper in human and business

activities with small battery powered devices giving access to more critical processes. Despite the

business opportunities this may entail, new challenges also emerge. For instance, remote control of

life-critical equipment has stringent latency and PDR requirements and is usually implemented over

best effort networks like IP. The traffic volume of those applications is low but every packet’s delivery

is critical.

If IoT is to be used with cyber-physical and safety-critical infrastructure, the interoperability of various

edge IoT networks/platforms should also incorporate quality of service over best-effort networks. IoT

edge networks may be either managed or unmanaged. Managed networks can provide certain QoS

or an estimate of it, whereas unmanaged networks lack this predictability. Overprovisioning, though

an option is not a desirable feature as it translates to more energy consumption, which the low-power

small devices used in critical applications, cannot afford.

Therefore, INTER-IoT should work on gateway and network level to address the issue of QoS. Two

interoperable managed IoT networks serve different types of traffic from different applications. Cross

network traffic flows should then be treated in different ways by the two networks as long as the end-

to-end QoS is achieved. Even more complicated, interoperability by a mixture of managed and

unmanaged networks requires new techniques like partial overprovisioning to the managed part in

order to compensate for the losses in the unmanaged part of the traffic flow. To sustain a certain

level of reliability across a traffic flow, new mechanisms are needed to ensure QoS via:

 Monitoring and detecting bottlenecks and sources of other turbulences in edge networks.

D 3.1: Methods for Interoperability and Integration

42 / 220

 In mixed inter-networks (managed and unmanaged), nullify impediments and turbulences

introduced by unmanaged networks via on-demand and at-runtime optimization of their

managed counterparts.

 Trigger SDR and network offloading components in case adapting resources of managed

networks cannot alleviate the QoS degradation.

An INTER-IoT gateway has to implement the monitoring and bottleneck detection modules in order

to compute the remedy a managed network has to deploy. That is, the gateway receives monitoring

data from the underlying IoT nodes and QoS requirements from the applications. The two are

combined by a QoS estimator module which is then feeding a QoS controller to reconfigure the

managed parts of a network flow for a specific application. At the network level, reconfiguration is

possible at the managed networks only. However, monitoring is a feature that any underlying

networks should implement but modifying any parameter in L2-4 is possible for managed networks

only.

Managed low-power lossy networks (LLN) are using the IEEE802.15.4e-2012 [6] amendment of the

IEEE802.15.4 [7] protocol to schedule transmissions on planned timeslots and channels. Nodes in

Time Slotted Channel Hopping (TSCH) networks are synchronized on a time reference set by the

PAN coordinator and trickled down to all nodes by a tree directed acyclic graph (DAG) topology. A

new node may join the network by hearing for Enhanced Beacons from other already joined nodes.

The Enhanced Beacons carry synchronization information for the new node to use and synchronize

while joining. The time progresses in time-slots, the minimum time unit usually equal to 10ms.

Timeslots are packaged into repetitive slot-frames. Each timeslot is sufficient for a node to transmit

a packet and wait for the acknowledgement. Hence, a schedule is effective if communicating nodes

are both awake at that period, one set for transmission and the other for reception. Non active nodes

at a time-slot go to sleep.

Time is the one dimension of slot-frames measured in number of slot offsets; channel offsets are the

second. Nodes in a TSCH network use one of 16 frequencies available at 2.4GHz at a given timeslot.

Each frequency is mapped to a channel offset in the slotframe matrix. The channels shift by one

position at every timeslot so that same slot offset is not likely to be allocated the same physical

frequency when the slotframe is repeated. The slotframe matrix, composed of slot and channel

offsets, is the scheduled template that all nodes adhere and repeat. There might be multiple

slotframes running in parallel.

Efforts on scheduling TSCH networks have shifted to decentralized schedulers. Tinka et. al. [8]

presented the first decentralized algorithm which allocates one frequency to facilitate new nodes

joining the network and one dedicated slot for targeted communication. DeTAS [9] was another

decentralized scheduling technique which relies on exchanging traffic information between RPL [10]

children and their parent. That allows the parent to allocate enough resources to serve the predicted

traffic. All nodes follow a common macro-schedule which consists of micro-schedules (one per

subtree) calculated in a distributed way. Wave [11] is a distributed scheduling algorithm that splits

the slotframe into regions (waves). All nodes with at least one packet to be sent are allocated a cell

in the first wave and as long as they have more packets, they are allocated extra cells in subsequent

waves. Finally, orchestra [12] is an autonomous distributed scheduler which schedules one upstream

and one downstream cell per neighbor without communication between neighbors.

Though the advantages of decentralized schedulers are well documented, their limitation lies on the

fact that they cannot have a complete view of the conditions in the network making optimization

harder. Decentralized schedulers are mostly using local information at every node. As explained in

D 3.1: Methods for Interoperability and Integration

43 / 220

various studies [13] [14] [15] [16] [17] local node metrics like link quality estimation are not as

effective as time-based metrics for scheduling and QoS optimization purposes. Time-based metrics

usually consider end-to-end traffic conditions that a centralized scheduler would be easier to identify.

TASA [18] was designed to rely on traffic patterns in the network known a priori. Based on the queue

length of the nodes and using graph coloring and matching techniques, it generates conflict-free

schedules. For completeness, TMCP [19], JFTSS [20] and MODESA [21] are other paradigms of

centralized schedulers.

Offloading

TCP Offloading Engine (TOE) is a mechanism that enables offloading of network TCP/IP stack from

the CPU to specific hardware on the network controller. Recent increases in Ethernet speeds, that

has been faster than that of than processor speed, have resulted on I/O bottlenecks, in which the

CPU is unable to cope with ever increasing network data flow, which can take more than half of the

processing power. Even one powerful modern CPU’s would not be fast enough to handle the full

speed of a 10 Gbit network, let alone 40 Gbit or more.

To cope with this problem, special purpose computational hardware in the network controllers have

been used to 'offload' that work into a specific implementation.

Since the TCP/IP communication consists of transmitting and receiving of packages, offloading

technologies were developed to address different aspects of the problem.

Figure 4: 10GEA scheme comparison of traditional and TEO NIC.

The size of the Standard MTU, or Maximum Transmission Unit, is set to 1500 bytes. The majority of

modern communication devices such as Ethernet controllers, switches and routers support sizes of

9000 bytes, or more. Increasing this size is technically not offloading, but it can drastically reduce

CPU load by reducing the number of packages and consequent space and computing overhead.

Nevertheless, increasing MTU is not always possible, since the majority of internet devices are still

configured to run on with 1500 bytes, but it can be effectively used in Local Area Networks.

For offloading transmitted packages, the most common technique is that of LSO or Large Segment

Offload, which is also called TSO or TCP Segment Offload when applied to TCP/IP, and GSO or

Generic Segment Offload. This method segments a large package of increased MTU into 1500 bytes

or smaller segments before they are transmitted. In IPv4, the largest possible package size is 64 Kb

D 3.1: Methods for Interoperability and Integration

44 / 220

or 65535 bytes. With a little help from the network controller, a CPU can simply pass large package

to the network stack, which will then segment it into 46 packages of 1448 bytes in length each.

On the other end of the communication the LRO or Large Receive Offload and GRO or Generic

Receive offload, combines these small packages into one big package to then pass it forward to the

process. Because of this, the LRO should not be used on devices that act as routers, as it breaks

the end-to-end principle.

GSO and GRO are software only solutions in the Linux kernel, and they are applied if network

hardware is unable to perform hardware offload.

Hardware support for TOE is proprietary and is implemented differently by each hardware vendor.

Because of this, there is no hardware support in Linux kernel. To enable hardware TOE support in

Linux, one must install proprietary vendor-provided network interface (NIC) drivers.

Whenever a component on the network layer makes use, or expects the use of Offloading such as

LSO, hardware or software integration of such messages must be provided for those components

that do not support it out of the box, or turn off the offloading from the source elements.

Roaming

Roaming ensures that a traveling wireless device is kept connected to a network without breaking

the connection. In wireless telecommunications, traditional Roaming is a general term referring to

the ability for a wireless device to automatically send and receive data, or access other services

when travelling outside the geographical coverage area of the home network, by means of using a

visited network.

Roaming encompasses roaming between networks of different network standards, e.g. WLAN

(Wireless Local Area Network) or GSM. Device equipment and functionality, such as SIM card

capability, antenna and network interfaces, and power management, determine the access

possibilities.

2.2.3 Summary table

Approach Brief summary on
how they facilitate
interoperability

What can be
found in this
chapter

Technologies

SDN To connect two or
more devices of a
network provided by
different vendors as
well as to interact
with two or more
totally different
network
deployment, a new
layer of abstraction
is needed.
This layer is, also,
programmable in
order to manage the
deployment and

A description of
the paradigm
and its
implementation
the different
parts that
compose it, and
the deployment
and visualization
technologies.

 NOS(OpenSwitch, PicOS,

OpenNetworkLinux)

 Virtual Switches (OpenvSwtich)

 Environments(ONIE)

 Network

Virtualization(FlowVisot,

OpenVirtex)

 Protocols(OpenFLowOVSDB)

 Controllers(NOX,POX,RYU,OD

L,ONOS, etc)

D 3.1: Methods for Interoperability and Integration

45 / 220

adapt it to specific
needs.

 Emulators(Mininet, OpenNet,

EstiNet)

 Languages(Pyretic, Frenetic,

P4)

 Test(oftest, STS, Nice-of,

OpenSDNCore)

 NFV(Neutron-OpenStak,

MANO, OPNFV)

SDR There are some

devices that use

non-standard RF

communication

links. To provide

access to these

devices it is needed

a software

configuration of the

antenna, adaptable

and dynamic in

order to perform the

translation into a

standard IP based

protocol.

A description of
what SDR is, the
methodology to
implement it and
some
technologies
being used for
this purpose.

 DSP

 Components(SDR Transmitter,

SDR receiver)

 Projects (GNU Radio, HPSDR)

QoS/
Offloading/
Roaming

Not just to provide
interoperability but a
minimum quality in
the communication
between different
network.
Also, the possibility
of using more than
one access network
to take the
information from a
device and the
mobility of a device
between networks
that cannot belong
to the same IoT
deployment.

What these
concepts means,
why they have to
be addressed in
the
interoperability
network solution,
and what kind of
technologies can
implement them.

 QoS (MPLS,TSCH)

 Offloading(TCP Offloading
Engine (TOE), MPTCP)

 Roaming(CAPWAP)

Table 3: Network interoperability approaches comparison.

D 3.1: Methods for Interoperability and Integration

46 / 220

2.3 Middleware Interoperability (MW2MW)

Middleware refers to the software and hardware infrastructure that enables the communication layer

between the different components of a system, generally in either request/response fashion or a

sustained connection communication e.g. for data streaming.

The middleware thus abstracts several aspects of an end-to-end communication including the

name/address/location of a service, the message transport, service instance, interoperability, etc.

For example, a client can issue a request to a service without knowing which instance of that service

it will communicate with, thus hiding some of the complexities of scaled services.

The middleware is also a convenient layer to place additional system-wide meta-services such as

security, anonymization, auditing, monitoring.

Figure 5: Multi-layer diagram of IoT use-cases and technologies.

In the specific domain of the IoT, a software platform defined as middleware has the critical objective

to connect the heterogeneous ecosystem of applications communicating over heterogeneous

interfaces using and operating on diversified technologies.

Due to the intrinsic difficulty to define and enforce a common standard among all this jeopardized

scenarios, IoT middlewares have to provide an abstraction and adaptation layer to applications from

the things and offer multiple services by means of easy-to-use, yet powerful APIs.

Development of middleware in the domain of IoT is an active area of scientific and industrial

research, and a number of interesting solutions have been developed so far.

Interoperability, context awareness, device discovery and management, data

collection/storage/processing/visualization, scalability, privacy, and security are among the most

significant aspects that are being tackled by current IoT middlewares.

2.3.1 Common Approaches

There are a number of approaches to middleware, mostly depending on the type of applications and

services that it will be connecting.

D 3.1: Methods for Interoperability and Integration

47 / 220

Historically, the Object Request Broker (ORB) model was used, in which a process was able to make

a remote procedure call (RPC) to a process in a foreign system through the computer network. Even

though there were mechanisms to facilitate this model, the communication was purely point-to-point

between the two processes, and provided no middle entity that could facilitate interoperability

problems and other related issues.

A common problem with direct service access, such as remote procedure calls (RPC), is that the

requests are pushed to the service provider, regardless of its current state or load level. This can

create load problems in which a busy server is trying to process several requests that are currently

making use of most of its resources, but must attend to the reception of the new request, loading the

server even more, and potentially preventing it from successfully complete any jobs while at the

same time losing requests for services.

To avoid this kind of problems, a Middleware Queue approach is used, in which a message queue

is deployed to its own infrastructure to receive the requests to one or several services, and the

service providers go to the queue to fetch a new request whenever they judge to have the necessary

resources to perform it. This Pull method prevents overloading the server, allows for transparently

proxying several service instances into one single queue (or queue topic), makes it much simpler to

move or update services, and can be scaled by means of new queue instances.

Architecture of middlewares varies greatly, but can be generally divided into Message Oriented

Middleware (MoM) and Service Oriented Middleware (SoM), each with two types of implementation:

server implementations that correspond to server-client architecture and decentralized

implementations present in peer-to-peer systems.

A message-oriented server implementation proposes that core functionality of a middleware lies in

one or more central servers called message brokers. This software artifact is responsible for

consistent, reliable and fault-tolerant delivery of messages to any willing client. Message brokers can

queue, delay, store, broadcast, translates, (periodically) retransmit or retry messages for delivery,

along with other message oriented functionalities. MoMs, generally speaking, fall into one of two

categories: Enterprise Messaging Systems (EMS) or Enterprise Service Buses (ESB).

While EMS are basically handling the communication between service providers and consumers

using existing defined protocols that can be based in XML, SOAP or other similar standards, an

Enterprise Service Bus can include more complex functionalities such as orchestration, validation,

QoS monitoring, transformations and conversions, etc. ESBs also offer services, thus acting as both

Message Oriented and Service Oriented middleware. A service oriented server middleware realizes

a very popular model of a central entity that offers services. This model is very popular in software

that is not always thought of as middleware e.g. Web servers.

A decentralized model implements all functionalities in a client by means of a client app, or a library.

A middleware server is usually simpler to deploy and monitor, while a decentralized model allows for

easier distribution and flexibility of network topology. It also lacks any global state of communication,

such as a central message log.

2.3.2 Literature review

2.3.2.1 Message Oriented Middlewares

Whether as part of an Enterprise Messaging Systems or Enterprise Service Bus, message queues

are very commonly used in communication middlewares due to their scalability, modularity and

flexibility.

D 3.1: Methods for Interoperability and Integration

48 / 220

There are several commercial and open-source implementations of Message Queues that provide

the basic, and more advanced features. Practically all of them allow for processes to subscribe (listen

to) a queue name or topic, and to publish a message into a queue topic. Additionally, topics can be

set to deliver a received message to one and only one subscribed party, or all of them (broadcast).

Other features that some queues implement include: Receipt acknowledge, in which a publisher is

informed that the Queue received the request, Delivery policy (e.g. at least once, at most once),

Persistence (accepted messages are never lost, even on Middleware failure), or Synchronicity

(whether a second message is made available before the first one is responded to) and so on.

Kafka

Apache Kafka28 is an open source, high-throughput, low-latency platform for handling real-time data

feeds. Written in Scala, it is a massively scalable message queue architected as a distributed

transaction log, making it highly valuable for processing streaming data in a persistent manner. It

can handle massive instance losses without message losses, and while it makes use of its own

binary message format, it results in much greater performance than other queue implementations.

Figure 6: A two-server Kafka cluster with two partitions each, and two consumer groups
with 2 and 4 consumers respectively. Source: https://kafka.apache.org/

Kafka’s main strengths are:

 scalability,

 persistence,

 fault-tolerance,

 performance,

 ordering warranty,

 streaming-friendly (Apache Streams, Storm, Samza).

Its downsides are:

28 https://kafka.apache.org/

D 3.1: Methods for Interoperability and Integration

49 / 220

 added complexity from managing cluster components.

RabbitMQ

RabbitMQ29 is a messaging broker (an intermediary for messaging). It gives applications a common

platform to send and receive messages, and messages a safe place to live until received.

RabbitMQ is open source message broker software that implements the Advanced Message

Queuing Protocol (AMQP). RabbitMQ main strengths are:

 Reliability.

 Flexible Routing: Messages are routed through exchanges before arriving at queues.

RabbitMQ features several built-in exchange types for typical routing logic.

 Clustering: Several RabbitMQ servers on a local network can be clustered together, forming

a single logical broker.

 Federation: For servers that need to be more loosely and unreliably connected than

clustering allows, RabbitMQ offers a federation model.

 Highly Available Queues: Queues can be mirrored across several machines in a cluster,

ensuring that even in the event of hardware failure your messages are safe.

 Multi-protocol: RabbitMQ supports messaging over a variety of messaging protocols: AMQP

0-9-1, 0-9 and 0-8, and extensions, STOMP, MQTT, AMQP 1.0, HTTP.

 Many Clients: There are RabbitMQ clients for various languages: Java,.NET, Ruby, Python,

PHP, JavaScript, more...

 Management UI: RabbitMQ ships with an easy-to use management UI that allows monitoring

and controlling every aspect of your message broker.

 Tracing.

 Plugin System: RabbitMQ ships with a variety of plugins extending it in different ways.

 Commercial Support.

 Large Community.

ZeroMQ

ZeroMQ30 (ØMQ) is a cross-platform asynchronous messaging library, developed by a community

of contributors as an open source project. It provides a message queue for a distributed environment,

without the need for a message broker. It is written in C++, but provides bindings in many languages

including C#, Java, Python, Scala, PHP and others.

Initially, ZeroMQ was designed to support online stock-trading, where speed was crucial. Later, it

was expanded with support for distributed applications, in an effort to provide a fast, decentralized,

general use business messaging library.

The basic building blocks of a ZeroMQ implementation are sockets (very similar to TCP or UDP

sockets) that represent many-to-many connections between endpoints. Messages are transported

29 https://www.rabbitmq.com/
30 http://zeromq.org/

D 3.1: Methods for Interoperability and Integration

50 / 220

in accordance with one of several message patterns that include publish-subscribe, push-pull, and

request-reply.

Architectural elements are organized in a tree structure, where each one has an “owner” - a parent

element responsible for graceful shutdown of every child. ZeroMQ defines communication

management objects, such as listeners that dynamically create message passing elements. The

latter have two parts: a “session” that directly interacts with a ZeroMQ socket, and an “engine” that

is responsible for network communication. There are many kinds of engines available (e.g. TCP,

IPC), and new engines can be implemented.

Figure 7: ZeroMQ general schema. Source: http://www.aosabook.org/en/zeromq.html

Features:

 Decentralized: No messaging server is a core feature. It is a library, not an application.

 No global state: It does not store its own internal state. It is up to the user to provide (if

needed) a global state and properly handle cases of concurrent access to resources.

 High performance: Optimization of throughput and latency was the focus for ZeroMQ since

the beginning of implementation. It is regularly benchmarked and maintained.

 Persistent communication: Focused on long-lived connections and optimization of most

frequent operations i.e. passing of messages. Unfortunately, it also means that it is not

optimized with respect to error handling and memory allocation.

 Concurrency: Internally implements an actor model to provide scalability, avoid locking and

solve other multi-threading problems.

 Familiar API: Based on BSD socket API.

 Multiple messaging patterns: Offers a set of predefined, non-extendable, orthogonal

messaging patterns simplifying configuration and a clear messaging scheme.

D 3.1: Methods for Interoperability and Integration

51 / 220

 No fixed architecture: Many different architectures (both distributed and centralized) can be

implemented on top of it. While this provides flexibility and wide range of possibilities, it also

requires more design and implementation work from the developer.

ActiveMQ

ActiveMQ31 is an Apache project written in Java that implements the Java Message Service

Client/Server pair. The messaging broker can be clustered, and uses a database for its persistence.

It supports most of the current messaging protocols, includes several Enterprise Bus features, and

provides with clients for several programming languages.

Extended features such as message groups, virtual destinations and composite destinations, and

other such high-level functionalities.

Figure 8: Main parts of Apache ActiveMQ. Source: http://activemq.apache.org/

The main features are:

 persistence,

 ordering warranty,

 fault-tolerance,

 synchronous,

 a rich set of features,

 multiple-protocol,

 REST API accessible.

Downsides:

 non-stellar performance,

 dependent on database for persistence.

31 http://activemq.apache.org/

D 3.1: Methods for Interoperability and Integration

52 / 220

Mosquitto

Eclipse Mosquitto3233 provides a lightweight server implementation of the MQTT protocol that is

suitable for situations from full power machines to embedded and low power machines. Sensors and

actuators, which are often the sources and destinations of MQTT messages, can be very small and

lacking in power. This also applies to the embedded machines to which they are connected, which

is where Mosquitto could be run.

Typically, the current implementation of Mosquitto has an executable in the order of 120kB that

consumes around 3MB RAM with 1000 clients connected. There have been reports of successful

tests with 100,000 connected clients at modest message rates.

As well as accepting connections from MQTT client applications, Mosquitto has a bridge which

allows it to connect to other MQTT servers, including other Mosquitto instances. This allows networks

of MQTT servers to be constructed, passing MQTT messages from any location in the network to

any other, depending on the configuration of the bridges.

The main features of Mosquitto are:

 It is an open source (EPL/EDL licensed).

 Mosquitto implements the MQTT protocol versions 3.1 and 3.1.1.

 MQTT provides a lightweight method of carrying out messaging using a publish/subscribe

model. This makes it suitable for Internet of Things “messaging” such as with low power

sensors or mobile devices such as phones, embedded computers or microcontrollers like the

Arduino.

 It works on different operating systems like Windows, Mac OS X, Linux, etc

 Mosquitto is an iot.eclipse.org project. The Mosquitto broker code is also being contributed

to Eclipse as part of a new project.

It also comes with two clients, mosquitto_pub and mosquitto_sub. mosquitto_pub client is used for

publishing simple messages, while mosquito_sub is for subscribing to a topic and printing the

message that it received.

32 https://mosquitto.org/
33 http://projects.eclipse.org/projects/technology.mosquitto

D 3.1: Methods for Interoperability and Integration

53 / 220

Figure 9: Example of Mosquitto broker events. Source: https://goo.gl/SNGCBe/

OpenDDS

OpenDDS34 is an open source implementation of DDS specification (reference to section 6.a)

programmed in C++ promoted by the company Object Computing Inc (OCI).

OpenDDS uses the IDL interfaces defined by the DDS specification to initialize and control service

usage. Data transmission is accomplished via an OpenDDS-specific transport framework that allows

the service to be used with a variety of transport protocols. This is referred to as pluggable transports

and makes the extensibility of OpenDDS an important part of its architecture. OpenDDS currently

supports TCP/IP, UDP/IP, IP multicast, shared memory, and RTPS_UDP transport protocols as

shown in the figure. Transports are typically specified via configuration files and are attached to

various entities in the publisher and subscriber processes.

Figure 10: OpenDDS Extensible Transport Framework. Source: http://opendds.org/

OpenDDS supports the full set of DCPS Quality-of-Service (QoS) policies, including:

34 http://opendds.org/

D 3.1: Methods for Interoperability and Integration

54 / 220

 Liveliness: Controls liveliness checks to make sure expected entities are still alive.

 Reliability: Determines whether the service is allowed to drop samples.

 History: Controls instance whose value changes before it is communicated to all Subscribers.

 Resource Limits: Controls resources that the service can use to meet other QoS

requirements.

OpenDDS support C++ and provides a full-compliant Java interface with access to all the features.

It is licensed for free usage and modification without permission, maintaining the license to the

OpenDDS module but not forcing to distribute the code using OpenDDS or licensing it in any form.

OpenFire

Openfire35 is a real time collaboration (RTC) server licensed under the Open Source Apache License.

It uses the only widely adopted open protocol for instant messaging, XMPP. It provides reliable

XMPP group chats and instant messaging and also is a backend for chat clients, including database

registry and consultation. The server management is almost completely done by using a Web

interface, so the usability and maintainability are notable. Openfire supports the following features:

 Web-based administration panel.

 plugin interface.

 customizable SSL/TLS support.

 user-friendly Web interface and guided installation.

 database connectivity (i.e. embedded HSQLDB or other DBMS with JDBC 3 driver) for

storing messages and user details.

 LDAP connectivity Platform independent, pure Java.

 full integration with Spark (XMPP client).

 can support more than 50,000 concurrent users.

Openfire has a very active community (Ignite Realtime36) which supports and maintains this and

other real time communication projects. Therefore, a great amount of plugins for extending the

OpenFire server are available, making this server highly customizable and adaptable for specific

needs. OpenFire community also develop and support messaging clients based on XMPP and fully

compatible with OpenFire. Examples are Smack or Spark.

Others

IBM’s WebSphere MQ, formerly IBM MQ, is a proprietary message-oriented middleware solution

and Enterprise service bus launched in the 1990s, and available to a wide spectrum of architectures

such as zOS mainframes, AIX, HP-UX, Linux or Windows.

Oracle Advanced Queuing is another proprietary message asynchronous queueing system, which

is available on several platforms, and makes uses of the Oracle database for persistence.

35 https://www.igniterealtime.org/projects/openfire/
36 http://www.igniterealtime.org/

D 3.1: Methods for Interoperability and Integration

55 / 220

Mule is a commercial Enterprise service bus written in Java, with a community version offered under

the CPAL free license. Besides connectors to several languages and an IDEA based on Eclipse,

Mule also provides a toolkit focused on eHealth, providing support for HL7 standard messages. It

supports AMQP, KMS and WMQ protocols, and the commercial provides features such as high-

availability and scalability, and a management console.

2.3.2.2 Existing Platform middlewares

FIWARE

The FI-WARE37 platform, supported by the European Commission, provides a number of middleware

services for distributed applications, and a support framework for Internet of Things. The main

Enabler is the IoT Broker, which manages the communication between applications and devices (or

gateways).

Figure 11: FI-WARE IoT Broker internal scheme. Source:
https://forge.fiware.org/plugins/mediawiki/wiki/fiware

The IoT Broker provides with message subscription and registration, with persistence provided by

CouchDB. Additional General Enabler provides further features that can be associated with the IoT

Broker:

 The IoT Discovery supports device registry and resource discovery.

 The IoT Data Edge Consolidation that allows for real-time data filtering, aggregation and

other processes.

37 https://www.fiware.org/

D 3.1: Methods for Interoperability and Integration

56 / 220

 The Backend Device Management provides Agent definition and managements.

 The Protocol Adapter for support of CoAP’s 6LoWPAN protocol.

Other General Enabler can be related directly or indirectly to this infrastructure. For example, the

Data Edge Consolidation can use the Complex Event Processing to preprocess data streams to feed

particular applications.

FI-WARE provides with open API definitions and mostly, but not exclusively, open-source

implementations.

OpenIoT

OpenIoT38 is building a novel open source platform for the IoT, which includes unique functionalities

such as the capability to compose (dynamically and on-demand) non-trivial IoT services, following a

cloud/utility based paradigm.

The OpenIoT architecture consists of seven main elements that belong to three different logical

planes, as illustrated in Figure 12.

Figure 12: OpenIoT architecture. Source: https://goo.gl/HTF4In

OpenIoT is developing a blueprint middleware infrastructure for implementing/integrating Internet of

Things solutions. The OpenIoT infrastructure will provide the means for:

 Collecting and processing data from virtually any sensor in the world, including physical

devices, sensor processing algorithms, social media processing algorithms and more.

38 http://www.openiot.eu/

D 3.1: Methods for Interoperability and Integration

57 / 220

 Semantically annotating sensor data, according to the OpenIoT ontology, based on W3C

Semantic Sensor Networks (SSN) specifications.

 Streaming the data of the various sensors to a cloud computing infrastructure.

 Dynamically discovering/querying sensors and their data.

 Composing and delivering IoT services that comprise data from multiple sensors.

 Visualizing IoT data based on appropriate mashups (charts, graphs, maps etc.).

 Optimizing resources within the OpenIoT middleware and cloud computing infrastructure.

Butler

Some general considerations about BUTLER39 platform:

 It is a set of enablers and services that provide means for building context-aware applications

on top of smart connected objects.

 It provides not only generic APIs to access resources provided by IoT devices, but also

additional services such as:

o security service,

o localization services,

o behaviour prediction services,

o context management services.

 Applications can be reused to enhance the user experience and security.

 It is specifically conceived for IoT devices and applications. It integrates different IoT devices

and communication technologies in order to provide a homogeneous access to the

underlying heterogeneous networks.

The main advantage of BUTLER platform is simplicity of use and its support of existing IoT protocols.

39 http://www.iot-butler.eu/

D 3.1: Methods for Interoperability and Integration

58 / 220

Figure 13: Buttler's layers technologies. Source: D3.1 Architectures of BUTLER Platforms
and Initial Proofs of Concept.

The core of the BUTLER platform is the Gateway which provides:

 A unifying platform that bridges the communication between the physical and virtual worlds.

 An abstraction layer in order to access to IoT devices from various manufacturers using

different protocols. It is based on a service oriented approach that allows better management

of the dynamicity of the environments, easier and faster application development and other

additional features such as service discovery, lookup, run-time binding and management.

SOFIA2

SOFIA is a middleware architecture allowing for the interoperability of several systems and devices.

It allows making real information available for intelligent applications (Internet of Things).

Some of its main advantages are:

 open-source,

 multi-platform: available for MS Windows, Android, Linux, iOS and others,

 multi-language: portings to Java, JavaScript, C++, Arduino and others,

 communication agnostic: with implementations for TCP, MQTT, HTTP (REST and

WebServices), Ajax Push, and others.

Its goal is to achieve interoperability among different applications that share semantic concepts.

Indra company kept evolving the original SOFIA project, creating a platform that focuses on

enterprise use. The current version of the Platform is called SOFIA240.

SOFIA2 is focused on the following areas:

40 http://sofia2.com/

D 3.1: Methods for Interoperability and Integration

59 / 220

 Adaptation to the enterprise environment: High availability operation with distributed data

centers.

 Simplified work with the Platform, particularly in the following areas:

o ontology development (ontologies became lightweight),

o query language,

o Smart Space Access Protocol: with a JSON implementation besides the XML one.

 Big Data Interfaces (Hadoop) to host huge amounts of data and data warehouse.

 Integration capacities with back-ends with standard protocols, e.g. Web Services.

 Plug-in concept to expand the Semantic Information Broker.

 Integrated storage and GIS queries.

 Addition of pluggable security mechanisms.

 REST interfaces to connect easily from smart phones, devices, RIA applications and others.

The SOFIA2 Platform can be conceptualized through these four concepts:

Figure 14: SOFIA2's conceptual blocks. Source: http://sofia2.com/

 Smart Space: is the virtual environment where different devices and applications

interoperate with each other to provide a complex functionality.

 Semantic Information Broker (SIB): core of the Platform. It receives processes and stores

all the information of applications connected to the SOFIA Platform, thus acting as the

Interoperability Bus. All the existing concepts in the domain (reflected in the ontologies) and

their current states (specific instants of the ontologies) are reflected on it.

 Knowledge Processor (KP): Represents each element which communicates with a Smart

Space by producing and/or consuming information.

 Smart Space Access Protocol (SSAP): This is the standard messaging language to

communicate between the SIBs and the KPs. There are two implementations: XML or JSON.

OneM2M

The aim of oneM2M41 is to develop technical specifications which address the need for a common

M2M Service Layer that can be readily embedded within various hardware and software, and relied

upon to connect the myriad of devices in the field with M2M application servers worldwide.

41 http://www.onem2m.org/

D 3.1: Methods for Interoperability and Integration

60 / 220

Figure 15: OneM2M Services Set. Source: OneM2M TS-0001: Functional Architecture
http://www.onem2m.org/

In Figure 15 you can see the main services offered by OneM2M:

 Communication Management and Delivery Handling: provide communications with other

CSEs (Common Service Entities), AEs (Application Entities) and NSEs (Network Service

Exposures). It decides at what time to use which communication connection for delivering

communications, and to buffer communication requests when needed.

 Data Management and Repository: is responsible for providing data storage and mediation

functions (collecting data for Big Data aggregation, data conversion, etc.).

 Device Management: provides management of device capabilities on MNs (e.g. Gateways),

ASNs and ADNs (e.g. Devices), as well as devices that reside within a network.

 Discovery: searches information on applications and services per attributes and resources.

 Group Management: is responsible for handling group related requests.

 Location: allows AEs to obtain geographical location information of Nodes.

 Network Service Exposure, Service Execution and Triggering: manages communication with

the Underlying Networks to use network services over the Mcn reference point.

 Registration: processes a request from an AE or another CSE to register with a CSE in order

to allow the registered entities to use the services offered by the CSE.

 Security: sensitive data handling, security administration, security association establishment,

access control, authentication, authorization; and identity management.

 Service Charging and Accounting: provides charging functions for the Service Layer. It

supports different charging models which also include online real time credit control.

 Subscription and Notification: provides notifications for event changes on a resource.

D 3.1: Methods for Interoperability and Integration

61 / 220

AllJoyn

AllJoyn™42 is a collaborative open-source software framework that makes it easy for developers to

write applications that can discover nearby devices, and communicate with each other directly

regardless of brands, categories, transports, and OSes without the need of the cloud. The AllJoyn

framework is extremely flexible with many features to help make the vision of the Internet of Things

come to life.

It abstracts out the details of the physical transports and provides a simple-to-use API. Multiple

connection session topologies are supported, including point-to-point and group sessions. The

security framework is flexible, supporting many mechanisms and trust models. The types of data

transferred are also flexible, supporting raw sockets or abstracted objects with well-defined

interfaces, methods, properties, and signals.

AllJoyn is a distributed software bus in which:

 Each device runs a bus daemon.

 Applications communicate directly with a daemon.

 Daemons on each device communicate with daemons on other devices.

 Daemons do message routing and namespace management.

Conceptually peers are applications, not devices. Applications communicate with a local daemon.

Daemons handle routing between devices.

Figure 16: 3 devices communicating through the virtual channel through p2p links. Source:
Lioy, M. (2011), Peer-to-Peer Technology Driving Innovative User Experiences in Mobile.

Its Bus formation is ad hoc, based on proximal discovery, while abstracting multiple discovery

mechanisms. The protocol is transport independent, using a ground-up implementation of the D-Bus

wire-protocol with extensions that support several networks including Wi-Fi and Bluetooth currently.

42 https://allseenalliance.org/

D 3.1: Methods for Interoperability and Integration

62 / 220

Eclipse OM2M

Eclipse IoT is an ecosystem of companies and individuals that are working together to establish an

Internet of Things based on open technologies. It provides open source implementations of the

standards, services and frameworks that enable an Open Internet of Things.

Among the different projects, the Eclipse OM2M project43, initiated by the French lab LAAS-CNRS,

is an open source implementation of oneM2M and SmartM2M standard. It provides a horizontal M2M

service platform for developing services independently of the underlying network.

OM2M provides an open source service platform for M2M interoperability based on the oneM2M

standard. OM2M follows a RESTful approach with open interfaces to enable developing services

and applications independently of the underlying network. It proposes a modular architecture running

on top of an OSGi layer, making it highly extensible via plugins. It supports multiple protocol bindings

such as HTTP and CoAP. Various interworking proxies are provided to enable seamless

communication with vendor-specific technologies such as Zigbee and Phidgets devices.

OM2M includes several primitive procedures to enable machines authentication, resources

discovery, applications registration, containers management, synchronous and asynchronous

communications, access rights authorization, groups’ organization, re-targeting, etc.

Bluemix

IBM Bluemix44 is a cloud platform as a service (PaaS) powered by open source projects and

developed by IBM. It supports several programming languages and services as well as integrated

DevOps to build, run, deploy and manage applications on the cloud. Bluemix is based on Cloud

Foundry open technology and runs on SoftLayer infrastructure. Bluemix supports several

programming languages including Java, Node.js, Go, PHP, Python, Ruby Sinatra, Ruby on Rails

and can be extended to support other languages such as Scala through the use of buildpacks.

Besides common IoT services, BlueMix provides with extensions for Business Rules, Hadoop

processing, Cloudant and MongoDB NoSQL database layer, different DevOps tools, Messaging,

GeoSpatial analysis, and access to the Watson services, particularly for Natural Language

Processing.

Others

Dioptase45 is an IoT middleware oriented to data stream processing with a design focused on

heterogeneous and distributed computing.

Kaa IoT46 is another enterprise providing an IoT in a dual open-source and commercial license,

promising to provide hardware agnostic integration, connectivity model independent and replicable,

based on Zookeeper.

Other such platforms and platform expansions include LinkSmart, Synapt-IoT and RoboMQ.

43 http://www.eclipse.org/om2m/
44 https://www.ibm.com/cloud-computing/bluemix/
45 https://mimove.inria.fr/dioptase/
46 http://www.kaaproject.org/

D 3.1: Methods for Interoperability and Integration

63 / 220

2.3.2.3 Existing Cloud platform services

The number of current platform solutions to link the IoT domain with the cloud is huge. Some sources

(Saverio Romeo, Beecham Research) talk about 300, while others (Maurizio Griva, Reply) go as

high as 360. Usually, these platforms are focused on IoT services that are provided not as deployable

self-hosted solutions, but that are given as a Platform as a Services (often associated to an Iaas).

For example, infrastructure provider AWS has a platform solution for IoT called AWS IoT, while the

Microsoft Azure Iaas and Paas includes the IoT Suite. Service providers such as IBM offers Watson

IoT and other big companies such as Oracle and Cisco are offering solutions for IoT business. There

are also other smaller companies are offering integrated IoT solutions, often following an open-

source approach to their online services, as seen in the previous section.

Whereas any precise data on market share of the different solutions are not available, a few of them

appear to enjoy much more popularity than others.

Amazon Web Services (AWS) IoT

The Amazon47, like other services oriented to provide a generic IoT platform, connects to the devices

or objects that report on their ‘state’ through a message broker using the MQTT protocol, to then

make the data available to the Amazon Web Services, such as DynamoDB, AWS Lambda, Kinesis

stream processing or S3, through a configurable rules engine, and finally to the IoT Applications than

consume that information. The platform also includes a registry that can be managed through the

AWS command line interface.

Figure 17: AWS IoT internal structure. Source: https://aws.amazon.com

Amazon also provides open sources SDKs, one for embedded C that can be used in most POSIX

operating systems, an Arduino SDK, and as well as a node.js version for more powerful objects and

gateways. It also provides an HTTP API for Web applications.

The communication between devices and AWS can be encrypted using TLS, together with X.509

authentication, and AWS also provides support for Identity Access Management of groups and roles,

and the Amazon Cognito identification service.

Microsoft Azure IoT Suite

Overall, Azure48 IoT Suite is the part of Azure Cloud Services that provides IoT device communication

and data processing service. Together with services that Azure offers (including databases, Hadoop,

47 https://aws.amazon.com/
48 https://azure.microsoft.com

D 3.1: Methods for Interoperability and Integration

64 / 220

machine learning, etc.), it is an enterprise-scale solution on which a very wide range of IoT systems

can be implemented.

IoT specific features include data collection and stream analytics in which streams can be pre-

processes using SQL-like language, which allows definition of rules, and piped into other Azure

products.

Azure IoT Gateway SDK implements the AllJoyn protocol for Windows and Linux. It supports

communication via HTTP, AMQP and MQTT. The role of the gateway is to send or receive data to

and from Azure, where the core of any IoT suite solution lies. On the cloud server side this

functionality i.e. secure bi-directional communication, is offered by the Azure IoT Hub service.

Figure 18: Generic IoT solution reference architecture used by Azure. Source:
https://docs.microsoft.com

Features:

 implements AllJoyn protocol,

 offers high availability via the Azure cloud platform,

 deep integration with Azure means easy access to thousands of tools from Azure

Marketplace,

 requires high amount of configuration,

 developers can buy pre-configured product packages,

 advanced tools are all paid, but basic solutions can be implemented on a free account,

 customized (negotiable) pricing for big solutions.

D 3.1: Methods for Interoperability and Integration

65 / 220

IBM Watson IoT

Watson49 is a cognitive computing algorithm and system. Watson can analyze high volumes of data

and by means of machine learning and artificial intelligent processes information in a new way more

similar to the way a human can process data. The system is able to process natural language and

translate a question into an action. This action results in a hypotheses based on evidence (statistical

similarities). The system is able to continue to learn when it is working.

Watson is designed to make more data-driven decisions. Since most information and data is

unstructured (like news, internet, databases) Watson can scan this data and find relations and

similarities to the question that was asked, and filter which one is the best fit. Watson started as a

supercomputer platform that was fed with lots of data. IBM entered Watson into the American TV-

show Jeopardy in which it had to answer questions about common and specific knowledge. It was

able to beat its human competitors. The new IoT version of Watson is cloud-based and made

available to the public and companies. The main fields in which IBM states Watson will be working

are: health care, financial services, retail and education markets.

The goal of Watson is to surface new insights in these working fields by analyzing the massive

amounts of data available.

Cisco IoT Cloud Connect

Cisco Internet of Things (IoT) Cloud Connect50 is the Cisco new mobility-cloud-based software suite.

It offers a complete solution for service providers and mobile operators to provide better IoT products.

Cisco IoT Cloud Connect is a hosted managed cloud IoT platform that manages and automates IoT

service delivery for mobile network operators. It is a holistic approach to help mobile operators

address IoT and machine-to-machine (M2M) go-to-market needs. Its main features are:

 global IoT connectivity and management,

 lower point of entry and cost structure, for higher profitability,

 quicker time to market,

 capability for mobile network operators to win business at lower Average Revenue Per

Connection (ARPC),

 complete cloud-based solution and joint Cisco and mobile operator partnership, not just point

products.

49 http://www.ibm.com/watson/
50 http://www.cisco.com/c/en/us/solutions/service-provider/iot-cloud-connect/index.html

D 3.1: Methods for Interoperability and Integration

66 / 220

Figure 19: IoT Cloud Connect Architecture Overview. Source:
https://www.ciscoknowledgenetwork.com/

2.3.2.4 Others

ThingWorx

ThingWorx51 is an end-to-end enterprise-ready platform for ThingWorx components. It aims at

providing a simplified, seamless approach for developers to create comprehensive machine-to-

machine/IoT solutions.

ThingWorxAnalytics enables real-time pattern and anomaly detection, predictive analytics, and

contextualized recommendations to IoT solutions, without the need for expertise in mathematics,

statistics, or machine learning.

ThingWorx platform integrates with Amazon Web Services (AWS) IoT, and is also going to support

Microsoft Azure IoT Hub. For enterprise customers, integrations with multiple cloud offerings enable

several anticipated benefits, including such as faster development cycles within an open platform.

Salesforce IoT

Salesforce 'IoT Cloud'52 is relying on Amazon Web Services (AWS) and aims at supporting IoT-

related data analysis/storage/processing on top of every public or private cloud. The service is said

to be both data format and product-agnostic, allowing external communication by means of

connectors that interface Salesforce IoT cloud cooperates with third-party services (e.g. IoT Cloud

connects data from websites, social interactions, and applications to Salesforce). Its internal

component deputed to real-time event processing is 'Thunder' and it is a software stack built out of

open source big data well-known products (Spark, Storm, Kafka, Apache Cassandra, and

Salesforce's own Heroku PaaS). However, like other Salesforce services before it, IoT Cloud is

designed to be used by business users rather than developers or engineers, meaning marketing

managers and other non-technical employees can create rules about how the system treats the data

it ingests.

51 https://www.thingworx.com/
52 http://www.salesforce.com/iot-cloud/

D 3.1: Methods for Interoperability and Integration

67 / 220

Oracle IoT

Oracle Internet of Things (IoT) Cloud Service53 is a managed Platform as a Service (PaaS) cloud-

based offering that supports critical business decisions and strategies by allowing to securely

connect devices to the cloud, analyze data from those devices in real time, and integrate data with

enterprise applications, Web services, or with other Oracle Cloud Services, such as Oracle Business

Intelligence Cloud Service.

More specifically, it allows connecting existing sensors and devices with Oracle IoT Cloud Service

Client Libraries and Gateways, available for a wide range of platforms and programming

environments. It includes Device Virtualization, High Speed Messaging, and Endpoint Management.

Oracle IoT also features powerful analysis tools for (i) real-time Stream Processing of incoming data

streams with event aggregation, filtering, and correlation, (ii) Data stream enrichment with contextual

information, and (iii) Event storage with querying and visualization support with integrated Oracle BI

Cloud Service support and enable Big Data analysis.

Google Cloud IoT

Cloud Platform offers a full spectrum of cloud products and services including compute, storage,

networking, big data, machine learning, authentication and end-to-end security. One of its vertical

solutions indeed supports the IoT54. Thanks to the global Google infrastructure, Google Cloud IoT

supports data and events streaming to the Cloud at massive scale. Taking advantage of Google

Cloud Pub/Sub, real-time, reliable processing, and querying of IoT data are provided. Another

interesting feature is Cloud Dataflow, a unified programming model for both batch and streaming

data sources. Security is also a major concern: Google Cloud Platform APIs are secure by default

with full encryption, backed by integrated and pervasive security across the entire infrastructure.

An important advantage of adopting Google Cloud is its global fiber network that allows very low

latency delivery of data to and from IoT devices. In addition, reliability and security are enhanced

because IoT data do not travel the public Internet through the majority of its time in transit.

2.3.3 Summary table

Though most middleware solutions being currently used are based on Message Queues or other

similar Message Oriented Middleware, some take a distributed peer-to-peer approach without a

single point of fracture, but at the same time require a lot more logic to be implemented in the

applications, impacting negatively in their interoperability.

On the other hand, IoT platforms, either deployable or platform services, mostly differ in the

additional services they provide on top of a similar architecture, though implemented with various

technologies.

To compare more easily the different implementation of Message Queues that we have studied, we

look to the following table:

53 https://cloud.oracle.com/iot
54 https://cloud.google.com/solutions/iot/

D 3.1: Methods for Interoperability and Integration

68 / 220

Queue Scale Federation Ack Policy Persist Sync Licence Performance

Kafka Great - No at least Good

(file)

Asyn Apache Great

RabbitMQ Good Good Yes either Good Asyn Mozilla Good

ZeroMQ Good Good - - Good

(db)

Asyn Apache Very Good

ActiveMQ Good Good Yes exactly Good

(db)

either Apache Good

Mosquitto Good Good Yes exactly Good Asyn Eclipse Very Good

OpenDDS Great distributed Yes At least Average

(file)

Asyn Own

~ MIT

Very Good

ejabberd Great Good Yes exactly Poor*

(mem)

Asyn GNU Great

OpenFire Good Great Yes exactly Good

(db)

Asyn Apache Average

WebSphere Very

Good

Good Yes exactly Good

(db)

either Comm Good

Oracle

Advanced

Queuing

Very

Good

Good Yes exactly Good

(db)

either Comm Good

Table 4: Message queues overview.

From Table 4 it seems clear that Performance, Persistence and Policy are features that are traded

off in MQ implementations, and thus different uses cases, with different requirements, might need

different message queue implementations to work as expected.

2.4 Application & Services Interoperability (AS2AS)

The main problems to achieve interoperability between applications and services are intrinsic to the

nature of these. IoT services and applications are:

 Multiple and heterogeneous: There are many services and applications in the IOT platforms

(e.g. CEP, Historical DB, Big Data Processing, Visualization, Analytics, etc.).

 Distributed: Some difficulties exist in order to connect their capabilities.

 Dynamic: The demand of new functionalities in the short term, speeds up changes and

evolution of those services.

The IoT platforms do not have the capability to interact between each other at the application/service

layer. For that reason, we are going to describe several approaches to make interoperable the

applications and services provided by heterogeneous IoT platforms.

D 3.1: Methods for Interoperability and Integration

69 / 220

2.4.1 Common Approaches

We have analyzed different approaches that are useful to achieve interoperability between services

and applications. Service composition is the main element supporting this goal. Consequently, in

this state of the art we will put the focus on this technique, as well as on tools and technologies that

are needed to implement it.

Native access should be considered as well as a method to access IoT platforms applications and

services. Almost all IoT platforms provide a public API to access their services. The APIs are usually

based on RESTful principles, and allow common operations such as PUT, GET, PUSH or DELETE.

However, there are other IoT Platforms (e.g. Open-IoT) that don’t include a REST API for easing the

development of Web services, but used different interaction means.

Application, data and device catalogues dedicated to the IoT are generally missing. With a solution

based on a Service Catalogue, we will be able to register applications to make them discoverable.

Furthermore, it will offer a description or detailed information about services/applications. Utilizing

Service Discovery will make it possible to discover information about IoT services. It is also desirable

to consider the possibilities provided by the virtualization of services and applications.

We have also analyzed the advantages that wrappers can provide to IoT. By the term wrapper we

mean a specific program able to extract data from Internet sites or services and convert the

information into a structured format.

Finally, service composition encompasses all those processes that create added-value services,

called composite services, from existing services in the IoT platforms.

2.4.2 Literature review

2.4.2.1 Service Virtualization

Services can provide an IoT platform with powerful functional features by presenting an API to

communicate with other components, and while these could be deployed in a particular fixed

infrastructure, it is common practice to utilize them in flexible virtual environments that offer a number

of benefits.

For example, since IoT services loads can greatly vary in time, service virtualization provides us with

flexible mechanisms of scaling such services by creating additional instances of that service

whenever needed, in order to handle the additional load while maintaining the quality of the service.

This approach also greatly improves resource efficiency, since unused resources can be released.

Virtual services can be instantiated in different geographical areas, in order to accommodate load

that is not necessary evenly distributed while maintaining a low latency. It can even allow for hybrid

deployments, where instances of the service can be deployed to different infrastructure providers,

for example both a private cloud (to handle the expected constant load) and one or several public

cloud providers to cover for the potential bursts of usage in different locations, reducing the overall

total costs of ownership.

Virtualization of services can also simplify the monitoring of the infrastructure, network issues and

security incidents. Mechanisms for auditing and other such features are often available as part of

the IaaS, or as a parallel PaaS, simplifying the implementation of such measures.

D 3.1: Methods for Interoperability and Integration

70 / 220

Service deployment methods

MaaS or Metal as a Service is an IaaS approach that is actually not virtualized, but it provides

mechanisms for quick provision of a vast amount of resources over the infrastructure. The advantage

over virtualized infrastructure is that the reserved resources are exclusively used by the owner,

avoiding any conflict between instances that can happen in virtualized environment related to

security or performance, especially if making heavy use of over-provisioning. It is also for this reason

that the reserved resources tend to be more expensive, since an idle reserved CPU will not be used

by another instance, whereas in an over-provisioned virtual environment these idle resources could

be used by other instances.

Virtualized IaaS, on the other hand, is the cornerstone concept in a modern cloud enabled workflow.

They are cheaper and more resource efficient than MaaS, but provide a lower quality service with

less warranties for performance, stability and security.

Some of the most commonly used IaaS implementations are OpenStack55, VMWare56, Microsoft

Hyper-V57 and Citrix Xen58.

An emerging technology within virtualization is the usage of Containers. The idea behind them is

that resources are wasted by creating so many different virtual machines, each with a complete

running copy of the full-fledged operating system and several libraries needed. To that end, many

Containers can be run within a single operating system instance, using the same library pool, but

each container inside an independent virtual environment. Currently the most popular container

implementation is Docker59, which wraps a deployable service in a complete virtualized file system

that contains everything needed to run: the code, runtime, system tools, system libraries; that is,

anything that can be installed on a server.

Simulate a service behaviour in a production environment

In software engineering, service virtualization is a method to emulate the behaviour of specific

components in heterogeneous component-based applications such as API-driven applications,

cloud-based applications and service-oriented architectures. In general, in current emerging Internet

of Things (IoT) platforms, service virtualization can now be used in cloud-based applications as well.

The main objective of service virtualization is to provide development and testing environments

access to dependent system components, which are currently not available but which are necessary

to test an application.

Service virtualization is useful when the dependent components of the application are:

 being developed,

 controlled by external sources and have limited availability,

 being used by multiple stakeholders and are not conveniently available,

 difficult to provision or configure in a test environment,

55 https://www.openstack.org/
56 https://www.vmware.com/
57 http://technet.microsoft.com/library/cc753637
58 https://www.citrix.com/products/xenserver/
59 https://www.docker.com

D 3.1: Methods for Interoperability and Integration

71 / 220

 costly to use. e.g. accessing data from the cloud.

The development of IoT applications has many dependencies on other components and services. It

is difficult for these to be available at just the right time when a component is being tested. It is here

that service virtualization comes in handy and becomes an effective tool to speed up development

and testing work, without having to wait for a dependent component to be completed or become

available.

2.4.2.2 Service Catalogue and Service Discovery

IT service catalogue can be defined as a list of resources and offerings within a given domain or

organization. There are a few applications, data and device catalogues dedicated specifically to the

IoT. However, there exist general-purpose tools and standards for cataloguing and managing

services that can be considered applicable also in the IoT domain. Desired functionalities that we

have identified in our search are:

 register the applications to make them discoverable,

 offer a description or detailed information about the services/applications,

 use the same metadata annotations, and then create a point of interoperability,

 allow to publish linked-data descriptions of resources,

 unify data catalogue with semantics,

 discover information about IoT services.

Below we list selected tools and standards that have been developed so far and have some of the

desired features.

UDDI

The Universal Description, Discovery, and Integration (UDDI)60 protocol is a central element of the

group of related standards that comprise the Web services stack. Its development was led by the

UDDI consortium of enterprise software vendors and customers - Organization for the Advancement

of Structured Information Standards (OASIS). The UDDI specification defines a standard method for

publishing and discovering the network-based software components of a service-oriented

architecture. It was designed to be requested by SOAP messages and to provide access to Web

Services Description Language (WSDL) documents. Unfortunately, UDDI was not adopted on a

scale that was expected by its creators i.e. major public node were closed and in 2007 OASIS

decided to complete its work. It is mentioned here for the reason of completeness of overview as a

noteworthy historic initiative.

WSDL

WSDL61 is an XML format for describing network services, which was used for service description in

UDDI, as a set of endpoints operating on messages containing either document-oriented or

60 http://uddi.xml.org/
61 https://www.w3.org/TR/wsdl20/

D 3.1: Methods for Interoperability and Integration

72 / 220

procedure-oriented information. The operations and messages are described abstractly, and then

bound to a concrete network protocol and message format to define an endpoint. Related concrete

endpoints are combined into abstract endpoints (services). WSDL is extensible to allow description

of endpoints and their messages regardless of what message formats or network protocols are used

to communicate. Aspects regarding semantics expressed in WSDL are discussed in 2.5.2.2. In a

nutshell, WSDL operates at the syntactic level providing functional description, however it cannot

unambiguously determine what the service does (the syntax is specified but not the meaning). The

extensions allow introducing semantics but it is work considered only for WSDL as a description

language, and not full UDDI solution. More on adding semantics to WSDL is available in 2.5.2.2.

HyperCat

HyperCat62 standard is a hypermedia catalogue format designed for exposing information about the

Internet of Things assets over the Web. Whereas UDDI was inspired by the idea of public UDDI

nodes with service catalogues expressed in WSDL, HyperCat extends this idea by proposing

catalogues format allowing horizontal scalability and interoperable IoT discovery on the Web.

HyperCat allows a server to provide a set of resources to a client, each with a set of semantic

annotations. Specifically, each HyperCat catalogue is an array of any number of Uniform Resource

Identifiers (URIs) representing resources annotated with RDF-like triples. Implementers are free to

choose or invent any set of annotations to suit their needs. A set of best practices and tools are

currently under development. Using similar or overlapping semantics in multiple catalogues

increases the possibilities for interoperability.

HyperCat is an open, lightweight JSON-based hypermedia catalogue format for exposing collections

of URIs over HTTP/HTTPS. HyperCat is simple to work with and allows developers to publish linked-

data descriptions of resources.

iServe

iServe63 is a platform for service publication, analysis, and discovery. Besides providing the typical

features of service registries, it offers additional functionality that exploits service descriptions,

service annotations and further data gathered and derived from the analysis of these descriptions,

data crawled from the Web, periodic monitoring and user activities.

A crucial feature of iServe is that it publishes service descriptions as Linked Data, no matter their

original format (underlying formalism originally used for service description). These services, which

are referred to as Linked Services, help application developers to locate Web services and Web

APIs they can use to process or enrich their data.

iServe uses a minimal set of vocabulary, called Minimal Service Model (MSM), for describing both

WSDL services and Web APIs in RDF that can be used for service matchmaking based on SPARQL.

This model abstracts from original approaches to annotating the services e.g. SAWSDL, OWL-S

(service semantic annotations are discussed in 2.5.2.2). However, original services’ semantic

annotations are used to automatically generate the appropriate RDF statements according to the

Minimal Service Model, and then expose them as Linked Data. Whereas HyperCat does not impose

any particular semantic annotations, iServe is based on MSM. MSM is a simple RDF ontology that

62 http://www.hypercat.io/
63 http://iserve.kmi.open.ac.uk/

D 3.1: Methods for Interoperability and Integration

73 / 220

provides common model for Web service and API description and additionally uses the SAWSDL,

WSMO-Lite and hRESTS.

iServe provides three interfaces to interact with published linked data about services:

 Web-based application, called iServe Browser, allowing users to browse, query, and upload

services to iServe.

 A SPARQL endpoint where all the data hosted in iServe can be accessed and queried.

 A RESTful API that enables creating, retrieving and querying for services directly from

applications.

Figure 20: iServe architecture. Source: http://iserve.kmi.open.ac.uk/

2.4.2.3 Wrapping Technologies and the IoT

The goal of this section is to make a survey of the existing wrapping technologies needed to discover

and incorporate existing Web/IoT services to facilitate interoperability. The survey presents a first

explanation of what a wrapper or Web wrapper is, the kinds of wrappers and existing wrappers on

the market and finally how it is possible to wrap existing IoT services by using a specific technology.

Wrappers are specific programs able to extract data from Internet web sites or services and convert

the information into a structured format. More specifically, wrappers have three main functions:

retrieval that allows to access Web through HTTP protocol, extraction that allows to identify specific

information, and conversion that returns the information in a particular format. A piece of software

that facilitates the generation of web wrappers through its engine that usually specifies the

techniques of extraction, extraction rules, accessible data types, data transformation algorithm and

so on is called a web wrapping toolkit. Once the wrappers were written manually by expert

programmers using a specific language like Java. However, this meant writing a different wrapper

for each web site which made the manual approach both time consuming and error prone. Later,

using methods of artificial intelligence and machine learning the wrappers became both semi-

automatic and automatic. In the semi-automatic approach, users are lead through a graphical user

interface step by step to teach them what information to extract and where from. For automatic

D 3.1: Methods for Interoperability and Integration

74 / 220

approach, the wrappers are generated using machine learning. Usually, a set of rules is generated

by using specific training examples. However, this type of wrappers generally returns varying

result(s) depending on the quality of the given training examples and the complexity of the web sites

that are wrapped. In the literature there is a different classification about the wrapper. For example,

Kuhlins et al. [22] simply divided the toolkits into two general categories: commercial and non-

commercial. Laender et al. [23], categorized these toolkits according to ways in which the wrappers

are generated. Firat [24] developed a 3-dimensional matrix in classifying academic toolkits, based

primarily on how mechanism works behind wrappers generation.

 Laender and Ribeiro-Neto [23] proposed a taxonomy to classify web wrapping toolkits based on

toolkits’ respective extraction techniques. They divided web wrapping toolkits into six categories:

Language for wrapper development:

Specially designed programming languages were developed to assist programmers in creating web

wrappers more efficiently. Examples include Jedi [25], TSIMMIS64 and WebQL65.

HTML-Aware tools:

HTML-aware toolkits treat web pages as a document tree, and rely on the underlying HTML

hierarchical structure of the web pages for data extraction. Examples include XWRAP Elite66 and

Lixto67.

NLP-based tools:

Natural language processing (NLP) is a technique for extracting data from plain text documents

where there is no structured presentation or layout. Examples include RAPIER [26] and WHISK [27].

Wrapper Induction tools:

Typically, wrappers are automatically generated by feeding training examples to wrapper induction

toolkits, for which delimiter-based extraction rules are derived. Examples include WIEN [28] and

STALKER [29].

Modeling-based tools:

Toolkits in this category create wrappers based on a pre-defined domain model, which specify a

certain desired structure. Examples include NoDoSe [30] and Kapow68.

Ontology-based tools:

Ontology-based web wrapping technologies make use of application ontology to locate data contents

in the document. These constants are then used to construct objects. The pioneer effort of this group

of toolkits comes from the Data Extraction Group69 in Brigham Young University.

64 http://infolab.stanford.edu/tsimmis/
65 http://www.ql2.com/products-services/ql2-webql/
66 http://www.cc.gatech.edu/projects/disl/XWRAPElite/
67 http://www.lixto.com/
68 http://www.kofax.com/data-integration-extraction
69 http://www.deg.byu.edu/

D 3.1: Methods for Interoperability and Integration

75 / 220

Examples of Web Wrapping toolkits are ContentMaster70, DB2 Information Integrator for Content71,

WebMethods Integration Platform72, Network Query Language (NQL) [31], Kapow, Visual Web

Task73, Visual Wrapper74, Connotate Platform75, Webinator76, WebQL, WIEN, WinTask77, XWRAP

Elite.

Application wrapping techniques to IoT devices

Producers of electronic devices provide also application services to collect data coming from the

devices themselves. A very easy approach to support users in building customized applications on

demand, is discussed in Fujima and Jantke [32]. Interoperability for IoT devices is very important,

and different middleware components have been developed. Many of these components are

developed as Web services and IoT devices send or fetch information through them. Starting from

these components to build new services, users need to know a programming language, web

technology, framework, library perfectly and sometimes this is very hard. To facilitate end users to

reuse these components it is possible to wrap Web services through visual components and provide

a media platform to build and distribute custom applications with the wrapper software component

such as depicted in the following figure.

As an example, Webble Technology [33] is a middleware based on a meme media technology. The

word “meme” indicates a unit carrying knowledge, ideas, arts as the gene that characterizes the

human, cultural and biologic evolution. “Meme media” indicates a media that accelerate the

distribution memes among people through the Internet and application services that use it. In meme

media platform, each functional component is wrapped as a visual component that provides a

standard interface. It uses MVC architecture applicable to various domains. It is possible to change

the behaviour of every component and make a connection between them with an easy drag and

70 http://www.ebizq.net/news/7075.html
71 https://www.ibm.com/analytics/us/en/technology/db2/
72 http://www2.softwareag.com/corporate/products/webmethods_integration/integration/
73 http://visual-web-task.software.informer.com/
74 http://www.lixto.com/
75 http://www.connotate.com/platform/
76 https://www.thunderstone.com/texis/site/pages/webinator.html
77 http://www.wintask.com/

Figure 21: Wrapping of Internet of Things with Webble Technology.

D 3.1: Methods for Interoperability and Integration

76 / 220

drop operations. A real case study was addressed by using a fitbit device and implementing specific

functionality for retrieving and visualizing data, modifying and manipulating queries and providing

interactive ways to compare results of different query. To realize these functionalities a framework

has been implemented.

2.4.2.4 Service Composition

Services can greatly benefit from the usage of other existing services in order to simplify their

development and allow for better focus. Whether a complex system is broken into separate

decoupled services to improve their scalability, or a simple proof of concept relies on existing

services to create a minimum viable product without much effort, making use of one or several

services is a convenient way to create complex yet reliable systems. The composition of such

services can be as simple as one service (i.e. an ecommerce site) making use of a second service

(i.e. a payment gateway), to very complex and flexible schemas of interconnection that need a

coordinator to manage the mesh of requests and responses.

In particular, in the context of Internet of Things, service composition can be understood as allowing

routes for the data to be treated before reaching an application or end-user, or agents requiring

information or processes from other such agents. Such compositions can help provide more valuable

information and actions than plain raw data, tailored to a particular receiver or purpose.

2.4.2.4.1 Mash-up

Mash-up is a way to compose a new service/application/data from existing applications/services

called Mashable Application Components (MACs). MAC is a functional entity that can be executed

and combined that provides access to resource or functionality.

Mash-up composition can be considered from the front-end perspective in which components

interface both other components and the human end-user through a user interface. In contrast to

back-end service composition, front-end mash-up has a direct impact on application’s look and feel.

Front-end components can be widgets that provide information presentation and handle user

interaction while back-end components are responsible for information processing. Note, however,

that mash-up is often defined as simply as a composition of services with less complex constructs

than service composition.

FIWARE

In FIWARE project [34], which follows the aforementioned distinction, mash-up execution engines

are characterized by:

 relying on Web standards including standards on mash-up description languages,

 openness, extensibility,

 ability of integration in multiple channels,

 users executing their mashups from their favourite browser,

 persistence of the state of the mash-up.

Web application mash-up engines provide methods for integration of heterogeneous data,

application logic and user interface components in order to create new composite application. Note

that this kind of applications could be developed with a traditional programming approach, however

D 3.1: Methods for Interoperability and Integration

77 / 220

mash-up promotes reusability, shareability and do-it-yourself applications from off-the-shelf

components.

According to FIWARE project, the Application and Services Ecosystem and Delivery Framework in

FI-WARE comprises a set of generic enablers (i.e. reusable and commonly shared functional

building blocks serving a multiplicity of usage areas across various sectors) for creation, composition,

delivery, monetization, and usage of applications and services on the Future Internet.

FIWARE proposes an Application Mashup GE that addresses the composition of Web applications

from the front-end perspective by not only service providers but also end users. Application Mashup

GE specifies tools that do not require programming skills i.e. they enable rapid prototyping of mash-

ups from available components.

In the architecture, there are two main components regarding application mash-up and service

composition: aggregator and mediator. The aggregator allows the creation and execution of mash-

up applications (or composed services). The mediator is needed to provide communication between

different components.

Figure 22: High-level architecture of FIWARE mediator and aggregator. Source:
https://goo.gl/Ggd9Zl

Collaborative Open Market to Place Objects at your Service (COMPOSE)

The COMPOSE project78 aims to integrate the IoT with IoS through an open marketplace, in which

data from Internet-connected objects can be easily published, shared, and integrated into services

and applications. One of the issues addressed by the project is the ad-hoc creation, composition,

and maintenance of service objects and services. COMPOSE partially funded the development of

Glue.things79.

78 http://www.compose-project.eu/
79 http://www.gluethings.com/

D 3.1: Methods for Interoperability and Integration

78 / 220

Glue.things

It is a Platform as a Service (PaaS) designed for application and services in the Internet of Things

domain. Glue.things offers the development tools to wire data of Web-enabled IoT devices to the

Web of Services by connecting them to the platform and designing mash-ups in Glue.things

dashbord. Glue.things offers a mash-up toolkit (client library, web dashboard, REST APIs) to connect

devices and dashboard that supports integration, real-time communication (Web Sockets, MQTT

and CoAP-based on real-time data stream networks such as MeshBlu, PubNub and servIoTicy), and

data stream mash-ups, triggers / actions and finally distributed deployment of these mash-ups.

Mash-up editor is built on Node-RED and applications are deployed as Node-RED applications.

Service description is based on: WSDL, SAWSDL, OWL-S and RDF.

Figure 23: Glue.things overview. Source: http://www.gluethings.com/

Node-RED

Is a visual tool for wiring IoT i.e. hardware devices, APIs and online services80. Node-RED is also

discussed in section 2.4.2.5.

Kofax Kapow

Is a commercial platform that provides mash-up functionality81. It enables to connect and integrate a

variety of data sources and applications e.g. dynamic sites built with JavaScript and AJAX

techniques, databases, data from Excel, XML, XLS, RSS feeds and from APIs based on SOAP,

REST, XML and JSON. The visual IDE allows for building data integration flows and deploying to

management console from where flows can be scheduled or published as lightweight applications.

Health Mash-up system -

One example of a health mashup is Mobile Health Mashups [35]. It is a service that collects data

from varies health sensors and mobile applications. It produces various graphs and answers to

general questions about correlation in health state and various activity or contextual data.

The system has a server running custom algorithms, rest APIs for various sensors and a mobile

widget for expressing findings from the system.

80 http://nodered.org/
81 http://www.kofax.com/data-integration-extraction

D 3.1: Methods for Interoperability and Integration

79 / 220

Figure 24: Health Mashup system overview. Source: [35]

2.4.2.4.2 Service Orchestration

Service orchestration is a service composition strategy based on the use of a central module that

controls all inputs and outputs of the atomic services (components) and performs the service

composition logic. This component is called the orchestrator and needs to have control over all the

services composing the business processes. This is also called centralized service composition

approach [36].

Figure 25: Orchestrator scheme.

Orchestration in relevant IoT platforms

Service composition through orchestration is a basic feature in most of the IoT platforms analyzed.

Since the considered IoT platforms are intended to cover a full IoT ecosystem, natural solution for

service composition is the use of orchestration.

D 3.1: Methods for Interoperability and Integration

80 / 220

FIWARE

It has an orchestration service inside, the PaaS generic enabler. This is an orchestration engine to

launch composite cloud applications based on text templates.

Figure 26: FIWARE orchestrator. Source: D2.2.2 FI-WARE High-level Description

SOFIA2

There is little information about SOFIA2, but the release 2.12 declared to have an API orchestrator

within the API Manager82.

Sensinact

Provides a composition and orchestration function for easing the development of custom business

logic.

82 https://about.sofia2.com/2014/09/26/sofia2-release-2-12-0-published/

D 3.1: Methods for Interoperability and Integration

81 / 220

Figure 27: Sensinact orchestrator. Source: https://goo.gl/dquUM2

UniversAAL

It has a service composition tool using orchestration. There are two versions of the component, one

using OWL-S and other based on JavaScript [37].

The universAAL component for service orchestration is ASOR (AAL Spaces Orchestrator) and

follows a script based approach for composition definition.

OneM2M

Does not provide a service orchestration specification in its standard, alike, the main open

implementation of the OpenM2M standard, Eclipse OM2M, does not have any implementation for

service orchestration.

OpenIoT

Does not define a component for service orchestration itself, relying on applications to develop their

own service composition, if needed.

Relevant research projects using orchestration

Beacon83

The main goal of this project is to define and implement a federated cloud network framework that

enables the provision of federated cloud infrastructures, with special emphasis on intercloud

networking and security issues, to support the automated deployment of applications and services

across different clouds and datacenters.

83 http://www.beacon-project.eu/

D 3.1: Methods for Interoperability and Integration

82 / 220

INPUT84

The INPUT Project aims to contribute to the evolution of the Internet “brain” beyond current

limitations due to obsolete IP network paradigms, by moving cloud services much closer to end-

users and smart-devices.

MCN (Mobile Cloud Networking)85

The aim of the Mobile Cloud Networking project is to extend the concept of Cloud Computing beyond

data centres towards the Mobile End-User by redefining infrastructure and networks according the

cloud-centric approach.

Arcadia86

This project is intended to provide a novel reconfigurable by design Highly Distributed Applications’

development paradigm over programmable Infrastructure. To do so, ARCADIA Framework will rely

on the development of an extensible Context Model which will be used by developers directly at the

source-code level.

Switch87

SWITCH aims at improving the existing development and execution model of time critical

applications by introducing a novel conceptual model (application-infrastructure co-programming

and control model), in which application QoS/QoE, together with the programmability and

controllability of the Cloud environments, can all be included in the complete lifecycle of applications.

Cloud Lightning88

Proposes a new way of provisioning heterogeneous cloud resources to deliver services, specified

by the user, using a bespoke service description language. Due to the evolving complexity of modern

heterogeneous Clouds, it proposes to build the system based on principles of self-management and

self-organization.

Sonata89

The project addresses the significant challenges associated with both the development and

deployment of the complex services envisioned for 5G networks and empowered by these

technologies. It orchestrates complex services to connectivity, computing and storage resources,

and automatically re-configures running services.

Sensoria90

The objective of this project was the development of a novel comprehensive approach to the

engineering of software systems for service-oriented architectures where foundational theories,

techniques and methods are fully integrated in a pragmatic software engineering approach.

84 http://www.input-project.eu/
85 http://www.mobile-cloud-networking.eu/
86 http://www.arcadia-framework.eu/
87 http://www.switchproject.eu/
88 http://cloudlightning.eu/
89 http://www.sonata-nfv.eu/
90 http://www.sensoria-ist.eu/

D 3.1: Methods for Interoperability and Integration

83 / 220

Definition Languages

The most accepted and extended language for service orchestration is Web Service Business

Process Execution Language (WS-BPEL or BPEL) 2.0, which is a public OASIS standard that

leveraged former languages of big actors such as WSFL from IBM or XLang from Microsoft. It is

considered a de facto standard for process orchestration execution.

Other important specification standard from OASIS Alliance is Topology and Orchestration

Specification for Cloud Applications (TOSCA)91, which enables the interoperable description of

application and infrastructure cloud services, the relationships between parts of the service, and the

operational behaviour of these services (e.g., deploy, patch, shutdown)--independent of the supplier

creating the service, and any particular cloud provider or hosting technology.

BPEL engines

Following are listed some of the most important or representative engines and framework for

business process management and orchestration as a part of it. Please, note that the following list

(and all the others in this section) is not exhaustive and only shows a subset of the noteworthy

solutions for BPM.

 Orchestra92

 RiftSaw93

 WSO294

 Activiti95

 jBPM96

Other projects

Here, other orchestration related projects are listed. Some of them are modules or components that

can be used to implement a part of the orchestration and some are complete solution. By no means

this list shall be considered exhaustive, but only a sample of interesting or noteworthy projects for

INTER-IoT.

 Open Stack Orchestration Program:

o Heat97

o Mistral98

 Hurtle99

91 https://www.oasis-open.org/committees/tosca
92 http://orchestra.ow2.org/
93 http://riftsaw.jboss.org/
94 http://wso2.com/products/business-process-server/
95 http://www.activiti.org/
96 http://www.jbpm.org/
97 https://wiki.openstack.org/wiki/Heat
98 https://github.com/openstack/mistral
99 http://hurtle.it/

D 3.1: Methods for Interoperability and Integration

84 / 220

 Apache ODE100

 Cloudify101

 Juju102 from Canonical

2.4.2.4.3 Service Choreography

Choreography is a service composition paradigm opposite to orchestration. Unlike the latter,

choreography does not rely on a centralized service/element to manage all the service invocations

and the results composition. Instead, choreography defines a set of global rules known by all the

services that let them act in a defined way to compose services. This approach is completely

decentralized and avoids the overhead of managing the service, as well as the performance burden

that the orchestrator could introduce. However, in this approach, there is less control over the

business process and a degree of tolerance to failures is needed.

Figure 28: Choreography scheme.

Choreography languages

While orchestration implies the control of services from an element in an execution environment,

choreography is not intended to be executed sequentially, but to describe or define an interaction

framework between cross-domain or cross-organizational services. The most extended language for

choreography relations description is WS-CDL (Web Service Choreography Description Language)

from W3C. Other languages are WSCI (Web Service Choreography Interface), also from W3C and

Ontology Web Language for Services (OWL-S). Choreographies can be modelled and annotated by

using the widely extended standard Business Process Management and Notation (BPMN) 2.0 from

Object Management Group (OMG) [38] [39].

Choreography in IoT platforms

100 http://ode.apache.org/
101 http://docs.getcloudify.org/3.5.0/intro/what-is-cloudify/#application-orchestration
102 https://jujucharms.com/

D 3.1: Methods for Interoperability and Integration

85 / 220

Although most platforms offer service orchestration, currently also the possibility of having service

choreography is raising. The service choreography is a conceptually attractive approach of dealing

with the changing contexts of the augmented entities, for which centralized service orchestration has

its limitations.

Service choreography is more appropriate as a means of coordination among different organizations.

Furthermore, it offers advantages in terms of scalability and resiliency.

The IoT-A 103project establishes the basis to include choreography services on new IoT platforms.

Thanks to the pervasive availability of connectivity of standalone devices, the growth of the device

oriented operating systems and middlewares available, and the gradual adoption of communication

standards and reference implementations, the number of application scenarios where choreography

become appropriate and even preferred is increasing. Examples of high-level choreography can be

found in very favorable scenarios such as smart cities (automatic traffic signals set up, advanced

HVAC systems…) or intelligent transport infrastructures (e-toll, v2i communications [40] and others).

Research projects using choreography: Baile104, Choreos105, Chorevolution106.

2.4.2.5 Tools

Node-RED

Node-RED107 is a tool for wiring together hardware devices, APIs and online services to carry out

tasks. It uses a visual programming approach that allows developers to connect predefined code

blocks, known as ‘nodes’, together to perform a task. The connected nodes, usually a combination

of input nodes, processing nodes and output nodes, when wired together, make up ‘flows’.

Node-RED uses a Flow Based Programming (FBP) model. FBP describes a graph of nodes, which

exchange messages containing data via the edges. The edges are defined outside the nodes, in

others words nodes have no control on where the data comes from and where it goes to.

Different categories of nodes are defined:

 Input: to process incoming events.

 Output: to serve or send outgoing events.

 Functions: to manipulate messages and message payloads.

103 http://www.iot-a.eu/public
104 http://ccsl.ime.usp.br/baile/
105 http://www.choreos.eu/
106 http://www.chorevolution.eu/
107 https://nodered.org/

D 3.1: Methods for Interoperability and Integration

86 / 220

Figure 29: Node-RED dashboard. Source: http://nodered.org/

Using Node-RED provides several advantages for INTER-IoT:

 Node-RED is an application/service composition tool.

 There is already an active community regularly producing new nodes and the Node-RED

platform is an open-source project hosted on GitHub.

 Node-RED flows are represented in JavaScript Object Notation or JSON and can be easily

exported to the clipboard to be imported into Node-RED or shared online.

 IBM is also considering making it simpler to build on the work of others in Node-RED by

introducing sub-flows. Sub-flows would allow users to collapse flows of multiple linked nodes

into a single node, allowing more complex logic to be abstracted into a single node.

 Provides a lightweight proof of concept runtime.

 It’s easy to use for simple tasks.

 It’s simple to extend and to add some new capabilities and types of integration.

 It’s capable of creating the back-end glue between IoT applications.

 Extensively used in the domain of IoT. A large number of nodes is developed to interoperate

with the main IoT platforms.

 It has been used in IoT interoperability projects, such as COMPOSE. Furthermore, it is one

of the most used tools in the EPI projects.

 There are many ways to run Node-RED e.g. under Docker.

Node-RED has the following disadvantages:

 Node-RED is not an Enterprise strength application runtime.

 It doest not include a graphical tool to visualize data (although there are already third party

tools to do that).

 Other languages than JavaScript over Node might have better performance handling large

amounts of data.

D 3.1: Methods for Interoperability and Integration

87 / 220

In the section 3.4.4 of this document will explain in more detail the advantages offered by Node-RED

in the AS2AS layer.

Apache NiFi

NiFi108 was built to automate the flow of data between systems. In Apache Nifi, the term dataflow is

used to mean an automated and managed flow of information between systems. This problem space

has been around ever since enterprises had more than one system, where some of the systems

created data and some of the systems consumed it, and Apache Nifi addressed the problem with a

flow based programming solution.

Apache NiFi advantages for INTER-IoT:

 Powerful and reliable system for processing and distributing data.

 Directed graphs of data routing and transformation.

 Web-based User Interface for creating, monitoring, & controlling data flows.

 Highly configurable - modify data flow at runtime, dynamically prioritize data.

 Data Provenance tracks data through the entire system.

 Easily extensible through development of custom components.

Figure 30: Apache NiFi. Source: https://blogs.apache.org/nifi/

But Nifi has the following disadvantages:

 It is a tool that can offer solutions for IoT, but it is not mainly focused on IoT.

 NiFi does not have a community working on interoperability solutions with the main IoT

platforms as big as other tools (Node-RED).

108 https://nifi.apache.org/

D 3.1: Methods for Interoperability and Integration

88 / 220

 Although NiFi is not a complicated tool, other tools like Node-RED, have the capacity to

provide a simpler solution and in which the first results are obtained more quickly.

 The interoperability concepts with which this tool works, is not close to the one we want to

apply in AS2AS. The reason is that NiFi does not really work with IoT concepts such as IoT

platforms, IoT services, devices, sensors etc.

Even though, it is not a tool that meets all the desired characteristics for the interoperability pursued

in AS2AS, its use in the future is not completely discarded as a complement to other tools (for

example Node-RED). It’s is possible take advantage of NiFi’s powerful and reliable system to

process and distribute data.

Flogo

According to the official documentation of its website, project Flogo is an Open Source Framework

for IoT Edge Apps & Integration. It can be used to build IoT applications that run on edge devices

and integrate them with IoT gateways and cloud services.

Flogo is a process engine with the following goals:

 Wire together hardware devices, APIs and online services.

 Integrate and orchestrate stateless devices and microservices.

 Transform/Filter/Route/Aggregate/Enrich State Management via State Service and Flow

Service

 Activate and diagnose devices, manage their performance, etc.

 Recover from faults, continue where a device crashed.

 Provide synchronous and asynchronous communication.

Figure 31: Project Flogo. Source: http://www.flogo.io/

Flogo has the following features:

D 3.1: Methods for Interoperability and Integration

89 / 220

 Ultra lightweight: in their documentation they explain that it has the advantage of being 20 to

50 times lighter than Java or Node-RED.

 Open Source.

However, Flogo has the following main disadvantages:

 It is currently in Developer Preview and primarily addresses the needs of Flogo Extensions

developers and IoT Solutions Developers. For that reason, right now it is “for developers, by

developers”.

 In comparison to Node-RED, it has not developed so many solutions to interact with the main

IoT platforms and does not have a community which would be as big and active.

 There are not enough examples, documentation and implementation available for IoT

interoperability solutions.

NoFlo

NoFlo, similarly to Node-RED, is a JavaScript implementation of Flow-Based Programming (FBP)

model. The logic of this software is defined as a graph. The nodes of the graph are instances of

NoFlo components, and the edges define the connections between them. NoFlo components react

to incoming messages, or packets. There is no shared state, and the only way to communicate

between components is by sending packets.

There are two ways to run your flow-based programs with NoFlo:

If the application is based on flows, then a user can simply have NoFlo execute and run it. Flow-

based programs done in this way are called independent graphs.

The other option is to embed NoFlo graphs into an existing JavaScript application by using it as a

regular Node.js library. This is useful when a user already has an existing system where you want

to automate some parts as their own flows, or to add new functionality.

Figure 32: NoFlo. Source: http://noflojs.org/

D 3.1: Methods for Interoperability and Integration

90 / 220

There is an ecosystem of tools around NoFlo that make it more powerful:

 Browser-based visual programming IDE for NoFlo.

 Command-line interface for running NoFlo programs on Node.js.

 Tool for running NoFlo and other FBP runtimes as a distributed system.

 Data-driven tests for NoFlo and other FBP environments.

 Tools for debugging.

However, NoFlo has the following disadvantages:

 NoFlo is harder to use than Node-RED. The tool is divided into several components which

makes difficult the first steps and the graphical environment is not so friendly.

 There are not enough examples, documentation and implementation available about IoT

interoperability solutions.

Intel(r) IoT Services Orchestration Layer109

This is a solution that provides a visual graphical programming interface for developing IoT

applications. It offers the following components:

 HTML5 IDE running inside browser. To create the IoT application, including its internal logic

(e.g. workflows) and its HTML5 based end user interface, through drag-and-drop.

 Distributed middleware running on top of Node.js to host and execute the IoT applications

created by the IDE.

 An Orchestration Center which runs the workflow engine to execute the logic, and web

servers to host the HTML5 IDE for developers and HTML5 UI for end users.

 One or multiple Service Hubs which actually manage the devices and cloud services using

various protocols. The Service Hub gathers this information about services to Orchestration

Center to let the developers create applications based on these services. The Service Hub

also receives commands from Orchestration Center to actually invoke the services managed

by it, according to the logic defined by workflows.

109 https://github.com/01org/intel-iot-services-orchestration-layer-dev

D 3.1: Methods for Interoperability and Integration

91 / 220

Figure 33: Intel(r) IoT Services Orchestration Layer Source: http://01org.github.io/intel-iot-
services-orchestration-layer/

However, Intel(r) IoT Services Orchestration Layer has the following disadvantages:

 The features it offers now are far from the purpose of the AS2AS layer. There are no

examples working with the APIs provided by the main IoT platforms.

 It does not have a community as big as the other tools of this sections.

 Most of the examples work with devices and not with applications and services.

2.4.3 Summary table

Application & Services Interoperability

Approach Brief summary on how they
facilitate interoperability

What can be found in
this chapter

Service
Virtualization

IoT services loads can greatly
vary in time. Service virtualization
provides flexible mechanisms of
scaling creating additional
instances of a service whenever
needed, in order to handle the
additional load while maintaining
the quality of the service.

The benefits of the
virtualization,
service deployment
methods and a brief
summary of the widely
used technology within
virtualization: the usage of
Containers.

Service Catalog
and Service
Discovery

A catalogue will be able to
register the applications to make
them discoverable. Furthermore,
it will offer a description or
detailed information about the
services/applications.

A brief explanation of the
following protocols /
standards,
UDDI/WSDL/Hypercat.
iServe as an example of a
platform working with
Service Catalogue.

Wrapping
Technologies

Specific programs able to extract
data from Internet sites or
services and convert the
information into a structured
format.

An example of how to
wrap web services
through visual
components and provide a
media platform to build
and distribute custom
applications.

D 3.1: Methods for Interoperability and Integration

92 / 220

Service
Composition

Encompasses all those
processes that create added-
value services,(composite or
aggregated), from existing
services.

The relationship between
the techniques of service
composition (mash-up,
orchestration,
choreography) and the IoT
Platforms and their
services.

Tools The tools presented in this
section provide solutions to
facilitate the interoperability of
services that come from different
IoT platforms.

The explanation of the
following tools:
NodeRed,Apache NiFi,
NoFlo, Flogo and Intel(r)
IoT Services Orchestration
Layer.

Table 5: Application and Services interoperability summary table.

2.5 Data & Semantics Interoperability (DS2DS)

2.5.1 Introduction

In every Internet of Things platform or system it is essential to take into account the production,

collection, transmission, and processing of vast amounts of data. Any application consuming those

data needs to understand its structure and meaning. Both aspects can be represented by suitable

metadata, which in order to be useful should be machine readable. The metadata provides a

semantic description of the data and can be utilized for many purposes, such as resource discovery,

management, and access control. Of course, the more expressive is the language used for

representing the metadata, the more accurate the description might become, although decidability

and computability put some obvious barriers. As it turns out, the concept of metadata can be seen

as a special case of the notion of ontology, which by definition represents explicit specification of

shared conceptualization [41].

The term ontology originates from the branch of philosophy that studies the nature and structure of

beings. In recent years, mostly due to the fast growth of various types of data available through the

Internet, ontologies became important in information science and technology. In this area, the

concept ontology refers a structure that provides a vocabulary for a domain of interest, together with

the meaning of entities present in that vocabulary. Typically, within an ontology the entities may be

grouped, put into a hierarchy, related with each other, and subdivided according to different notions

of similarity. In the last two decades, the development of the Semantic Web resulted in the creation

of many ontology-related languages, standards, and tools. Among the most important standards, the

following should be highlighted: Resource Description Framework (RDF) and RDF Schema (RDFS)

[42] [43], OWL Web Ontology Language [44], and the RDF query language SPARQL [45], which

enables retrieval and manipulation of data stored in the RDF format.

The importance of semantics, and ontologies in particular, becomes even more evident and relevant

in the context of interoperability. In the IoT context, there is a large number of platforms available on

the market. Unfortunately, usually they are not able to cooperate or even communicate with each

other, even if they belong to the same domain. Ontologies give the possibility to share a common

understanding of the domain, to make its assumptions explicit, and to analyse and reuse the domain

knowledge. In other words, they provide the basis for achieving semantic interoperability, i.e., the

ability of computer systems to exchange data with unambiguous, shared meaning.

D 3.1: Methods for Interoperability and Integration

93 / 220

Of course, in order to achieve shared meaning of data, the platforms or systems have to use a

common ontology either explicitly, or implicitly (via a semantic mediator). In either case, we have to

be able to combine or merge different ontologies, and structurally manage such combinations.

In what follows, this state of the art of semantics is focused on ontologies for the IoT, semantics of

services, and the discussion of semantic aspects of selected IoT platforms. The last section will be

devoted to the tools supporting semantics and ontology manipulation.

2.5.2 Literature review

2.5.2.1 IoT semantics

Regarding more general issues concerning interoperability in IoT systems, this problem has been,

and still is, addressed by researchers on many levels, including mainly device [46], middleware [47]

[48], and service [49], whereas the semantic layer has received considerably less attention. The

integration of IoT data into the Web with semantic modeling and linked data approach was discussed

in [50]. The early stage of adoption of semantic methods in the IoT becomes evident after searching

for available ontologies. It must be noted that the practical use of semantic methods and tools

requires the existence of explicitly expressed ontologies, represented by using one of the ontology

languages (currently RDF(S) or OWL). Therefore, let us discuss what is actually available for

practitioners that would like to use semantic technologies in IoT environments.

The general observation is as follows. Most existing ontologies, capturing the IoT domain, were

developed within individual research projects and, as a consequence, they typically are in a

prototype stage, often incomplete and sometimes abandoned upon project completion. A notable

exception is the W3C SSN ontology, which was developed as a joint effort of several research

organizations and became the standard ontology for the semantic sensor networks.

For all practical purposes, this is the only ontology explicitly mentioned in [51]; if it is not counted the

OpenIoT ontology, which is a recent effort, based on the W3C SSN (see, below). However, while

this ontology captures the domain of WSN, it would require further elaboration of the details of the

problem at hand to be used in IoT applications. This is to be done in more specific sensor network

ontologies that attempt at capturing further information about sensor capabilities, performance,

usage conditions, and should enable contextual data discovery.

Among ontologies that have been developed in recent years, the following ones are worth to

mentioning in the context of the INTER-IoT project. Additionally, [52] and [53] should be consulted

for further references. Let us start from a short description of ontologies that, as far as we were able

to establish, are no longer under active development. Observe that some of them are more generic,

while others are focused on more domain-specific aspects of sensors and sensor networks.

CSIRO Sensor Ontology [54]. It was an early attempt of development of a generic ontology for

describing functional, physical and measurement aspects of sensors. It was created at the

Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia. Its main classes

include sensors, features, operations, results, processes, inputs and outputs, accuracy, resolution,

abstract and physical properties, and metadata links.

SWAMO Ontology [55]. The aim of the SWAMO project [56] was to use a collaborative and

distributed set of intelligent agents for supervising and conducting autonomous mission operations.

SWAMO ontology enables automated decision making and responses to the sensor Web

environment. One of its advantages was its compatibility with the Open Geospatial Consortium

(OGC) standards, enabling geo-data consumption and exchange.

D 3.1: Methods for Interoperability and Integration

94 / 220

MMI Device Ontology [57]. An extensible ontology of marine devices (hence, an ontology that is

slightly more domain-specific than others) that integrates with models of sensor descriptions. Its

main classes include component, system, process, platform, device, sensor, and sampler.

SEEK Extensible Observation Ontology (OBOE; [58]) is a suite of ontologies for modeling and

representing scientific observations. It can express a wide range of measurement types, includes a

mechanism for specifying measurement context, and has the ability to specify the type of entity being

measured. In this way it is focused more on the results produced by sensors than sensors

themselves.

Machine-to-Machine Measurement (M3) ontology is a semantic model developed for the

Semantic Web of Things (SWoT) project110. It is a comprehensive taxonomy that spans wide range

of devices and concepts from IoT domain. It is the semantic basis of the SWoT framework that, was

designed to enable interoperability between both domain-specific and cross-domain applications. A

smaller version of this ontology – the M3 Lite111 is used and developed for the FIESTA-IOT project.

All these ontologies, as well as the SemSOS observation-centric ontology suite [59], the stimuli-

centered ontology design pattern [60], as well as the OGC SensorML standard [61] contributed to

the development of the, mentioned above, W3C Semantic Sensor Network ontology (SSN) [62].

The W3C SSN [63] [64] ontology is actually a suite of general purpose ontologies for describing

sensors, their accuracy and capabilities, observations and methods used for sensing.

Further information, concerning deployment and use of sensors is also captured.

More specifically, the SSN consists of 10 conceptual modules (Deployment, System,

OperatingRestriction, PlatformSite, Device, Process, Data, SSOPlatform, MeasuringCapability,

ConstraintBlock) which contains 41 concepts and 39 object properties. It directly inherits 11 concepts

and 14 object properties from the top-level DOLCE-UltraLite ontology [65].

The W3C SSN ontology has been widely used, and both extended and specialized. Among the

notable extensions are the wireless sensor networks ontology; WSSN [66], and sensor cloud

ontology SCO [67]. The specializations include the AEMET meteorological ontology [68],

atmosphere observation ontology SWROAO [69], flood prediction ontology SemSorGrid4Env [70],

and (data) stream annotation ontology SAO [71] [72]. A more recent IoT-Lite [73] ontology is a

lightweight instantiation of the SSN that provides a general IoT knowledge model intended to limit

processing time of ontologically demarcated resources.

Another noteworthy IoT ontology is the Smart Appliances Reference Ontology [74] (SAREF). It

describes a top-level perspective on IoT home appliances along with their functions and services.

The model is generic enough to be used outside of the home environment, and includes concepts

such as device, sensor, actuator, service, state and function. SAREF is most naturally applied at

home, office or any limited public space.

The oneM2M Base Ontology [46] is a core IoT ontology with very general and basic concepts. Its

latest version (2.0) can be found at [75]. As the ontology prepared for the second release of the IoT

Platform oneM2M it is designed to satisfy special semantic requirements for IoT. Its purpose is to

provide an ontology that other systems can align with and match with their own ontologies in order

to achieve semantic interoperability.

110 http://sensormeasurement.appspot.com/
111 http://lov.okfn.org/dataset/lov/vocabs/m3lite

D 3.1: Methods for Interoperability and Integration

95 / 220

It can be claimed that (similarly to the way that the OpenIoT project proceeded) any project planning

to fuse Internet of Things and semantic technologies should definitely start by taking full advantage

of the W3C SSN ontology. Only then, it should extend it by adding concepts necessary to deal with

intended application areas. These concepts may be needed either on the sensor level or to represent

concepts formalizing knowledge concerning application areas of interest themselves. Note that the

need for adding concepts concerning sensors and sensing is not very likely, as the W3C SSN is

quite comprehensive. Nevertheless, it may turn out that it does not capture some unique concepts

related to use of sensors in a selected application area.

The W3C SSN ontology has seen the strongest uptake and has influenced several projects, most

notably the OpenIoT. The methodology used in engineering of the OpenIoT ontology is a promising

approach for development of IoT interoperable solutions. This method starts with the W3C SSN

ontology and extends it by a chain (or network) of ontologies, in order to capture domain specific

concepts, either by linking and modifying existing domain ontologies or producing new low-level

ontologies with the SSN at their core.

In principle, ontologies for IoT might also consider some special aspects and features of the IoT

environment. Semantic descriptions of IoT devices or smart objects should include identity, type,

physical characteristics, location, embedded devices and provided services. Ontologies might

include support for smart objects that are not sensors, but act as smart devices, such as virtual

devices, human interfaces or algorithms. Moreover, since many sensors and smart devices have

low resources (e.g. low battery, connectivity, etc), it should be possible to semantically annotate also

these kind of special characteristics and resource limitations. The location of smart objects may be

a critical information in order to analyse data from them, especially in the case of mobile sensors

and devices. Therefore, it should be as well taken into account.

Note that, even though standards for description of various subdomains of IoT exist, there is no

single selected conceptual model of the IoT domain. Interoperability is obviously achieved when

platforms use the same ontology or standard. Otherwise the mapping needs to be prepared, or

platforms need to conform to selected standards. The challenge is to propose interoperability

mechanisms that do not require changes in the original platforms’ semantics. These can be based

on ontology alignments with the central ontology, and semantic translations. Naturally, this problem

can be extended to domain-specific ontologies (e.g. transportation, m-Health) that are commonly

referenced in the messages exchanged in IoT ecosystem. And different semantics can be used to

model a given domain depending on platform perspective.

2.5.2.2 Service description semantics

Following a discussion in 2.4.2.2, in this subsection a variety of service description standards are

briefly discussed. Those standards have been proposed and implemented starting from standards

operating on the syntactic level, which can be later annotated with semantics, or fully semantic

service description. Note that discussed standards are mentioned in the context of Service

Catalogue and Discovery tools, that can use them directly, or they can serve as an inspiration for

proposing a set of semantic annotations for service description. Semantics can be used by e.g. the

service consumer to describe the service requirements, so that matchmaking techniques can be

later used to find the semantic similarity between the service description and the requirements.

Semantics can provide mechanisms for achieving more advanced interoperability in which two

syntactically different services (e.g. different input and output parameters) can be recognised, and

they are providing the same functionality.

D 3.1: Methods for Interoperability and Integration

96 / 220

Web Service Description Language (WSDL)112 is an XML-based interface definition language that

specifies, in a machine-readable format, functionality offered by described Web service i.e. how it

can be called, what are the input parameters and what is returned by the service. A client program

connecting to a Web service can read the WSDL file to determine what operations are available on

the network endpoint and how to interact with the service. WSDL 2.0 describes a service from two

perspectives: abstract (functionality) and concrete (how and where that functionality is offered).

WSDL operates at the syntactic level providing functional description, however it cannot

unambiguously determine what the service does (the syntax is specified but not the meaning or

impact on the environment). WSDL is one of the basic standards in Web service stack, and serves

as a basis to many extensions.

Web Service Semantics (WSDL-S)113 defines a mechanism to associate semantic annotations with

Web services that are described using WSDL. It is assumed that external semantic model relevant

to services is available and can be referenced from WSDL via extensibility elements. This approach

is agnostic to ontology language, as it is not assumed that semantics is expressed in OWL. WSDL-

S allows annotating inputs, outputs and operations, and specifying preconditions and effects of the

service.

Semantic Annotations for WSDL and XML Schema definition language (SAWSDL)114 is a set of

extensional attributes that allow description of additional semantics. SAWSDL uses WSDL-S as its

primary input and became W3C candidate recommendation. SAWSDL allows referencing external

semantic models e.g. ontologies from WSDL and XML Schema components with annotations,

without imposing restrictions on semantic language. The service provider can explicitly add

semantics by annotating the appropriate parts of the Web service description with concepts from a

richer semantic model. It allows annotating with categorization information useful for publishing

service in a registry specially for service discovery and composition. Additionally, SAWSDL allows

mapping types in XML Schema to and from ontology UEDI.

United Service Description Language (USDL/Linked-USDL)115 is proposed as a data model for

describing various types of services. Besides technical aspects, it puts much focus on business

aspects of a service e.g. provisioning, pricing, composition. The Linked USDL initiative is a

remodelled USDL with respect to linked data and Web of data principles. New specification is

modelled as an RDF(S) (with reuse of existing ontologies) and can better support automated

processing and online service trading. The work on Linked USDL has been partially funded by the

following projects: FAST, RESERVOIR, MASTER, SERVFACE, SHAPE, SLA@SOI, SOA4All, FI-

WARE, and COMPOSE.

The ESSI WSMO working group is responsible for developing Web Service Modelling Language

(WSML)116 that formalizes the Web Service Modelling Ontology (WSMO)117. WSMO is a top-down

conceptual framework for describing semantic Web services in order to facilitate the automation of

discovering, combining and invoking. It provides ontology-based framework with components,

ontologies, Web service descriptions (describe the functional and behavioural aspects), goals (user

112 https://www.w3.org/TR/wsdl20
113 https://www.w3.org/Submission/WSDL-S
114 https://www.w3.org/TR/sawsdl/
115 https://linked-usdl.org/
116 https://www.w3.org/Submission/WSML/
117 https://www.w3.org/Submission/WSMO/

D 3.1: Methods for Interoperability and Integration

97 / 220

desires) and mediators (interoperability between different WSMO elements). WSMO can be

referenced from e.g. WSDL-S and SAWSDL semantic annotations. Lightweight Semantic

Descriptions for Services on the Web (WSMO-Lite)118 is a lightweight set of semantic service

descriptions in RDFS that can be used for annotations of WSDL elements using the SAWSDL

annotation mechanism (bottom-up modelling of semantic Web services). WSMO-Lite addresses the

following issues: service ontology, annotation mechanism for WSDL using service ontology, provides

bridge between WSDL, SAWSDL and domain ontologies. Semantic Markup for Web Services (OWL-

S)119 is a first major OWL ontology for describing semantic Web services. It was designed to enable

automatic discovering, invoking, composing, and monitoring Web resources offering services. OWL-

S has three main parts: service prole (service description), service model (how a client can interact

with the service e.g. inputs, outputs) and service grounding (details needed to interact with the

service e.g. communication protocols, message formats). Concepts from OWL-S can be referenced

with e.g. WSDL-S and SAWSDL.

hRESTS120 is a microformat for describing RESTful Web services. It identifies service definition,

operations, inputs, outputs inside HTML page which describes RESTful service. MicroWSMO is an

extension that adds semantic annotations referencing WSMO-Lite ontology. hRESTS forms is

equivalent to WSDL for RESTful services, and MicroWSMO is analogous to SAWSDL. The WSMO-

Lite service semantics ontology is directly applicable in MicroWSMO and hRESTS annotations.

2.5.2.3 Semantic aspects of relevant IoT platforms

FIWARE

FIWARE is a middleware platform and open community which resulted from the EU driven FP7

project Future Internet Core Platform. Various functionalities offered by the platform, called Generic

Enablers (GEs), are grouped in the form of chapters following FIWARE Reference Architecture

model.

Semantics and metadata are used mainly within the Data/Context Management and Internet of

Things Services Enablement chapters. In particular, the IoT Discovery GE121 provides the

Sense2Web linked-data platform semantic repository for registering and managing descriptions in

RDF/OWL, as well as querying the data via SPARQL. Although within FIWARE platform itself no

specific ontologies are explicitly mentioned or used, the FIWARE community is one of the main

contributors of the IoT-Lite ontology, which is a lightweight instantiation of the W3C SSN.

OneM2M

The popular IoT platform oneM2M [46] has an ontology, but it has not been finalized (as of the time

of writing of this document). Latest version (0.9) can be found at [75]. The purpose of this oneM2M

Base Ontology, as explicitly stated by authors, is to provide an ontology that other systems can align

with (i.e. match it with their own ontologies) and, in this way, achieve interoperability. Interestingly,

one of the side-goals of the Fiesta-IoT project [76] is to fix the interoperability problem between the

118 https://www.w3.org/Submission/WSMO-Lite/
119 https://www.w3.org/Submission/OWL-S/
120 http://dl.acm.org/citation.cfm?id=1486962
121 http://catalogue.fiware.org/enablers/iot-discovery

D 3.1: Methods for Interoperability and Integration

98 / 220

oneM2M ontology and the FIWARE platform. However, the developed solution [77] has not been

made public.

OpenIoT

When considering semantic technologies applied to the IoT in general, it is crucial to mention as well

the results of the recently completed EU-funded OpenIoT project. The OpenIoT open source platform

[78] utilizes both cloud computing and semantic methods and focuses on interoperable IoT

deployments.

At the sensor level, the OpenIoT utilizes the XGSN [79], an extension of the GSN middleware [80],

which enables semantic annotation of virtual sensors.

The OpenIoT ontology uses the W3C SSN ontology as the starting point. It has been combined with

several well-known vocabularies and ontologies at the time when it was being developed (e.g.

PROV-O provenance ontology, LinkedGeoData [81] and WGS84 geo-ontologies [82], LSM linked

sensor middleware ontology [83], etc.). It was also augmented with cloud-related concepts.

By combining cloud-computing and sensing capabilities, the OpenIoT platform supported on-

demand cloud-based access to the IoT resources, which was needed in the context of the OpenIoT

project.

UniversAAL

UniversAAL122 is a semantic and distributed software platform designed to ease the development of

integrated Ambient Assisted Living applications. The project took the PERSONA project (FP6) which

was also semantic focused, as its base. “The semantic nature of universAAL makes it ideal for highly

heterogeneous environments, it's power making it suitable for IoT (Internet of Things), wearables,

Big Data, and many more domains” -it can be read on the main page of the project, currently

maintained by some of the partners that were part of it.

In universAAL, each and every component is modeled semantically, in addition to the real world or

the services, which are also represented as ontologies.

Most of the ontologies have been completely built from scratch, as they were discussed and agreed

among the partners, but not based on any existing standard. The exceptions to this are: (I) Personal

information ontology - based on vCard, (II) Devices ontologies - inspired by several standards (ISO,

IEEE) but not following strictly any of them, and (III) ISO 11073 -a standard for medical devices and

data that was mapped into a set of ontologies.

The Java classes depicting the universAAL ontologies can currently be found on GitHub, while the

ontologies are available from the project repository.

In the first case, ontologies are represented as POJOs, the common model representation for Java

applications. In the latter, they are described in OWL and Turtle (Terse RDF Triple Language).

SOFIA2

SOFIA2123 is a middleware that allows the interoperability of multiple systems and devices with key

concepts including: Smart Space -a collaborative virtual environment in which devices and

application interoperate to deliver a complex functionality, KB (Knowledge Processor)-, a Smart

122 http://www.universaal.info/
123 http://sofia2.com/home_en.html

D 3.1: Methods for Interoperability and Integration

99 / 220

Space client, producing and consuming information, and SIB (Semantic Information Broker) -the

Smart Space core, integrating the exchanged semantic information and storing data acting as the

interoperability bus. In SOFIA2 a semantic information is defined as the set of classes and attributes

that will be shared by various applications that interoperate within the Smart Space. Semantic

information reflecting all existing concepts in the domain are defined in JSON according to a JSON

Schema. These JSON schemas are added to the platform where they can be searched and

subscribed to. Even though JSON Schema is not exactly an ontology language, it allows to validate

whether the semantic information sent by the KP satisfies the semantics.

2.5.2.4 Semantic and ontological tools

Let us now look into tools supporting semantic (ontologies) manipulation that can be useful for

achieving semantic interoperability in IoT. Before proceeding, let us stress that we are interested

only in operations performed on ontologies. Terminology for operation on ontologies was introduced

in 1.2.

We assume that either (which is unlikely) IoT platforms that are to interoperate use ontologies

represented in RDF/OWL, or extraction of semantics (e.g. from XML, JSON, etc.) has been

performed, and RDF/OWL ontologies created as a result. Now, ontology aligning has to take place.

The following classification of tools is not done on the basis of the underlying algorithms or methods

- this type of classification has been already done (i.e. [84]). Instead, we propose very pragmatic

criteria that are essential when selecting methods for application in real-life use cases:

 availability of the website and the date of the last update, presence on the web site and recent

date of the last update show vitality of the tool. As a matter of fact, tools that have not been

updated for more than two years are very suspicious from the point of view of being lock-

down to a dead-end software,

 number of related publications and date of last publication: a larger number of publications

indicates that the method is better established (as it has been reviewed more often), while

date of last publication indicates the vitality,

 availability of the source code and documentation crucial for actual use,

 used technology, and I/O data format indicate what levels of expressiveness can be handled

by the method, and what input/output data can be processed; here we also consider the

interfaces (GUI and/or command line) are also considered,

 known academic and commercial utilization. It is very valuable a method that has been

applied outside of a purely academic environment,

 scalability -usability in the IoT requires tools that are scalable and efficient.

Overall, we are interested in tools that are mature (went through a number of development cycles

and resulted in multiple publications), actively maintained and systematically developed, which

preferably have been applied in real-life scenarios, and bring some promise of scalability.

We have investigated all methods and tools mentioned in [84] [85] [86], as well as tools found as a

result of Internet search, a total of 97, taking into account the criteria listed above. As a result, we

have reached the following conclusions:

D 3.1: Methods for Interoperability and Integration

100 / 220

 Numerous tools implementing ontology matching appear in the literature, but most of them

are non-functional. We have identified only nine that are still alive and more or less

correspond to our needs.

 For 60% of the tools, we have not found an active website. In many cases, if the website was

available, it was very basic and not recently updated.

 We have observed a tendency to present mostly OAEI contest results. While the OAEI

initiative is very useful when comparing and evaluating methods, lack of follow-up or other

publications suggests that the method or tool was developed primarily to participate in the

contest.

 Besides few cases, we have not found information about the use of the tool in projects or

commercial applications. Almost all documented use cases came from the OAEI contests.

 Scalability can be deduced only from the results of the OAEI contests. We have not found

other results explicitly benchmarking scalability of the methods.

 For 85% of the tools, we could not find either source code or executables. For the remaining

15%, significant part had no technical documentation, or user manual. Instead, only

tools/matching methods were described in publications.

 In 85% of cases, explicitly stated description of what are the input/output ontologies formats

and languages was missing.

 Almost no tool seriously considered the situation in which the semantic input is not explicitly

represented in one of the core ontology languages (RFD/OWL). However, lack of explicit

formal RDF/OWL ontology is a typical situation for the ICT systems of today (e.g. use cases

of the INTER-IoT project).

Let us now look into more details of tools that met our criteria. It must be noted that, in addition to

the seven listed below, there are two more active tools that could have been listed in this section:

YAM++ [87] and LODE. However, YAM++ was omitted because there is no source code available

(only executables, that cannot be modified, if needed); while LODE is accessible only as a Web

application (it lacks of a command line interface, or an API).

LogMap

LogMap [88] [89] is an open-source tool, developed at the University of Oxford. It can match very

large ontologies, such as FMA and SNOMED. Since 2011, LogMap takes part in the OAEI contests,

constantly achieving very good results. In 2015, it was the only tool taking part in all OAEI tracks.

LogMap was written in Java, and can be used both from the command-line and via a Web-based

Ajax interface. The command-line version is available as a stand-alone distribution, as well as in the

form of the OAEI packages. As input, the tool accepts any of the OWL API formats, and produces

alignments between classes, properties, and instances. As one of very few ontology matching tools,

LogMap has capabilities for repairing inconsistencies on-the-fly. For consistency checking, it utilizes

a method based on propositional Horn-clause satisfiability (Dowling-Gallier algorithm [90]). The

source code (last updated in May 2016) is freely available from the GitHub. Pre-build packages can

be downloaded from the SourceForge.

A relative weakness of LogMap lies in the way of computation of the candidate mappings and

matches. The algorithm finds similarities between concepts, utilizing vocabularies of the input

D 3.1: Methods for Interoperability and Integration

101 / 220

ontologies. As a consequence, the result may not be satisfactory if the ontologies are lexically

despaired, or do not provide enough lexical information.

The Website of LogMap lists eleven publications devoted to various aspects of the tool, with the

most recent from 2016.

COMA

COMA 3.0 [91] (previously called GOMA or COMA++) is a framework that supports several matching

algorithms and is highly customizable. It is an open source project, with the last update of the code

in January 2013, that evolved from the work done at the University of Leipzig. The tool performs

matching and merging on XSD (XML Schema), OWL (OWL-Lite), XDR (XML Data Reduced) and

relational database schemas. Internally, any supported data format is transformed into a generic

model of a directed acyclic graph, which enables processing of schemas and ontologies distributed

among multiple namespaces and files. COMA has full GUI support for all its operations.

COMA implements an iterative algorithm based on a collection of matching algorithms (matchers).

Selection of matchers, as well as decisions, which matching axioms are correct, is made by the user.

Specifically, the user assigns a confidence value to each matching axiom, and can manually create

and delete them. Any number of iterations (computing and refining matching axioms) can be

performed, each building on the result of previous one. The end result can be saved to a file in a

COMA specific format. COMA can use the resulting matching to create, among others, a merged

ontology, the intersection of ontologies, etc. Merging of ontologies and schemas is limited to the,

paid, Business Edition of COMA.

Because of its architecture, COMA is a good candidate for a framework for implementation and

testing of new matchers. Lack of support for RDF or more expressive proles of OWL, are a limiting

factor.

AgreementMaker

AgreementMakerLight [92] (AML, a continuation of AgreementMaker and part of the SOMER project)

is an automated matching system that acts as an extensible framework that implements many

matchers. It is open source and actively updated. Initially, the AgreementMaker was specialized to

work with biomedical ontologies but, currently, it can be applied to any ontology in OWL, OBO or

SKOS format. It has performed very well in 2014 [93] and 2015 [94] editions of the OAEI competition.

It is claimed that the AML can efficiently (i.e. within several minutes) compute alignments on very

large ontologies (e.g. WordNet), although it requires large amounts of RAM (e.g. 8GB for ontologies

with less than 100 000 classes).

Currently, AML implements 6 matchers that range from simple (label similarity) to complex (so-

called, structural matcher), as well as filters (e.g. cardinality filter). Each matcher is configurable, e.g.

the string matcher has a choice of four similarity measures. Background knowledge matcher can

calculate similarity scores by using an external knowledge source, like WordNet.

However, it supports matchings between classes and properties, but not individuals. Alignment can

be reviewed and each axiom is explained on a graph.

Alignment axioms may also be added or removed manually. The results are in the Alignment API

[95] format.

The AML can work both as a GUI and as a command line application. The possibility to extend the

framework with new matchers is very valuable. Unfortunately, the AML does not natively perform

ontology merging.

D 3.1: Methods for Interoperability and Integration

102 / 220

Alignment API

Alignment API124 [95] is a definition of format and schema for storing alignments in RDF, as well as

a set of tools that operate on them. It is designed to be tool-agnostic and to enable storing,

exchanging, and sharing alignments. The API itself, outside of simple reference implementations,

does not define any matchers, nor does it provide matching or merging services for ontologies or

schemas. Instead, it defines a set of standard operations and interfaces for working with alignments.

The Alignment API specification and tools are actively updated and open source.

An Alignment Server (part of the Alignment API) can store, compare and manage alignments. It can

be accessed via pluggable interfaces that currently include: HTTP, SOAP and REST Web services

and FIPA ACL22. The server allows information about the alignment computation process (e.g.

program/matcher name, processing time) to be stored in the alignment file. The format is extensible,

so any kind of additional information can be added and the schema itself can be extended.

The API defines interfaces for matching algorithms, query translation, finding existing alignments,

manipulating alignments, rendering them in a different language, etc. Alignment Server provides a

reference implementation of those operations, but for specific problems, own implementations are

encouraged.

The official webpage lists around a hundred tools that are compatible with the Alignment API. Some

of them are listed in this article.

Silk Framework

Silk Framework [96] is an open source tool for discovery of links between datasets in the context of

the Open Linked Data. It generates links between sources, based on user-provided link

specifications. The supported formats include RDF, CSV and XML, with strong focus on RDF.

Querying of data is done through a user-specified SPARQL endpoint. Link specifications can be

written manually in Silk-LSL (Link Specification Language), or constructed in the Silk Workbench -a

Java Web application. They can be exported and incorporated into original data sets. Results

produced by the Silk can be stored in an Alignment API compatible format.

As opposed to the schema matching systems, Silk discovers and verifies links between data values

and nodes. Support for any SPARQL endpoint means that large amounts of data, spread among

SPARQL datasets, can be queried, with full interlinking between different graphs and namespaces.

Furthermore, Silk allows defining complex data transformations that go well beyond simple links.

This can be useful in translation of data between semantics.

The manual input of link specifications means that links cannot be discovered entirely automatically

as it is necessary to specify what kind of linkage pattern has to look for. In this way, Silk is more of

a tool to interlink data, rather than to discover alignments. Note that Silk does not perform automatic

schema matching or ontology merging.

S-Match

S-Match [97] is an open source semantic matching framework that transforms tree-like structures

such as catalogues, conceptual models, etc., into lightweight ontologies to then determine the

semantic correspondences between them. The project has an up-to-date website with information,

including documentation, and tutorials. There are over 20 papers (last from 2011) devoted to various

124 http://alignapi.gforge.inria.fr/

D 3.1: Methods for Interoperability and Integration

103 / 220

aspects of the project (e.g. algorithms implementation). S-Match is a Java application that can be

run from GUI or from command line. The inputs to the method are text files, in which tree like

structures are defined. The use of a native input format is one disadvantage of the tool. As a

consequence, input ontologies have to be transformed before running the tool.

The source code is available from GitHub (last update in January, 2015). Ready to use pre-build

packages (most recent from 2013), it can be downloaded from SourceForge.

S-Match was utilized in 10 documented projects that are referenced on the website.

OntoBuilder

OntoBuilder project provides an open source set of tools to extract ontologies from Web pages and

map ontologies from similar domains, generating an ever-improved single ontology, with which a

domain can be queried.

OntoBuilder services for schema matching provide several algorithms e.g. similarity flooding,

combined algorithm, precedence algorithm, term and value combined algorithm, graph algorithm,

value algorithm, term algorithm. The Top K Framework graphical tool allows to view and save best

mappings (based on a user-defined threshold). OntoBuilder is written in Java and it can be used as

a graphical tool, as a jar package, or as a command line tool. The source code and documentation

are freely available from the Bitbucket repository.

Even though the last publication is from 2010, and the last update to the website with downloadable

OntoBuilder was done in June 2011, the tool is well documented with 15 publications linked from the

website. We suspect that the project is not actively developed (making it the weakest of the seven).

However, the deliverables produced in the past can provide useful input for our work.

2.5.3 Semantics in INTER-IoT layers

Interoperability on D2DS layer can be considered separately from other INTER-IoT layers but the

proposed solution can be as well incorporated into other layers architecture. In the former case the

aim is to provide semantic translation functionalities between artifacts communicating with

messages. In the latter case, on MW2MW layer, solution from DS2DS layer can be used as a

component that utilizes the communication infrastructure to communicate (receive input messages,

publish output messages) with other MW2MW components. Messages exchanged with IoT platforms

can be translated syntactically in MW2MW and semantically in DS2DS component. On AS2AS layer,

DS2DS solution can be used for semantic translation of data received e.g. from IoT applications and

services. Note that, on AS2AS layer service catalogue with semantic annotations can be used to

enable more efficient service description and discovery.

2.5.4 Summary table

IOT SEMANTICS

Artifact Description Comment

CSIRO Sensor Ontology a generic ontology for
describing functional, physical
and measurement aspects of
sensors

Contributed to the
development of W3C SSN
ontology

SWAMO Ontology semantic description of

D 3.1: Methods for Interoperability and Integration

104 / 220

the fundamental concepts in
the Sensor Web system
including description of
autonomous agents for
system-wide resource sharing,
distributed decision making,
autonomic operations

MMI Device Ontology an extensible ontology of
marine that integrates with
models of sensor descriptions

SEEK Extensible
Observation Ontology

a suite of ontologies for
modeling and representing
scientific observations

SemSOS observation-centric ontology
suite

W3C SSN a suite of general purpose
ontologies for describing
sensors, their accuracy and
capabilities, observations and
methods used for sensing

Inspired by aforementioned
ontologies, the stimuli-
centered ontology design
pattern and OGC SensorML
standard

IoT-Lite a lightweight instantiation of
the SSN

WSSN wireless sensor networks
ontology

Extensions (specializations) of
W3C SSN

SCO sensor cloud ontology

AEMET meteorological ontology

SWROAO atmosphere observation
ontology

SAO stream annotation ontology

SemSorGrid4Env flood prediction ontology

OpenIoT ontology Developed within OpenIoT
project, based on W3C SSN

SAREF Smart Appliances Reference
Ontology

oneM2M ontology of the IoT Platform
oneM2M

not yet fully completed

SERVICE DESCRIPTION SEMANTICS

Artifact Description Comment

WSDL Web Service Description
Language

format for describing services

WSDL-S Web Service Semantics semantic annotations for
WSDL SAWSDL Semantic Annotations for

WSDL and XML Schema
definition language

USDL/Linked-USDL United Service Description
Language - a data model for
describing various types of
services and its linked data
variant

service description ontologies

WSMO, WSMO-Lite Web Service Modeling
Ontology and its lightweight
version

D 3.1: Methods for Interoperability and Integration

105 / 220

OWL-S Semantic Markup for Web
Services

hRESTS Microformat for describing
RESTful services

format for describing RESTful
services

microWSMO semantic annotations
standard for hRESTS

Semantic annotations for
hRESTS

SEMANTICS IN IOT PLATFORMS

Artifact Description Comment

FIWARE the IoT Discovery GE provides
the Sense2Web linked-data
platform semantic repository
for registering and managing
descriptions in RDF/OWL, as
well as querying the data via
SPARQL

OneM2M oneM2M Base Ontology shall
provide an ontology that other
systems can align wit

OpenIoT the OpenIoT ontology uses
the W3C SSN ontology
combined with other
vocabularies / ontologies

UniversAAL All components semantically
annotated; most ontologies
build from scratch

Sofia 2 An ontology as the set of
classes and attributes that will
be shared within the Smart
Space

SEMANTIC TOOLS

Artifact Description Comment

LogMap ontology matching tool

COMA customizable framework for
matching and merging
algorithms

AgreementMaker extensible framework
implementing many matchers

AlignmentAPI alignment persistence format
and tools for its manipulation

SilkFramework tool for discovery of links
between datasets in the
context of the Open Linked
Data

S-Match semantic matching framework
that transforms tree-like
structures into lightweight
ontologies

OntoBuilder tools to extract ontologies
from Web pages and map
ontologies from similar
domains, generating an ever-
improved single ontology

Table 6: Summary of relevant semantic tools and resources.

D 3.1: Methods for Interoperability and Integration

106 / 220

D 3.1: Methods for Interoperability and Integration

107 / 220

3 INTER-LAYER Specifications

INTER-LAYER is the layer-oriented approach of INTER-IoT for providing interoperability solutions at

different layers of technology stack. For INTER-LAYER description and overview refer to section 1.1.

INTER-LAYER is composed from a set of solutions addressing interoperability at each layer of an

IoT platform or system: Device-to-Device (D2D), Network-to-Network (N2N), Middleware-to-

Middleware (MW2MW), Application Services-to-Application Services (AS2AS) and Data &

Semantics-to-Data & Semantics (DS2DS).

In the following subsections, the architecture solution dedicated to each layer, components and

corresponding use cases are described. Furthermore, if it is considered relevant, the technologies

applied on each layer are as well described and explained.

3.1 D2D proposed solution

The following factors illustrate the need to implement an interoperability solution at the device layer:

 Applications and platforms are tightly coupled, preventing them from interacting with other

applications/platforms.

 Sensors and actuators communicate only within one system.

 Certain platforms do not implement some important services (i.e. discovery), or do so in an

incompatible way.

 Roaming elements can be lost or inaccessible.

 IoT Device software is never platform independent, since companies produce

proprietary/closed solutions for economical reasons. This makes interoperability hard or

impossible.

Interoperability at the device level implies that heterogeneous IoT devices are able to interact with

each other. IoT devices can be accessed/controlled through a unifying interface and integrated into

any IoT platform.

This interoperability solution at device level is achieved through a Device to Device Gateway (D2D

Gateway, or sometimes simplified as Gateway or GW in this document). There are two approaches

for the implementation of this Gateway: physical and virtual.

The physical implementation of the Gateway is oriented towards hardware with medium

computational capacities and storage. The virtual implementation is meant for hardware with low

computational capacities and storage. In this implementation only the south part of the Gateway

(network and protocol capabilities) is processed in hardware while all the other Gateway

functionalities are shifted to the virtual Gateway with more computational power.

For this reason, the Gateway will be developed in Java using the OSGi framework. All components

of the Gateway will be packaged as OSGi bundles and the OSGi framework will be utilized to control

the bundles that will be needed depending on the chosen implementation mode.

D 3.1: Methods for Interoperability and Integration

108 / 220

3.1.1 Architecture

The gateway architecture is shown in Figure 34. To understand the content first we need to define

the concept of a device. For our purposes a device is a platform or hardware that is able to run a

gateway as stated in Figure 34. It has sufficient processing power, storage facilities and two or more

connections which are omni-directional.

The gateway at the device level is designed in a way that modularity in protocols and access

networks is always considered. Any access network (AN) can be inserted into the structure as long

as it is interfacing accordingly with the Controller. The same is true for the protocols and middleware

modules.

The device is build up in a way that once the system structure is functional a split-up can be realized.

Part of the device gateway can be placed in the Cloud to allow functionalities that a physical gateway

is not able to perform in an efficient way. The device Dispatcher will take care of connecting or

simulating the actual platform. When connection is lost, the virtual part remains functional and will

answer to requests of API and MW.

At the lowest level there are the sensors and actuators. These are connected to the AN modules.

These modules take care of connectivity with the (wireless) sensors and actuators. The AN

Controller will not interfere in this connectivity.

The Device Manager takes care of coupling of the AN Module to active or needed protocol. The

Controllers only handle traffic routing to and from the modules.

Once a sensor/actuator is registered the Device Manager will store this information in the Registry.

When the device receives new measurement data it will be passed to the Dispatcher that will store

it in the measurement storage. Any data update for the MW (or higher levels) will come from the

Measurement Storage.

The Dispatcher will pass the information to the MW Controller that sets up the connection with the

MW Module through which the data is sent to the MW layer (Figure 48).

D 3.1: Methods for Interoperability and Integration

109 / 220

Figure 34: Gateway architecture overview (in yellow: components that can be implemented
but at least one is needed for a functional system, blocks with red border are optional and

can be implemented when needed).

D 3.1: Methods for Interoperability and Integration

110 / 220

Figure 35: Gateway architecture split into two parts, the physical part for the embedded
device and the part that can be executed in a virtual container.

D 3.1: Methods for Interoperability and Integration

111 / 220

3.1.2 Components

Component Registry

Description This component is responsible of registering all the devices with its multiple

sensors and actuators in the gateway.

Functionalities Reads from a file (later could be a UI) the configuration of a sensor/actuator

(a device could have more than one sensor/actuator or just one) in JSON or

XML format that includes the name of the device, the access network IF

supported, the communication protocol supported, and an array with the

name of the value measured, the value, and the type of data, sending later

on this information to the device manager and to create a Unique ID for each

sensor/actuator.

Relation with

other component

The Registry module will add an entry in the Device Manager with the

information about each sensor and actuator.

Use Cases

Involved

[60]

Requirements

Involved

[245], [242], [138], [93], [57], [45], [39], [60], [22], [15]

Component Device Manager

Description The Device Manager is a component that will be accessible to every other

component that needs information of any sensor/actuator.

Functionalities It will store in memory (and persisted in a local database) a map containing

an entry for each sensor/actuator. This entry will be identified by an unique

ID generated automatically and will contain information about the type of

sensor/actuator, the protocol used for communication and the physical

address of the device of the access network.

Relation with

other component

The protocol and access network modules will call the Device Manager in

order to resolve the metadata for each sensor/actuator.

Use Cases

Involved

[60], [62], [64], [65]

Requirements

Involved

[138], [93], [45], [39], [23], [22], [21], [15]

D 3.1: Methods for Interoperability and Integration

112 / 220

Component AN Controller

Description Allows access to the devices. Interfaces between the devices and the

protocol modules.

Functionalities Operations supported:

 Device - AN Module binding, AN Module mounting

 Device power off/on

 Data reading from device

 Data writing to device

This interface is to be used by Protocol Controller and to be implemented

by AN Modules.

Relation with

other component

This interface is to be used by Protocol Controller and to be implemented

by AN Modules.

The Device Manager configures the access network module according to

the registry.

Use Cases

Involved

[60], [62], [64]

Requirements

Involved

[138], [93], [45], [39], [23], [22], [21], [15]

Component AN Modules

Description The Access Network (AN) modules provide the INTER-IoT GW access to

the following communication channels:

 802.15.4, namely the ZigBee specification (other specs within the

802.15.4 standard may be included in the future)

 WiFi

 Serial communication via USB

 Other proprietary RF links accessible via SDR based solutions

compatible with the GW device

Functionalities Each of the AN Modules will perform the following tasks using the respective

Access Network:

 Establish/terminate a communication channel to the sensor/actuator

D 3.1: Methods for Interoperability and Integration

113 / 220

 Send data to the sensor/actuator

 Receive data produced by the sensor/actuator and forward it to the

AN controller for due processing

 Trigger connection status notifications

Relation with

other component

The AN Controller will use the AN Module interface to perform the following

tasks:

 Establish/terminate a connection with the sensor/actuator

 Request data from the sensor/actuator

 Handle the data pushed by the sensor/actuator to the GW

 Send commands to sensors/actuators

 Test the sensor/actuator connectivity upon registration

 Enforcement of the sensor/actuator reconnection policy

Use Cases

Involved

[60], [62], [63], [64]

Requirements

Involved

[138], [93], [45], [39], [23], [22], [21], [15]

Component Protocol Controller

Description This component is located within the real part of the gateway architecture

and it contains all the communication protocols supported by the Gateway

also implementing the common interfaces between those protocols and the

other components such as the PHY GW Configuration, the AN Controller,

the Device Manager and the Dispatcher.

Functionalities This component provides support to the messages exchanged during the

registration phase and the triggering action of each device. Also during the

communication between the MW Platform and the devices (through the

Dispatcher) when they act as actuators and during the internal

communications with its specific Protocol Modules (CoAP, MQTT, LWM2M,

etc…).

Relation with

other component

During the registration of each device, the Protocol Controller:

 Receives from the Device Manager the request about the protocol

supported/used by a specific device

 Sends the previous request to the specific Protocol Module (CoAP)

D 3.1: Methods for Interoperability and Integration

114 / 220

 Sends back an acknowledgement to the Device Manager once it has

received the requested information from the Protocol Controller

During the triggering action of each device, the Protocol Controller:

 Receives protocol information for each specific device from the AN

Controller

 Sends the information to the relevant protocol Module with raw data

(byte [])

During the platform sends information to a device (actuator), the Protocol

Controller:

 Receives an actuator common message from the Dispatcher

 Sends a request info about the, i) Protocol ii) the Access Network iii)

the physical address to the Device Manager and receives the

answer

 Sends the Actuator common message format to the Protocol Module

and gets a parsed message

 Sends the parsed message with the actuator instructions to the AN

Controller

Use Cases

Involved

[60], [62], [63], [64]

Requirements

Involved

[93], [57], [45], [39], [256], [15], [23], [21], [283], [153], [72], [56], [26], [25]

Component Protocol Module

Description This component is located within the Protocol Controller and it implements

the specific features of any supported protocol (CoAP, MQTT, LWM2M, etc.)

throughout standard interfaces towards the Protocol Controller and the

Dispatcher.

Functionalities This component provides specific support to messages exchanged during

the registration phase and the triggering action of each device. Also during

the communication with the MW Platform through the Dispatcher in both

directions (from the devices to the MW Platform to collect data and from the

MW Platform to the devices when they act as actuators) and during the

communication between the Dispatcher and the Rules Engine.

Relation with

other component

During the registration of each device, the Protocol Module:

 Notifies its existence to the Protocol Controller

D 3.1: Methods for Interoperability and Integration

115 / 220

During the triggering action of each device, the Protocol Module:

 Sends the structured Data (UID, Info, etc…) to the Dispatcher

During the information exchange between the Dispatcher and the MW

Platform, the Protocol Module:

 Sends the structured Data (UID, Info, etc…) to the Dispatcher

During the information exchange between the Dispatcher and the Rules

Engine, the Protocol Module:

 Sends the structured Data (UID, Info, etc…) to the Dispatcher

During the platform sends information to a device (actuator), the Protocol

Module:

 Receives an actuator common message from the Protocol Controller

 Sends back a protocol parsed message to the Protocol Controller

Use Cases

Involved

[62], [63], [64]

Requirements

Involved

[93], [45], [39], [23], [256], [21], [15], [283], [153], [72], [56], [26], [25]

Component Gateway Configuration

Description This component will be duplicated in the virtual and physical part. It will be

a simple module that will read the gateway configuration from a

configuration file.

Functionalities It will read a properties file with a key/value format and store it in memory.

Every component can access the gateway configuration component to get

the configuration value for a given key.

Relation with

other component

Every other component can use this component to access the gateway

configuration.

Use Cases

Involved

[61], [64], [65], [62], [47]

Requirements

Involved

[283], [153], [93], [72], [45], [39], [22], [21], [15]

D 3.1: Methods for Interoperability and Integration

116 / 220

Component Dispatcher

Description The Dispatcher handles all traffic between the Protocols layer (physical

device) and the Middleware Controller (virtual device).

The device (Protocol Controller) will sent a trigger to the Dispatcher

whenever a new data sample is available, the Dispatcher stores the new

measurement data from the device into the measurement storage.

Any update request or data request from upper layers (MW or API) will be

handled by the Dispatcher. It will get the latest data sample from the

Measurement Storage and sends it to the middleware.

Functionalities Routing of data and messages between MW Controller and Protocol

Controller (physical and virtual)

Relation with

other component

Measurement storage, GW Configuration, API, MW Controller, Protocol

Controller, Rules Engine

Use Cases

Involved

[65], [61], [62], [64], [49], [48], [47], [27], [10], [9], [6], [46], [20], [15], [36],

[19]

Requirements

Involved

[283], [153], [93], [72], [45], [39], [22], [21], [15]

Component Measurement Storage

Description The Measurement Storage (MS) handles specific requests coming from the

Dispatcher, which forwards a request form a platform. It returns the data to

the Dispatcher that forwards them towards the platform.

Functionalities As a cache in the gateway it stores the information about the devices

connected and the last available value, in case of polling, of these devices.

If a platform requests the value, and the one contained in MS is practically

new, or it is the last one obtained in case of disconnection the value is

returned in a faster way. This helps to improve the performance and

speediness of the data gathering.

Additionally, if the data from a device stays the same during a long period of

time there is no need to update MS every time the device sends a new value,

the last value is maintained, saving resources.

Relation with

other component

Dispatcher

External API

D 3.1: Methods for Interoperability and Integration

117 / 220

Use Cases

Involved

[62], [64]

Requirements

Involved

[283], [153], [138], [93], [72], [45], [39], [23], [22], [21], [15]

Component MW Controller

Description The MW Controller is the module that acts as a mediator between the MW

Module and the rest of the gateway.

Functionalities It will wrap the active MW Module in order to have a common interface for

the gateway. It will check through thee Gateway Configuration that only

one of the MW Modules is active.

It will create the connection to the MW platform and will handle the

messages interchanged between the module and the platform, as well as

the messages sent to the Dispatcher.

Relation with other

component

It will be the communication interface in the north of the gateway to the

middleware platform. This component will use the Dispatcher in order to

deliver the messages sent by the MW Module to the rest of the gateway.

Use Cases

Involved

[64], [65], [62], [61]

Requirements

Involved

[283], [153], [138], [93], [72], [45], [39], [56], [26], [25], [23], [22], [21], [15]

Component MW Module

Description The MW Module will be specific to a IoT Middleware platform and will

handle the communication of the gateway with the platform.

Functionalities This component will be activated by the Middleware Controller and will

implement the function of registering the sensors and actuators to the

middleware platform as well as processing the requests and responses

exchanged with the platform.

Relation with other

component

This component will be placed inside the Middleware Controller, and will

interact with the Middleware Controller to access the rest of the gateway.

D 3.1: Methods for Interoperability and Integration

118 / 220

Use Cases

Involved

[64], [65], [62], [61]

Requirements

Involved

[283], [153], [138], [93], [72], [45], [39], [56], [26], [25], [23], [22], [21], [15]

Component Commons

Description Even if it does not appear in the architecture, is a basic component that

includes several methods and tools to be used by the rest

bundles/components.

Functionalities It will be a collection of classes that implements the common message

formats used by the rest of the components as well as utility classes.

Relation with other

component

Every other component can use this component/library to access the

common classes and interfaces implemented.

Use Cases

Involved

[64], [65], [62], [61], [60]

Requirements

Involved

[283], [153], [138], [93], [72], [45], [39], [56], [26], [25], [23], [22], [21], [15]

3.1.3 Use Cases

Use case Device Registry

Use Case ID #60

Description A device is registered within the gateway by a descriptive method with basic

parameters needed for its addressability and understanding of data.

Objectives To include the information about a device, sensor or actuator, in order to

receive or send information from the device and to the gateway or to another

system connected to the gateway.

Components

Involved

The Registry Module.

The Device Manager.

The AN specific Module.

The AN controller.

The Protocol specific Module.

D 3.1: Methods for Interoperability and Integration

119 / 220

The Protocol Controller.

The GW Configuration Module.

Requirements

Involved

[245], [242], [138], [93], [57], [45], [39], [60], [22], [15]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-834

GW01 Device Registry

View online: http://tinyurl.com/gw01v01

Figure 36: Device Registry sequence diagram.

Step 1: A user wants to register a device to be used. Then, he writes in the configuration file the

parameters needed to register and connect the device.

Step 2: The registry module reads from this file and includes this information in the system

Step 3: The information about access network is sent to the AN Controller to be checked.

http://jira.inter-iot.eu/browse/INTERIOT-834
http://tinyurl.com/gw01v01

D 3.1: Methods for Interoperability and Integration

120 / 220

Step 4: The AN Module starts the bundle of the respective module to test the connection.

Step 5: A confirmation (ACK) or non-confirmation (NACK) is returned to the Device Manager.

Step 6: At the same time, the information about the protocol is also checked, connecting with the

Protocol Controller.

Step 7: The Controller starts the adequate Protocol Module to check its availability.

Step 8: Information about the protocol is returned to the Controller, in case of more than one protocol

supported, this step takes place several times.

Step 9: Finally, a confirmation by the Controller with all the protocols supported by the device is sent

to the Device Manager.

Use case A Platform is configured on the Gateway

Use Case ID #61

Description The configuration of a platform that will be connected to our gateway and will

receive/send all the information from/to the devices.

Initially this configuration could be done by a configuration file. Later a simple

GUI can be created for inserting the information about the platform in order

to create the connection.

Objectives To configure correctly the platform so this one can exchange information with

the gateway and so with the devices.

Components

Involved

The MW Controller Module.

The MW specific platform Module.

The GW Configuration Module.

Requirements

Involved

[39], [20], [15]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-835

GW02 Platform Registry

View online: http://tinyurl.com/gw02v01

http://jira.inter-iot.eu/browse/INTERIOT-835
http://tinyurl.com/gw02v01

D 3.1: Methods for Interoperability and Integration

121 / 220

Figure 37: Platform Registry sequence diagram.

Step 1: A user starts the gateway framework.

Step 2: The GW Configuration module is activated and reads from a file all the gateway configuration

entries.

Step 3: The MW Controller is activated and gets from the Configuration Module all the information

related with the configuration of the MW platform.

Step 4: The MW Controller performs a test of communication with the MW platform and throws an

Exception if there is a problem.

Use case Device (sensor) triggers information

Use Case ID #62

Description A device, typically a sensor, triggers an event sending determined information

to the gateway in order to be stored on the IoT Middleware Platform or in order

to generate a response for an actuator (being handled by the rules engine).

Objectives To send data from the device side through the gateway to reach its destination

(local platform, cloud or other device) in an efficient way.

Components

Involved

The AN Module.

The AN Controller.

D 3.1: Methods for Interoperability and Integration

122 / 220

The Device Manager.

The Protocol Specific Module.

The Protocol Controller.

The Dispatcher.

The MW Specific Module.

The MW Controller.

Requirements

Involved

[138], [93], [45], [39], [23], [22], [21], [15]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-838

GW03 Device Trigger

View online: http://tinyurl.com/gw03v01

Figure 38: Device Trigger sequence diagram.

Step 1: Device sends data to the AN Module.

Step 2: AN Controller sends request to Device Manager with AN and PHY address.

Step 3: Device Manager looks up UID and protocol information based on AN and PHY address.

Step 4: Device Manager sends response to AN Controller with UID and protocol information.

Step 5: AN Controller sends data, protocol information and UID to Protocol Controller.

Step 6: Protocol Controller sends raw data with UID to the correct Protocol Module.

Step 7: Structured data is sent to the Dispatcher.

http://jira.inter-iot.eu/browse/INTERIOT-838
http://tinyurl.com/gw03v01

D 3.1: Methods for Interoperability and Integration

123 / 220

GW04 Dispatcher to MW platform

View online: http://tinyurl.com/gw04v01

Figure 39: Dispatcher to MW platform sequence diagram.

Step 1: The Protocol Module sends the structured data, following the message common format, to

the Dispatcher with metadata information about internal UID etc.

Step 2: The Dispatcher, previously configured, takes this messages and sends it to the Middleware

Controller.

Step 3: The Middleware Controller asks to the Gateway Configuration about the module that is

running connected to the platform.

Step 4: Gateway Configuration response about the platform is sent.

Step 5: The Controller then connects with the relevant Module, or even start it if it was not running

already (for energy saving reasons), and sends the information.

Step 6: The adequate Module takes the message and encapsulate in the format that the platform

supports.

Step 7: The information is finally send to the specific component of the platform.

GW05 Dispatcher to Rules Engine

View online: http://tinyurl.com/gw05v01

http://tinyurl.com/gw04v01
http://tinyurl.com/gw05v01

D 3.1: Methods for Interoperability and Integration

124 / 220

Figure 40: Dispatcher to Rules Engine sequence diagram.

Step1: The Protocol Module sends a structured data to the Dispatcher Module.

Step2: The Dispatcher is already configured, and sends an information request to the GW

Configuration.

Step3: The GW Configuration Module sends configuration information back to the Dispatcher.

Step4: The Dispatcher sends the configuration data to Rules Engine Module.

Step5: The Rules Engine sets the configuration by statically or dynamically configuring the specific

rules.

Step6: The Rules Engine sends the trigger result to the Dispatcher.

Use case Platform requests information from a device (sensor)

Use Case ID #63

Description The Gateway receives the request from the Platform and re-directs it to the

Device, to obtain specific information.

If no change in the value has been performed in a short period, the response

will be provided directly from the Measurement Storage.

Objectives To obtain a data requested by the Platform from a concrete Device.

D 3.1: Methods for Interoperability and Integration

125 / 220

Components

Involved

The platform module connected to the IoT platform.

The Platform Controller.

The Dispatcher.

The Measurement Storage.

The Protocol Module and Controller.

The AN Controller and Module.

Requirements

Involved

[283], [153], [93], [72], [45], [39], [22], [21], [15]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-839

GW06 Platform request

View online: http://tinyurl.com/gw06v01

Figure 41: Platform request sequence diagram.

Step 1: The platform sends a query requesting determined information from a device.

Step 2: The request is handled by the Middleware Controller.

http://jira.inter-iot.eu/browse/INTERIOT-839
http://tinyurl.com/gw06v01

D 3.1: Methods for Interoperability and Integration

126 / 220

Step 3: The MW Controller consults in the Gateway Configuration Module about the bundle in charge

of manage and parse the request message.

Step 4: The Gateway Configuration Module informs the Controller about with bundle is adequate.

Step 5: The request message arrives to the MW Module and is parsed to a common format message

to be sent latter to the Dispatcher.

Step 6: The Dispatcher takes the message and reads the information from the Message Storage, if

this one has been recently included.

Step 7: The information requested if it is the last value is returned to the Dispatcher.

Step 8: The Dispatcher forwards this response message to the pertinent module to be parsed.

Step 9: the MW Module parses the response and sends it to the platform.

Use case Platform sends information to device (actuator)

Use Case ID #64

Description The platform sends information, normally a change of state, to the device,

typically an actuator.

Objectives To change the state of an actuator connected to the gateway.

Components

Involved

The MW Module connected to the platform.

The MW Controller.

The Dispatcher.

The Protocol Controller.

The relevant Protocol Module.

The Device Manager.

The relevant AN Module.

The AN Controller.

Requirements

Involved

[283], [56], [45], [39], [26], [25], [22], [21], [15]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-840

GW07 Platform response to Actuator

View online: http://tinyurl.com/gw07v02

http://jira.inter-iot.eu/browse/INTERIOT-840
http://tinyurl.com/gw07v02

D 3.1: Methods for Interoperability and Integration

127 / 220

Figure 42: Platform response to Actuator sequence diagram.

In this case, the platform sends data to a device (actuator):

Step 1: The information to be sent to the actuator arrives from the platform to the Middleware

Controller.

Step 2: The MW Controller requests information from the Gateway Configuration Module to know

which MW Module is used.

Step 3: The answer is sent back to the MW Controller.

Step 4: The MW Controller sends the data to the correct MW Module in order to format it correctly.

Step 5: The actuator message correctly formatted is sent back to the MW Controller.

Step 6: The MW Controller transfers this data to the Dispatcher.

Step 7: The Dispatcher sends the message to the Protocol Controller.

Step 8: The Protocol Controller sends a request to the Device Manager to know the protocol, AN

Module, and physical address of the actuator.

Step 9: The answer is sent back to the Protocol Controller.

Step 10: The Protocol Controller sends the actuator message in common format to the

corresponding Protocol Module.

Step 11: The Protocol Module answers with the parsed actuator message ready to be sent.

Step 12: The Protocol Controller can now send the parsed message to the AN Controller.

Step 13: The AN Controller sends the message to the corresponding AN Module, which transmits

the message to the device.

D 3.1: Methods for Interoperability and Integration

128 / 220

Use case Support to Non-Standard access networks

Use Case ID #40

Description There is a class of sensors/actuators that use non-standard RF communication

links. The reasons why this class of devices use non-standard RF links include

the following:

 to improve the link range;

 to allow interoperability with legacy systems;

 to enhance the resilience to jamming and other kinds or interference;

 to enhance link security.

The INTER-IoT platform provides access to this class of devices, thus allowing

the INTER-IoT user community to take advantage of the services provided by

these sensors/actuators. To accomplish this the INTER-IoT GW comprises a

bridge facility to perform the translation of the proprietary link into a standard

IP based protocol usable by the INTER-IoT GW (e.g. Ethernet, WiFi).

Objectives Allow sensors/actuators that use proprietary RF links to be accessible to the

INTER-IoT community.

Components

Involved

The Non-Standard AN Module that implements the bridging functionality.

The AN Controller itself that invokes the Non-Standard AN Module

functionality.

Requirements

Involved

[17], [18], [170], [204]

Use case link INTERIOT-779

GW08 Non Standard AN initialisation

View online: http://tinyurl.com/gw08v01

http://jira.inter-iot.eu/browse/INTERIOT-779
http://tinyurl.com/gw08v01

D 3.1: Methods for Interoperability and Integration

129 / 220

Figure 43: Non-Standard AN initialization sequence diagram.

This use case focus solely in the need to initialize the AN Module that is capable of connecting to

the non-standard Access Networks through the specific external hardware element that handles the

communication (called here “Bridge”). Once the initialization procedure is done, sensor/actuator

devices that rely on the AN should behave as other sensor/actuator devices that use standard AN

(e.g. Wifi, BLE, etc…). The following is a detailed description of the initialization procedure depicted

in the diagram above:

Step 1: The Bridge is physically connected to the INTER-IoT platform and is running;

Step 2: During its own initialization procedure the AN Controller requests the Non-Standard AN

Module to initialize itself;

Step 3: The Non-Standard AN Module will then try to connect to the Non-Standard ANs Bridge. If

successful, the AN Module reports to the AN Controller that the GW is now able to connect to devices

that use any (supported) non-standard Access Network; otherwise, the AN Module reports an

initialization failure.

The Bridge element may be implemented using an SDR based solution. This approach offers

obvious advantages because it allows the configuration of multiple proprietary links via a plug-in

mechanism, thus removing the need to use one specific HW based bridge solutions for each non-

standard link supported by the INTER-IoT framework.

D 3.1: Methods for Interoperability and Integration

130 / 220

3.2 N2N proposed solution

The great challenge which interoperability in the network layer must face is caused by the following

problems:

 It is hard to manage big amount of traffic flows generated by smart devices.

 Poor scalability of systems, with difficulties to integrate new nodes.

 Difficulties in interconnecting gateways and platforms via networks used by different systems.

 Several devices with totally different radio network access have to be accessed from a single

gateway as an AP.

Facing these problems and including new capabilities into the system INTER-IoT has created a

solution based on two main paradigms; SDN and SDR.

Within these main applied paradigms some sub-solutions have been implemented to achieve the

interoperability:

 Decoupling of data plane from logical plane with communication between both tiers via

OpenFlow protocol.

 Virtualizing network services at the top of the architecture as routing, host tracking, topology

discovery, and statistics.

 Implementation of techniques for traffic engineering to handle different flows of data

generated by sensors depending on their priority.

 Implementation of a Software Defined Radio access network to dynamically choose the

adequate connection channel for specific devices.

In the following sections, we will describe both solutions in terms of architecture, technologies, and

components, and how them are related with the requirements extracted from the use cases and the

stakeholders.

Additionally, other issues have been contemplated, such as, secure and seamless mobility of

devices across networks (roaming) and the fast discharge of data from more than one connection

(offloading). These two characteristics are addressed in some parts of the gateway and in the

functions virtualized within the network.

We provide our interoperability solution at network layer and expose an open API. It will allow future

developers and partners to utilize it and make their systems interoperate.

3.2.1 Architecture

Software Defined Network

As we have already defined in section 2.2.2.1, the SDN paradigm decouples the data plane

(switches) and the control plane (SDN controller)in order to better manage the network from a central

point of view, having a wide overview of this one. In our approach using the SDN paradigm and the

well-known protocol OpenFlow, we will virtualize network services at the top of this architecture as

routing and statistics, and implement techniques for traffic engineering to handle different flows of

data generated by sensors depending on its priority.

D 3.1: Methods for Interoperability and Integration

131 / 220

The services offered at this layer will include routing algorithms based on typical routing protocols

(OSPF, RIP, etc.) and variations for IoT traffic, storage of the network topology and state of the

elements that compose the network, topology discovery and management, host tracking, packets

statistics to know information about the type of traffic and security.

On the Southbound of the controller we will have a module to connect with the different virtual

switches that will compose our system. Later on, we will implement (at the Northbound) the

aforementioned virtual services within our controller using the APIs that this one provides.

The next figure shows the architectural overview of the whole network, consisting of two main parts.

Figure 44: N2N proposed solution architecture for SDN.

The first part is the data plane, composed of virtual switches using the OpenVSwitch technology.

They are connected to each other in a determined topology and all of them securely connected to

the controller through TCP/SSL using OpenFlow. The other part is the logical plane where the

controller is located, provided with an OpenFlow connector to parse all packets coming from the

network to the different services running on it.

The information about the nodes of the network, the number of switches, its configuration and state,

etc will be managed and stored within the Switch Manager. Additionally, the Topology Discovery will

obtain this information to create a graph representing the state of the network with more information

about the state of the links.

From the services perspective, a module to gather statistics about packet is running as well, taking

the information from the other modules. The IoT Routing and Host Tracking Modules are in charge

of creating and managing the routes that each packet has to take to reach its destination, and

information about the packet origin.

D 3.1: Methods for Interoperability and Integration

132 / 220

Software Defined Radio

This INTER-IoT SDR component will be developed to provide an additional entry point in the

Access Network Controller Modules section of the physical plane of the INTER-IoT gateway. The

flexibility of this technology means that the applications to utilizing this feature are still to be

defined. It is envisioned that as the technology develops and becomes less expensive, specific use

cases will become more apparent.

The goal of this development will be to demonstrate a point-to-point communication link in the form

of a TCP/IP wireless transparent bridge, to supply data via the SDR to be utilized by other systems

connected to INTER-IoT. This will involve transferring data over IP from a platform to an SDR

external to the INTER-IoT system. This SDR will then communicate the information wirelessly to the

SDR included in the access network controller section of the INTER-IoT gateway. The data will be

output over IP to the Protocol Controller be made available to other platforms served by INTER-IoT.

SDR Transmitter

Figure 45: SDR Transmitter Dataflow.

Transmitter Dataflow notes:

1. Virtual Network Port (TUN/TAP) – interface to host OS.

2. Packetize data.

3. Generate CRC for error detection.

4. Generate header.

5. Map header bits to required header I/Q constellation symbols.

6. Map payload bits to required payload I/Q constellation symbols – this may or may not be the

same symbol set as the header.

7. OFDM carrier allocation – allocate data to sub-carriers, insert pilot carriers, append pilot

symbols and sync word(s).

8. Inverse Fast Fourier Transform (IFFT) to translate from frequency domain to time domain

9. Append the cyclic prefix – typically an additional FFT_length/4 time domain samples.

D 3.1: Methods for Interoperability and Integration

133 / 220

10. Agile tuneable software radio takes in digital complex baseband samples and outputs up-

converted RF waveform.

SDR Receiver

Figure 46: SDR Receiver Dataflow.

Receiver Dataflow Notes:

1. Agile tuneable software radio receiver takes in band-limited RF waveform and outputs down-

converted complex baseband digital samples.

2. OFDM two-stage frequency synchronization algorithm – e.g. Schmidl and Cox.

3. Fine frequency correction.

4. Create two streams of data. Firstly, the header is extracted and channel estimation made

before a buffered payload samples can be forwarded to the FFT for processing.

5. The header’s Fast Fourier Transform (FFT) to convert from time domain to frequency domain.

6. The payload’s Fast Fourier Transform (FFT) to convert from time domain to frequency

domain.

7. Obtain channel estimates based on received pilot symbols / carriers.

8. Single-tap Frequency Domain Equalization (FDE) and course frequency correction.

9. Symbol de-mapping – hard decision decoding. Output is stream of bits.

10. Check CRC and accept / discard packets

11. Virtual Network Port (TUN/TAP) – interface to host OS.

D 3.1: Methods for Interoperability and Integration

134 / 220

3.2.2 Technologies

SDN Protocol: OpenFlow

As we already know is the protocol that aims to separate the intelligence required to route a packet

from the act of moving it forward through the correct interface of the router, switch or network

component and enables remote programming of the forwarding plane. This is achieved by inserting

flow tables, designed by the protocol, inside the switches managed by the controller.

This protocol has several stable releases; from 0.8 to 1.3, that is the last one, but always the most

used have been versions 1.1 and 1.3. In this case, the controller we have chosen to communicate

through this protocol will support both versions in order to connect with legacy switches that maybe

have implemented one of them.

The flow entries that compose the flow table inserted in the virtual switches and managed by this

protocol only need three fields that are: Match Fields, Counters and Instructions.

Where the Match Field is a specific field from the packet carried by the network, to match against

them. This field used to be; ingress port, packet header or even optionally metadata previously

specified.

The Counters is used to update the number of packet matched against the Match Field.

And the Instructions, is the action to take when a match is found, to change the pipeline processing.

Additionally, the OpenFlow protocol enables to represent additional methods of forwarding using

group entries to classify and manage groups of flows. These entries are: Group Identifier, Group

Type, Counters and Action Buckets.

With the help of this protocol and the programmability of the switches, different policies have been

applied in order to manage the flows coming from the devices and through the gateway. Additionally,

with the information provided by the headers of the protocol, informative statistics have been

obtained in order to extract an overview of the state of the network. All of this is managed by different

modules within the controller as we could see in the following sections.

SDN Virtual Switches: OpenVSwitch

OpenVSwitch is the virtual switch selected to deploy and managed our virtual network. Its

programmability and virtualization are key point for this choice. Also supports important features

such as: IP-tunneling, VLAN creation, link monitoring, remote configuration, fine-grained QoS

control, VM interface traffic policing, Multi-table forwarding pipeline with flow-caching engine, among

others.

This switch supports both aforementioned versions of the OpenFlow protocol so can be programed

to make specific actions with flow packets, following the OpenFlow pipeline as shown in Figure 47.

D 3.1: Methods for Interoperability and Integration

135 / 220

Figure 47: Packet Flow through the processing pipeline inside the virtual switch. Source:
https://goo.gl/SoIPHl

This way, after the processing and take of decision carried out in the specific modules of the

Controller, the adequate entry of the table is inserted in the switch so that when the packet of a flow

arrives, the switch is already prepared to carry out the action.

SDN Controller: OpenDayLight

The OpenDaylight Controller is pure software and as a JVM it can be run on any OS and Metal as

long as it supports Java.

On the Southbound it can support multiple protocols (as plugins), e.g. OpenFlow 1.0, OpenFlow 1.3,

BGP-LS, etc. Of course, the one we use is OpenFLow but some other switches can be connected

even if they use other protocols. These modules are linked dynamically into a Service Abstraction

Layer (SAL). The SAL exposes services to which the modules of the northbound par are written on.

The SAL figures out how to fulfill the requested service irrespective of the underlying protocol used

between the Controller and the network devices. This provides investment protection to the

Applications as the OpenFlow protocol can evolve over time. For the Controller to control devices in

its domain it needs to know about the devices, their capabilities, reachability, etc. This information is

stored and managed by the Topology Manager. The other components like ARP handler, Host

Tracker, Device Manager and Switch Manager help in generating the topology database for the

Topology Manager. All of these modules have been adapted to work with information from an IoT

environment and with the specific IoT devices and platform communicating by the network and,

additionally new features have been included to improve the performance (QoS) and offer new

application at the top of the network.

The Controller exposes open Northbound APIs which are used by these applications. It supports the

OSGi framework and bidirectional REST for the Northbound API. OSGi framework is used for

applications that will run in the same address space as the Controller while the REST (Web based)

API is used for apps that do not run in the same address space (or even the same machine) as the

Controller. The business logic and algorithms reside in the apps. These apps use the Controller to

gather network intelligence, runs its algorithm to do analytics and then use the Controller to

orchestrate the new rules throughout the network.

The Controller has a built in GUI. The GUI is implemented as an application using the same

Northbound API as would be available for any other user application.

D 3.1: Methods for Interoperability and Integration

136 / 220

Software Defined Radio

At the moment of writing of the deliverable, for the N2N solution, we have decided to use the following

technology.

The Avnet PicoZed SDR is being utilized. It has a processor component, a Xilinx Z7035 Zynq®-7000

All Programmable SoC which combines a Kintex-7 FPGA with dual-core ARM Cortex-A9 processor.

The software tunable analog radio element is provided by the Analog Devices AD9361 integrated

RF Agile Transceiver. This is provided in a handheld form-factor and provides frequency-agile

wideband receive and transmit paths in the 70 MHz to 6.0 GHz range, making it ideal for a broad

range of fixed and mobile SDR applications.

QoS

From the QoS point of view, the Network Layer will provide an autonomous de-centralized resource

reservation scheme for managed IEEE802.15.4e-TSCH networks. The Application Service Layer

will provide an API to monitor (un)managed networks and coordinate reserved resources of the

managed IEEE802.15.4e-TSCH networks. This API will be available for applications to reconfigure

networks to their needs.

Network Layer: To achieve high levels of reliability on low-power lossy networks, IEEE has generated

an amendment to the IEEE802.15.4 protocol allowing time scheduling and channel hoping over

2.4GHz band. Smart scheduling algorithms are to be devised and orchestrate all links of the

managed network to prevent interference, collisions and reduce latency. In this way, latency and

packet delivery ration can be improved alleviating bottleneck costs introduced by unmanaged parts

of data packet paths.

RPL will be used as the chosen routing protocol of the managed network as the predominant choice

in low-power lossy networks. It will also allow easier scheduling orchestration from a centralized

entity. Any tree-based routing protocol could also be used e.g. CTP.

Application Service Layer: For interoperability purposes, CoAP and 6LoWPAN will be used for

interaction between the coordinator & monitor and the underlying networks. The centralized monitor

and coordinator should be able to:

 capture as accurate as possible the current status of the networks i.e. connectivity, routing

topology, network performance metrics,

 correlate the current state of the network to the application performance metrics,

 devise adaptation/reconfiguration strategy for the managed networks,

 deploy reconfiguration strategy with CoAP commands.

3.2.3 Components

Software Defined Radio

The components necessary to connect the SDR modules to INTER-IoT are described in the D2D

proposed solution, section 3.1. The SDR transmitter and receiver are described below.

D 3.1: Methods for Interoperability and Integration

137 / 220

Component SDR Transmitter

Description The SDR Transmitter will gather information from a device and output an

RF waveform to transmit this data. It uses the following steps to achieve

this goal.

Functionalities Virtual Network Port (TUN/TAP) – interface to host OS.

 Packetize data.

 Generate CRC for error detection.

 Generate header.

 Map header bits to required header I/Q constellation symbols.

 Map payload bits to required payload I/Q constellation symbols –

this may or may not be the same symbol set as the header.

 OFDM carrier allocation – allocate data to sub-carriers, insert pilot

carriers, append pilot symbols and sync word(s).

 Inverse Fast Fourier Transform (IFFT) to translate from frequency

domain to time domain.

 Append the cyclic prefix – typically an additional FFT_length/4

time domain samples.

 Agile tuneable software radio takes in digital complex baseband

samples and outputs up-converted RF waveform.

Relation with other

component

The SDR Transmitter will interact with the SDR Receiver.

Use Cases Involved [40]

Requirements

Involved

[17], [18], [170], [204]

Component SDR Receiver

Description The SDR Receiver will gather information from the SDR Transmitter and

output an IP stream into the AN Module in the INTER-IoT gateway. It

uses the following steps to achieve this goal.

Functionalities Agile tuneable software radio receiver takes in band-limited RF

waveform and outputs down-converted complex baseband digital

samples.

D 3.1: Methods for Interoperability and Integration

138 / 220

 OFDM two-stage frequency synchronization algorithm – e.g.

Schmidl and Cox.

 Fine frequency correction.

 Create two streams of data. Firstly, the header is extracted and

channel estimation made before a buffered payload samples can

be forwarded to the FFT for processing.

 The header’s Fast Fourier Transform (FFT) to convert from time

domain to frequency domain.

 The payload’s Fast Fourier Transform (FFT) to convert from time

domain to frequency domain.

 Obtain channel estimates based on received pilot symbols /

carriers.

 Single-tap Frequency Domain Equalization (FDE) and course

frequency correction.

 Symbol de-mapping – hard decision decoding. Output is stream

of bits.

 Check CRC and accept/discard packets.

 Virtual Network Port (TUN/TAP) – interface to host OS.

Relation with other

component

The SDR Receiver will interact with the SDR Transmitter and the

gateway via an AN Module.

Use Cases Involved [40]

Requirements

Involved

[17], [18], [170], [204]

Software Defined Network

Component OF Connector

Description It is an OpenFlow understanding plugin that communicates, by OF

protocol, with all the switches that conforms our virtual network. Is the

Bridge between the Controller and the nodes of the network.

Functionalities Translates the messages coming down from the core of the Controller to

OpenFlow encapsulated messages that can be understood by the

switches.

Also, several improvements can be added to this plugin as:

Notifications

D 3.1: Methods for Interoperability and Integration

139 / 220

Testing

Collect Packets

The versions supported of the OF protocol are the 1.0 and 1.3.

Relation with other

component

All, as is the Bridge from which all packets from the network has to pass.

Use Cases Involved [43], [55], [41]

Requirements

Involved

[233], [231], [229], [207], [80], [93], [72], [57], [17]

Component Switch Manager

Description The Switch Manager API holds the details of the network element. As a

network element is discovered, its attributes (e.g. what switch/router it is,

SW version, capabilities, etc.) are stored in the database by the Switch

Manager.

Functionalities This Switch Manager stores information about each node of the network

and its status, so you can use it later for other component.

Relation with other

component

All

Use Cases

Involved

[43], [55], [41]

Requirements

Involved

[233], [231], [229], [207], [80], [93], [72], [57], [17], [16]

Component IoT Routing

Description This module is inside the Controller and performs the routing adequate

algorithm to carry the packets.

Functionalities In this module some headers of the packet are introduce to perform a

routing algorithm previously configured and resolve the next hop in the

network.

Relation with other

component

OF Connector

Switch Manager

D 3.1: Methods for Interoperability and Integration

140 / 220

Topology

Host Tracking

Network Slicing

Use Cases Involved [43], [55], [41]

Requirements

Involved

[17], [233], [231], [229], [95], [89]

Component IoT Host Tracking

Description Module in charge of handle the information from a host, including the

address, the position in the network, etc.

Functionalities Track the location of the host relatively to the SDN network. Including:

Host address

Attachment point (link) to a node/switch

Relation with other

component

OF Connector

Switch Manager

Topology

Storage

Use Cases Involved [43], [55], [41]

Requirements Involved [233], [231], [229], [80], [57], [11], [45], [18], [17]

Component Statistics

Description This module storage and provides information about the number of

packets analyzed through the Controller.

Functionalities Depending of the field can give the number of packets attending at

some filters.

Statistics service will export API to be able to collect statistics at least

per:

Flow

Node Connector (port)

D 3.1: Methods for Interoperability and Integration

141 / 220

Queue

Relation with other

component

OF Connector

Topology

Switch Manager

Use Cases Involved [55], [41]

Requirements Involved [233], [231], [226], [57]

Component Storage

Description Additionally to the storage of the switch state, this is a module to save

the information about statistics, topologies, direction, and other data

related with the network.

Functionalities Keeps the information of the network updated and stored for the other

modules to access them.

Relation with other

component

Topology

Host Tracking

Routing

Use Cases Involved [43], [55], [41]

Requirements

Involved

[17], [28], [57], [95], [229], [231], [233], [232]

Component Topology Discovery

Description Topology Service is a set of services that allow conveying topology

information like a new node a new link has been discovered and so on.

Functionalities Keeps tracking of the distribution of the nodes in the network and its

links to each other, also some additional information as the bandwidth.

Relation with other

component

OF Connector

Switch Manager

Host Tracking

D 3.1: Methods for Interoperability and Integration

142 / 220

Use Cases Involved [43], [55], [41]

Requirements

Involved

[233], [231], [229], [226], [207], [204], [80], [57], [17], [16]

3.2.4 Use Cases

Software Defined Radio

Use case Support to non-standard access networks

Use Case ID #40

Description There is a class of sensors/actuators that use non-standard RF communication

links. The reasons why this class of devices use non-standard RF links include

the following:

 to improve the link range;

 to allow interoperability with legacy systems;

 to enhance the resilience to jamming and other kinds or interference;

 to enhance link security.

The INTER-IoT platform provides access to this class of devices, thus allowing

the INTER-IoT user community to take advantage of the services provided by

these sensors/actuators. To accomplish this the INTER-IoT GW comprises a

Bridge facility to perform the translation of the proprietary link into a standard

IP based protocol usable by the INTER-IoT GW (e.g. Ethernet, WiFi).

Objectives Allow sensors/actuators that use proprietary RF links to be accessible to the

INTER-IoT community.

Components

Involved

SDR Transmitter.

SDR Receiver.

Requirements

Involved

[39], [93], [11], [16]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-779

http://jira.inter-iot.eu/browse/INTERIOT-772

D 3.1: Methods for Interoperability and Integration

143 / 220

Software Defined Network

Use case SDN communications: functions virtualization and central management

Use Case ID #41

Description The implementation and use of the SDN paradigm to speed up IoT connections

and centralize the management.

Objectives The virtual network could be manage from a central point, using the API access

to request topologies, statistics, historical, etc.

Components

Involved

The Virtual Switches

The OF Connector

The Statistics Module.

The Host Tracking Module.

The Topology Discovery Module.

Requirements

Involved

[231], [233], [229], [226], [57]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-772

Use case SDN communications: traffic routing

Use Case ID #55

Description The implementation and use of the SDN paradigm to prioritize data flows using

traffic engineering, having a general overview of the whole network at any time.

Objectives The data flows will travel through the software defined network from the

gateway to the IoT platform in a secure manner following the defined policies.

Components

Involved

The Virtual Switches

The OF Connector.

The Host Tracking module.

The Topology Discovery Module.

The IoT Routing Module.

Requirements

Involved

[233], [207], [204], [80], [78], [89], [219], [17], [16]

http://jira.inter-iot.eu/browse/INTERIOT-772

D 3.1: Methods for Interoperability and Integration

144 / 220

Use case link http://jira.inter-iot.eu/browse/INTERIOT-773

Use case Offloading workflow management

Use Case ID #43

Description Discharging data traffic from more than one access network,

simultaneously.

Objectives Improve the speed of uploading or discharging data traffic from the device

using more than one access network technology.

Components

Involved

The Virtual Switches

The OF Connector.

The Host Tracking Module.

The Topology Discovery Module.

The IoT Routing Module.

The Switch Management Module.

Requirements

Involved

[17], [57], [228], [227],[233]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-774

3.3 MW2MW proposed solution

Interoperability at the middleware layer is achieved through establishment of an abstraction layer

and subsequent attachment of all platforms to it. These attachments are established using bridges

abstraction layer. This way we avoid the need to interconnect all platforms among themselves,

instead connecting them directly to the abstraction layer and providing a mechanism for their

communication within this layer.

Communication at the middleware layer is based on a message broker, which is accessed in every

communication performed in MW2MW. This allows both complete decoupling between components

and isolation of the communication responsibility in a single element, which in turn makes profiling,

scaling and adaptation to enterprise infrastructures easier. Furthermore, the broker is accessed

through a general API that exposes basic common operations (message pub/sub, topic creation,

basic resources management...), enabling interchangeability of the actual implementation of the

message broker.

Data model, used in MW2MW, is based on the ontological reference model of meta-data developed

in INTER-IoT. It includes core concepts, shared between IoT platforms, that have been identified

and standardized in ontologies, such as SSN (Semantic Sensor Network ontology). Using one

http://jira.inter-iot.eu/browse/INTERIOT-773
http://jira.inter-iot.eu/browse/INTERIOT-773

D 3.1: Methods for Interoperability and Integration

145 / 220

common model for all internal MW2MW components improves efficiency of internal data transfer, as

well as allows components to make assumptions about structure and content of data, so that rich

functionalities specific to IoT domain can be implemented and offered in one common data model.

There is, however, no requirement of compliance with the MW2MW data model placed upon

platforms that use it. The models of platforms participating in communication through MW2MW are

lifted to ontologies and semantically translated in IPSM (see DS2DS section). As a result, the

commonalities between data models of IoT platforms can be expressed in an unified way (i.e. in a

common model), despite the possibility of having different semantics.

3.3.1 Architecture

In designing the architecture for the Middleware integration, as shown in Figure 48, we focused on

the extensibility and scalability of capabilities and features. To that end, we logically separated

components that make up the communication and flow control, middleware services and bridges to

middleware platforms. A message broker component is not shown on the figure for sake of simplicity,

but it is represented by communication streams, shown in bold green. Although the system contains

an abstraction layer for the queuing mechanism, we are using Apache Kafka for our deployments

thus supporting a distributed streaming platform that implements the reactive streams approach.

In the communication part, the API Request Manager is responsible for handling requests received

from the API proxy, which includes: bookkeeping of active sessions and their respective callbacks;

forwarding requests to the Platform Request Manager for further processing; and providing feedback

to the caller. The Platform Request Manager prepares and sends requests to specific platforms

through bridges, using already established permanent data streams, which it creates during startup

with the help of Data Flow Manager, or it creates new data streams. All data streams that go south,

from the Platform Request Manager to bridges, go through permanent data streams, which can be

either routed through IPSM (when needing ontological and/or semantical translation, as decided by

consulting Platform Registry & Capabilities), or bypassing it and connecting directly to the bridges

(thus eliminating the overhead). All data streams that go north, from the bridges to the Platform

Request Manager, need to be created as needed.

During request pre-processing the Platform Request Manager is potentially assisted by some

middleware services, such as routing or the device registry. It sends requests to underlying platforms

as/when needed. The Data Flow Manager acts as orchestrator of data flows from the platforms

(bridges) to the original caller, utilizing already established permanent data streams or creating new

ones and ensuring that all intermediaries are included in the path. Finally, The Message Queue, not

shown in the diagram, only receives and provides the messages to the corresponding components,

including ad-hoc temporary topics for single requests, and fixed platform channels.

D 3.1: Methods for Interoperability and Integration

146 / 220

Figure 48: MW2MW architecture overview (green arrows: data streams from platform to
upper layers; red arrows: permanent data streams from the Platform Request Manager to
the Bridges - used for platform reqests; dashed black arrows: stream orchestration; black

arrows: API calls – may be implemented through streams as well).

South from the Communication and Control block, the Bridges manage the communication with the

underlying platforms by translating requests and answers from and into Messages for the queue.

Different bridges might need to use HTTP, REST, sockets or other technologies to talk to the

platforms, but these will be translated northwards into messages. They also pass the message

content to the Semantic Mediator (a service external to MW2MW), which will allow for ontological

and format translation between the platforms and a common language.

In the services group of components, the most important are the Platform Registry and Capabilities,

that contains the information of all connected Platforms including their type and service capabilities,

the Resource Discovery that creates requests to obtain the necessary information from the platforms,

and the Resource Registry, that contains a list of resources (e.g. devices) and their properties that

can be quickly consulted. In the second phase, the Routing and Roaming Service will be expected

D 3.1: Methods for Interoperability and Integration

147 / 220

to allow the communication with a particular device independently of the platform it is currently

connected to, while Authentication and Accountability (not shown) would provide services for the

security and monitoring of all the actions.

3.3.2 Components

Component API Request Manager

Description It handles requests, received from the API proxy.

Functionalities Bookkeeping of active sessions and their respective callbacks through

usage of unique call IDs, forwarding requests to the Platform Request

Manager for further processing, providing feedback to the API caller.

Relation with other

component

Platform Request Manager, Data Flow Manager

Use Cases

Involved

[26], [25], [23], [65]

Requirements

Involved

[2], [6], [13], [25], [43], [57], [72], [75], [89], [179], [201], [234], [235], [236],

[237], [238], [255], [281], [282], [283]

Component Data Flow Manager

Description It orchestrates data flows from the platforms (bridges) to the original caller.

Functionalities Creation of a dataflow, associated with a unique call ID. Creation of

permanent data flows between bridges and the Platform Request

Manager, going south, at middleware startup, routing either through IPSM

or bypassing it. Creation of data flows, which go north, when needed.

Relation with other

component

Platform Request Manager, API Request Manager, Bridges

Use Cases

Involved

[26], [25], [23], [65]

Requirements

Involved

[2], [6], [13], [25], [43], [57], [72], [75], [89], [179], [201], [234], [235], [236],

[237], [238], [255], [281], [282], [283]

Component Platform Request Manager

D 3.1: Methods for Interoperability and Integration

148 / 220

Description It arranges and manages flow of requests to underlying platforms.

Functionalities Obtainment of the list of available platforms, creation of a unique flow ID,

routing of the request flow to the underlying platforms. Creation of

permanent data streams going south, routed either through DS2DS IPSM

or bypassing it. Creation of data streams going north when needed.

Relation with

other component

Data Flow Manager, API Requests Manager, Resource Discovery, Device

Registry, Routing & Roaming Service, Platform Registry and Capabilities,

DS2DS IPSM

Use Cases

Involved

[26], [25], [23], [65]

Requirements

Involved

[2], [6], [13], [25], [43], [57], [72], [75], [89], [179], [201], [234], [235], [236],

[237], [238], [255], [281], [282], [283]

Component Resource Discovery

Description Resource discovery is a module to find resources based on a query that

specifies the desired results.

It creates requests to obtain the necessary information from the IoT

platforms or it looks up the information from the Resource Registry.

Functionalities The component includes methods to allow users to send a query to obtain

the list of devices throughout the integrated platform it has access to, which

comply with a search query or filter, or to consult the Resource Registry.

It forwards the request to all relevant IoT Platforms.

Relation with other

component

Platform Request Manager, Device Registry

Use Cases

Involved

[25]

Requirements

Involved

[2], [6], [13], [17], [43], [57], [72], [179], [234], [235], [236], [237], [238], [255]

D 3.1: Methods for Interoperability and Integration

149 / 220

Component Resource Registry

Description It contains a list of devices and their properties that can be quickly

consulted when needed.

Functionalities Any new device can be added to the list of registered devices and it should

have a unique identification. However, it is not guaranteed to be complete

and should thus be complemented with queries from Resource Discovery

to actual platforms.

Relation with other

component

[25]

Use Cases

Involved

[60] Device Registry

Requirements

Involved

[2], [6], [13], [17], [43], [57], [72], [179], [234], [235], [236], [237], [238], [255]

Component Routing and Roaming Service

Description It allows the communication with a particular device independently of the

platform it is currently connected to. When a device access to the facilities

of a different company, it is connected transparently to the platform.

Functionalities Method to automatically register a device in different platforms.

Relation with other

component

Platform Request Manager, Platform Registry and Capabilities, Device

Registry

Use Cases

Involved

N/A

Requirements

Involved

[2], [6], [13], [17], [18], [43], [57], [72], [179], [234], [235], [236], [237], [238],

[255]

Component Platform Registry and Capabilities

Description It contains the information of all connected Platforms including their type and

service capabilities. A unique ID is assigned to each registered platform

D 3.1: Methods for Interoperability and Integration

150 / 220

Functionalities The component includes methods to (1) add (register) a platform (along with

its supported services) to the registry, (2) update supported services of a

given platform, (3) remove (unregister) a platform from the registry, (4) get

the information (supported services) of a given platform, (5) generate a

unique ID upon the first registration of a new connected platform, (6) return

the list of all the connected (registered) platforms

Relation with

other component

Platform Request Manager, Routing & Roaming Service

Use Cases

Involved

[26], [25], [23], [65]

Requirements

Involved

[2], [6], [13], [25], [43], [57], [72], [75], [89], [179], [201], [234], [235], [236],

[237], [238], [255], [281], [282], [283]

Component Bridge (generic interface)

Description Bridge manages the communication with the underlying platforms by

translating requests and answers from and into Messages for the queue.

The generic interface provides a structured template to easily develop new

bridges.

Functionalities Translation of requests from and into messages for the queue. Code

structure and abstraction layer for platform-specific implementations.

Relation with

other component

Data Flow Manager, Platform-specific implementations(Bridge - D2D,

Bridge - FIWARE, Bridge - Azure, Bridge – OpenIoT, Bridge - oM2M)

Use Cases

Involved

[26], [25], [23], [65]

Requirements

Involved

[2], [6], [13], [25], [43], [57], [72], [75], [89], [179], [201], [234], [235], [236],

[237], [238], [255], [281], [282], [283]

Component Bridge - D2D

Description Implementation of a bridge for the D2D platform.

Functionalities This component provides the functionalities to manage the communication

with the D2D layer

D 3.1: Methods for Interoperability and Integration

151 / 220

Relation with

other component

DS2DS IPSM, Data Flow Manager

Use Cases

Involved

[26], [25], [23], [65]

Requirements

Involved

Same as the Bridge component

Component Bridge - FI WARE

Description Implementation of bridge for the FIWARE platform.

Functionalities This component provides the functionalities to manage the communication

with the FI WARE platform

Relation with other

component

Bridge - D2D, Data Flow Manager

Use Cases

Involved

[26], [25], [23], [65]

Requirements

Involved

Same as the Bridge component

Component Bridge - Azure

Description Implementation of bridge for the Azure platform.

Functionalities This component provides the functionalities to manage the

communication with the Azure platform

Relation with other

component

Bridge - D2D, Data Flow Manager

Use Cases Involved [26], [25], [23], [65]

Requirements Involved Same as the Bridge component

Component Bridge - OpenIoT

D 3.1: Methods for Interoperability and Integration

152 / 220

Description Implementation of a bridge for the OpenIoT platform.

Functionalities This component provides the functionalities to manage the

communication with the Open IoT platform

Relation with other

component

Bridge - D2D, Data Flow Manager

Use Cases Involved [26], [25], [23], [65]

Requirements Involved Same as the Bridge component

Component Bridge - oM2M

Description Implementation of a bridge for the oM2M platform.

Functionalities This component provides the functionalities to manage the

communication with the Open M2M platform

Relation with other

component

Bridge - D2D, Data Flow Manager

Use Cases Involved [26], [25], [23], [65]

Requirements

Involved

Same as the Bridge component

Component Queue/Streams Abstraction

Description It receives and provides the messages to the corresponding components.

Functionalities Implementations vary from ad-hoc temporary topics for single requests

to fixed platform channels.

Relation with other

component

Bridge, Data Flow Manager, DS2DS - IPSM, Platform Request Manager

Use Cases Involved [26], [25], [23], [65]

Requirements

Involved

Same as the Bridge component

D 3.1: Methods for Interoperability and Integration

153 / 220

3.3.3 Use cases

In the following figures green arrows represent messaging through Message Broker.

Use case Subscribe to MW2MW event messages

Use Case ID #26

Description Subscribers shall be able to subscribe to topics, in order to be informed

of any new information (reading, device update, etc.) related to that

defined topic.

Objectives A subscriber will be able to create a subscription through the system,

which will allow it to receive as soon as possible news from the publisher

about any event relevant to the desired topic.

Components

Involved

API Request Manager, Platform Request Manager

Requirements

Involved

[2], [6], [13], [72], [75], [179], [201], [234], [235], [236], [237], [255], [281],

[282]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-804

MW01 MW2MW Subscription request to topic

View online: http://tinyurl.com/mw01v01

http://jira.inter-iot.eu/browse/INTERIOT-804
http://tinyurl.com/mw01v01

D 3.1: Methods for Interoperability and Integration

154 / 220

Figure 49: MW01, Subscription Request Configuration including IPSM.

Step 1: The API Request Manager (RM) receives a request for subscription from an external actor.

Step 2-3: The RM creates a unique ID for the call (we can think of it as “session”) and keeps the

mapping between unique IDs and callbacks. It then sends a subscribe request to the Platforms

Request Manager (PRM). The request contains all platforms, the list of all devices and a filter in the

filtering format of INTER-IoT.

Step 4: The PRM asks all platforms by contacting Platform Registry and Capabilities (PRC)

component.

Step 5: The list of authorized platforms is returned. The answer is composed by a list of references

to bridges and corresponding semantic descriptions.

Step 6: A unique identifier for the data flow is created at this point. The identifier is a function of

platforms and filters. This means, that for a repeated identical request from other clients we do not

duplicate communications streams and requests to platforms.

Step 7-10: The data flow is created, if needed (see sequence diagram “Flow Creation Including

IPSM”)

Step 11-15: For each bridge Bi, if the Data Flow Manager (DFM) created a new flow, then PRM

sends a “startTopicFlow” request to Bi with the flow ID, all devices and query filter as parameters. Bi

creates a publisher for Fi. Bi translates from the common filter to the specific filtering syntax of the

platform and subscribes with the indicated conditions to the platform Pi.

MW02 New info pushed to topic (with semantic mediation)

View online: http://tinyurl.com/mw02v02

http://tinyurl.com/mw02v02

D 3.1: Methods for Interoperability and Integration

155 / 220

Figure 50: MW02, Subscription Data Flow with Semantic Translation.

A resource in platform 1 (P1) produces some data to which an external actor (an INTER-IoT user,

actually) is subscribed. An existing subscription in a platform means that in its corresponding bridge

there is, at least, two topics, one for receiving the notifications from the platform and one to publish

them to IPSM. At the same time, the IPSM must have, at least, one topic to publish back, once the

data is semantically translated to the PRM. Finally, it exists another topic exclusive of that

subscription for the communication PRM <=> RM. The RM stores a list of callback for that topic ID.

Step 1: P1 sends a notification to the callback mechanism provided by Bridge 1 (B1) with the data

M1. Bridge 1 gets the the ID of the device which has generated the trigger. The data M1 observed

by B1 is in Ontology 1 (O1).

Bridge 1 formats M1 in JSON as it came from the platform and puts it as a payload in a new json

file. B1 adds identification and metadata to that file: platform id (P1), device ID, timestamp of the

current operation (which will be the reference timestamp for the event in INTER-IoT realm) and a

unique ID for the message (for storage and processing purposes).

Step 2: B1 publishes the message to the IPSM through the topic existing for that purpose. IPSM is

subscribed to that topic.

IPSM performs the semantic annotation and the semantic translation of the message. It also formats

the result in a JSON file with the INTER-IoT metadata.

Step 3: IPSM sends the message to PRM through the topic for that purpose.

Step 4: PRM forwards the message to the API Request Manager (RM).

Step 5: API RM gets the list of callback for the topic and send them the notification.

MW08 New info pushed to topic (without semantic mediation)

View online: http://tinyurl.com/mw08v01

http://tinyurl.com/mw08v01

D 3.1: Methods for Interoperability and Integration

156 / 220

Figure 51: MW08, Subscription Data Flow with no IPSM

Step 1: P1 sends a notification to the callback mechanism provided by Bridge 1 (B1) with the data

M1. Bridge 1 gets the the ID of the device which has generated the trigger. The data M1 observed

by B1 is in Ontology 1 (O1).

Bridge 1 formats M1 in json as it came from the platform and puts it as a payload in a new json file.

B1 adds identification and metadata to that file: platform id (P1), device id, timestamp of the current

operation (which will be the reference timestamp for the event in INTER-IoT realm) and a unique id

for the message (for storage and processing purposes).

Step 2: B1 sends the message to PRM through the topic for that purpose.

Step 3: PRM forwards the message to the API Request Manager (RM).

Step 4: API RM gets the list of callback for the topic and send them the notification.

MW05 Unsubscribe from topic

View online: http://tinyurl.com/mw05v02

http://tinyurl.com/mw05v02

D 3.1: Methods for Interoperability and Integration

157 / 220

Figure 52: MW05, Unsubscribe from topic.

Step 1: Actor calls API with reference for call back and subscriptionUniqueCallID

Step 2: API forwards to RM

Step 3: RM creates uniqueCallID

Step 4: RM creates uniqueFlowID from previous subscriptionUniqueCallID

Step 5: RM deletes UniqueCallID to UniqueFlowID mapping

Step 6: count of uniqueFlowID made

Step 7: If count > 1, ok

Step 8: If count = 0,

- remove uniqueFlowID from PRM

- remove uniqueFlowID from DFM

- remove uniqueFlowID from IPSM

- remove uniqueFlowID from Bridges

MW06 Flow creation

View online: http://tinyurl.com/mw06v01

http://tinyurl.com/mw06v01

D 3.1: Methods for Interoperability and Integration

158 / 220

Figure 53: MW06, Flow Creation Including IPSM.

Step 1: API request data from bridge. PRM receives request

Step 2: PRM sets up communication with DFM

Step 3: DFM creates communication ID

Step 4: start loop

For each Bi create a channel from the queue

Queue sent ack, channel open

Step 5: Set up channel between IPSM and PRM -> ack

Step 6: Set up channel between PRM and RM -> ack

Step 7: PRM create flow: IPSM, PRM, RM

Step 8: DFM connect to IPSM -> ok

Step 9: start loop

For each Bi create a flow to the bridge

Bridge sent ack, channel open for each Bi

D 3.1: Methods for Interoperability and Integration

159 / 220

Step 10: DFM create flow to API RM -> ok

Step 11: DFM to PRM new flow created

Use case MW2MW resource discovery

Use Case ID #25

Description An MW2MW user will be able to obtain the list of devices throughout the

integrated platform it has access to, which comply with a search query or

filter.

Objectives To let application and services to discover, whenever possible, what devices,

and with which properties, are available to the system.

Components

Involved

API Request Manager, Platform Request Manager, Resource discovery,

Resource Registry, Platform Registry & Capabilities, Data Flow Manager,

IPSM, Bridges, Platforms

Requirements

Involved

[2], [6], [13], [17], [43], [57], [72], [179], [234], [235], [236], [237], [238], [255]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-805

MW04 Resource discovery

View online: http://tinyurl.com/mw04v01

http://jira.inter-iot.eu/browse/INTERIOT-805
http://tinyurl.com/mw04v01

D 3.1: Methods for Interoperability and Integration

160 / 220

Figure 54: MW04, Resource discovery.

Step 1: Actor calls API ‘s method for resource discovery with references for callback.

Step 2: The RM creates a unique id for the call (we can think of it as “session”) and keeps the

mapping between unique IDs and callbacks.

Step 3: The RM calls PRM with the instruction to execute the action for resource discovery.

Step 4-5: The PRM forwards the discovery request to RD.

Step 6-7: The list of authorized platforms is returned. The answer is composed by a list of references

to bridges and corresponding semantic descriptions.

Step 8-10: A unique identifier for the data flow is created at this point. The identifier is a function of

platforms and filters. This means, that for a repeated identical request from other clients we do not

duplicate communications streams and requests to platforms. PRM creates a data flow using this

unique identifier and returns resources list to actor.

If PRM decides to launch a remote resource discovery:

Step 11-12: PRM retrieves registered platforms from PRC

Step 13-14: PRM asks DFM to create a new Flow

D 3.1: Methods for Interoperability and Integration

161 / 220

Step 15-18: PRM sends discovery query message to relevant Bridges (through IPSM), with

reference to the above created Flow. Each Bridge forwards (async) discovery request to Platform

and each Platform responds to its Bridge.

Step 19: PRM receives responses as they arrive (through the Flow), and combines them into one

Step 20-21: PRM publish combined results to RM and RD

Step 22: RD creates (or updates) discovered resources into RR

Step 23: RM publish combined resources list to Actor

Step 24-25: RPM calls DFM to close (release) the Flow

Use case Request query to MW2MW

Use Case ID #23

Description An MW2MW user will be able to request a list of values from [a set of] devices

of the platforms it has access to with conditions regarding the geographical,

temporal and other conditions as defined by the given set of filters.

Objectives To let the inquirer to obtain a list of values of interest from a subset of devices.

Components

Involved

API Request Manager, Platform Request Manager, DS2DS IPSM, Bridge

Requirements

Involved

[2], [6], [13], [72], [179], [234], [235], [236], [237], [255]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-806

MW03 Query

View online: http://tinyurl.com/mw03v01

http://jira.inter-iot.eu/browse/INTERIOT-806
http://tinyurl.com/mw03v01

D 3.1: Methods for Interoperability and Integration

162 / 220

Figure 55: MW03, Query for temperature readings in a geographical area (lat, lon, r)

Step 1: The API Request Manager (RM) receives a request for a query from an external actor.

Steps 2-3: The RM creates a unique id for the call (we can think of it as “session”) and keeps the

mapping between unique IDs and callbacks. It then sends a query request to the Platforms Request

Manager (PRM). The request contains the query to be executed. PRM uses MW service components

in further steps in order to interpret and execute the query.

Step 4: The PRM asks for the list of platforms according to the request by contacting Platform

Registry and Capabilities (PRC) component.

Step 5: The list of authorized platforms is returned. The answer is composed by a list of references

to bridges and corresponding semantic descriptions.

Steps 6-7: Furthermore, certain platform properties are requested in order to correctly parse and

execute the query.

Step 8: A unique identifier for the data flow is created at this point. The identifier is a function of the

query content. This means, that for a repeated identical query from other clients we do not duplicate

D 3.1: Methods for Interoperability and Integration

163 / 220

communications streams and requests to platforms. Although, for query execution it is highly unlikely

that the same query would be repeated twice in a short timespan.

Steps 9-12: The data flow is created, if needed (see sequence diagram “Flow Creation Including

IPSM”).

Steps 13-16: For each bridge Bi, if the Data Flow Manager (DFM) created a new flow Fi, then PRM

sends a “executeQuery” request to Bi with the flow ID and the query adapted to a specific platform.

Bi creates a publisher for Fi. Bi translates from the common query to the specific syntax of the

platform and subscribes with the indicated conditions to the platform Pi.

Step 27: PRM waits for results of queries b listening to the created topic (see Subscription data

flow sequence diagram). It waits until it gets all results or reaches a specific timeout.

Steps 18-19: PRM Publishes back the combined result (see Subscription data flow sequence

diagram).

Steps 20-21: PRM shuts down the data flow (see Unsubscribe sequence diagram).

Use case MW2MW sends information to a device (sensor or actuator)

Use Case ID #65

Description The Midleware can access to a device (sensor or actuator) and send it

orders or actions (e.g. change the configuration, activate/deactivate).

Objectives In order to manage a device, it is necessary to send orders to it, besides

receiving data.

Components

Involved

API Request Manager, Platform Request Manager, DS2DS IPSM, Bridge

Requirements

Involved

[2], [6], [13], [25], [89], [179], [234], [235], [236], [237], [255], [283]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-837

MW07 MW2MW sends information to device(s)

View online: http://tinyurl.com/mw07v01

http://jira.inter-iot.eu/browse/INTERIOT-837
http://tinyurl.com/mw07v01

D 3.1: Methods for Interoperability and Integration

164 / 220

Figure 56: MW07, MW2MW sends information to device(s)

Step 1: The API Request Manager (RM) receives a request to perform an action upon the device

from an external actor.

Steps 2-3: The RM creates a unique id for the call (we can think of it as “session”) and keeps the

mapping between unique IDs and callbacks. It then sends an action request to the Platforms Request

Manager (PRM). The request contains the information, which is to be sent to the device. PRM uses

MW service components in further steps in order to interpret and execute the query.

Step 4: The PRM asks for the list of platforms according to the request by contacting Platform

Registry and Capabilities (PRC) component.

Step 5: The list of authorized platforms is returned. The answer is composed by a list of references

to bridges and corresponding semantic descriptions.

Step 6-8: A unique identifier for the data flow is created at this point. The identifier is a function of

the action content. This means, that for repeated identical actions from other clients we do not

duplicate communications streams and requests to platforms.

Steps 9-12: For each bridge Bi, if the Data Flow Manager (DFM) created a new flow Fi, then PRM

sends a “publish” request to Bi with the flow ID and the information to be pushed onto the platform,

adapted to that specific platform.

3.4 AS2AS proposed solution

The goal of this task is to achieve through INTER-IoT the identification and access to native services

and applications from different IoT platforms that are under the INTER-IoT research. Then, get the

specifications about how to access to it. As well, to offer a description or detailed information about

this services and applications. Offering the possibility to obtain a list of services throughout the

integrated platform it has access to, which comply with a search query or filter.

Finally, the objective of this task is to make interoperable application services furnished by

heterogeneous IoT platforms. Making it possible to reuse and exchange heterogeneous services

D 3.1: Methods for Interoperability and Integration

165 / 220

from the different IoT platforms and allow application developers to produce new added value

services from existing IoT services.

For that reason, the approach proposed for the AS2AS level is based on:

 Access APIs provided by IoT platforms: Almost all IoT platforms provide a public API to

access their services. The APIs are usually based on RESTful principles. But in a case where

the IoT platforms do not provide this RESTful API, it will be necessary to create a solution to

access their services.

 Service Catalogue: Register services/applications with their description or detailed

information to make them discoverable. With our solution based on Service Catalogue,

AS2AS will be able to use the same metadata annotations (then creating a point of

interoperability) and have a uniform data catalogue.

 Service Discovery: Creates requests to the Service Catalogue to obtain the necessary

services from the IoT Platforms.

 Service Composition: Encompasses all those processes that create added-value services,

called composite services, from existing services.

Using the following solutions to achieve the main objective:

 Orchestrator: Service composition is done from a centralized perspective, expressing how

the composition has to act in order to integrate components.

 Data flows: In a composition, the input of one component is typically produced by another

component output.

 Flow Based Programming (FBP): FBP describes a graph of nodes, which exchange

messages containing data via the edges. The edges are defined outside the nodes, in others

words nodes have no control on where the data comes from and where it goes to.

 Modeller: Allows to drag IoT services and internal services from the catalogue and connect

them in a graphical environment and then create flows.

Finally, AS2AS has to provide an interoperability API (INTER-API) and integration toolbox. With this

tool AS2AS users and organizations can develop new applications over the integration of their

existing heterogeneous IoT infrastructures.

3.4.1 Architecture

The architecture for the Application and Services integration, as shown in Figure 57, shows the

components that will perform the functionalities and goals that have been listed in the previous

section. It also presents the communication that exists between these components.

Service Catalogue and Service Discovery are in charge of storing and managing the information and

description of the services available on IoT Platforms. To interact with these components, we have

the modules that are part of the graphical environment (GUI): Modeller and Register Client.

The Register Client provides users a tool to register new native IoT platform services and new

composite services (also known as subflows). During the registration of one of these elements, it is

possible to add a description about its features. Once the registration of the service occurs, it will be

stored in the Service Catalogue.

D 3.1: Methods for Interoperability and Integration

166 / 220

Figure 57: AS2AS architecture overview.

The Modeller is a graphical environment that has access to the services which have been registered

(using the Service Discovery module, through which it calls the Service Catalogue) and internal

functions to execute a particular process (for example, functions to perform transformations in the

data resulting from the execution of a service, to display information, to determine a timeout between

calls, to repeat a call to a service ‘x’ number of times…). With this tool the AS2AS users can design

a solution based on the composition of services. The visual editor lets user drag and drop the

services (visually represented as nodes) onto the design surface and then join them together by

dragging lines between them. A solution based on flow based programing will be designed.

Once the design made by the Modeller is validated, the generated flow is stored in the Flow

Repository. This component manages the information of all flows created.

The Orchestrator is the engine of the solution. It is responsible for loading the flows created with the

Modeller and stored in the Flow Repository. Once the design is loaded, it makes the necessary calls

to the service APIs of the IoT Platforms Services and executes the internal functions, in the order

indicated in the model to run the service composition. It collaborates with the IPSM, which is

responsible for performing semantic translation of data exchanged between artifacts...

Finally, the API is responsible for making the interaction tools to manage the Orchestrator and the

flows stored in the Flow Repository available to the AS2AS user. For example: it would be like a

D 3.1: Methods for Interoperability and Integration

167 / 220

process manager; where a user can start/stop a flow of execution, view its status, load a flow in the

orchestrator and so forth.

3.4.2 Components

 Component Register Client

Description It is responsible for allowing the registration of new services through

the graphical environment.

In addition, it is possible to include a description of these services.

Functionalities Register new services:

 register an IoT Platform service

 register flows as a new service (subflows)

 register functions created by the user.

Relation with other

component

Service Catalogue

Use Cases Involved [28]

Requirements Involved [43], [73]

Component Modeller

Description It is used to perform a modeled solution with available services.

Functionalities It allows to make a composition of services with its graphical tool.

It calls the Service Catalogue through the Service Discovery module,

to have a list of available services.

Modeller indicates which services are compatible with other service

and it’s in charge for the validation of the design.

Relation with other

component

Service Discovery

Flow Repository

Orchestrator

Use Cases Involved [24], [29], [30]

Requirements Involved [76], [240]

D 3.1: Methods for Interoperability and Integration

168 / 220

Component Service Catalogue

Description Provides storage and access to a uniform catalogue of existing and new

services. Each service is described by listing its features. It uses the same

annotations to facilitate a point of interoperability

Functionalities This component provides the following functions:

 Register services/applications to make them discoverable.

 Offer a description or detailed information about the

services/applications.

Relation with other

component

Service Discovery

Register Client

Orchestrator

Use Cases

Involved

[24, [28], [29]

Requirements

Involved

[43], [73]

Component Service Discovery

Description Manages the detection of services provided by each IoT platform attending

certain features. Also, it indicates the possibilities of composition between

services.

Functionalities It is responsible for converting the demands that come from the Modeller

in queries to the Service Catalogue. In addition, it also converts the

answers of the Service Catalogue into responses in the format of the

graphic environment of the Modeller.

Relation with other

component

Service Catalogue

Modeller

Use Cases

Involved

[24], [28], [29]

Requirements

Involved

[43]

D 3.1: Methods for Interoperability and Integration

169 / 220

Component Flow Repository

Description Stores the composite services designed with the graphical tool.

Functionalities The created flows will be stored with an identifier. The orchestrator will

call this repository when it needs to load information from a flow.

Relation with other

component

Modeller

Orchestrator

API

Use Cases Involved [24], [30]

Requirements

Involved

[57], [239]

Component Orchestrator

Description Using the designed flow made with the Modeller, the Orchestrator calls

services of platforms to run the composite service. This action is done

from a centralized perspective, expressing how the composition has to

act in order to integrate components.

Functionalities The orchestration module would be responsible of making calls to IoT

Platform services and carry out the internal processes necessary to

make the composition successful.

Relation with other

component

Flow Repository

IPSM

API

IoT Platform Services

Use Cases Involved [24], [28], [30]

Requirements

Involved

[76], [239], [240], [241], [255]

D 3.1: Methods for Interoperability and Integration

170 / 220

Component AS2AS API

Description It is responsible of managing the orchestrator and flows.

Functionalities It would be like a process manager, where the user can: start a flow,

stop a flow, view its status...

Relation with other

component

Flow Repository

Orchestrator

Use Cases Involved [24], [30]

Requirements

Involved

[57], [221]

External components to AS2AS:

Component IPSM

Description The Inter Platform Semantic Mediator provides semantic translation of

messages that is explained in section 3.5.1.

Functionalities It performs semantic translation of input messages expressed in source

semantics to output messages expressed in target semantics. It provides

API for configuration before use.

Relation with other

component

Orchestrator

Use Cases Involved [24], [28], [30]

Requirements

Involved

[179], [221], [255]

Component IoT Platforms Services

Description The IoT Platforms offers native services and applications.

Functionalities Almost all IoT platforms provide a public API to access their services. The

APIs are usually based on RESTful principles, and allow common

operations such as PUT, GET, PUSH or DELETE. However, there are IoT

D 3.1: Methods for Interoperability and Integration

171 / 220

platforms that did not include a REST API for easing the development of

Web services, but use different interaction means.

Relation with

other component

Orchestrator

Use Cases

Involved

[24], [30]

Requirements

Involved

[57], [205], [241]

3.4.3 Use cases

 Use case AS2AS Service Cataloguing

Use Case ID #28

Description An AS2AS user will be able to register services/applications with their

description or detailed information to make them discoverable.

Objectives The following objectives are mainly pursued:

 Offer a description or detailed information about the

services/applications.

 The registered service becomes available in the Modeller. So it can

be used by the Orchestrator.

 To obtain an uniform data catalog.

Components

Involved

Register Client

Service Catalogue

Service Discovery

Orchestrator

Requirements

Involved

[180], [236], [238]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-776

AS01 AS2AS Service Cataloguing

View online: http://tinyurl.com/as01v01

http://sequencediagram.org/index.html?initialData=FAFwliA2CmAECCBlATE2joCcBuYDGceAhiEZAPYDmArmAHaXDBF4jmawCqAzlsAA5FM4PGEF0QsAErRKYbiCywAwpDDQJAoSLFEJ6LLgIqSZKtWhbh+Xfow58cACLy85bFgCezamzrUAWwAjPisdcUkAeUw8AAtoBUwSdiY6ckVYdyUeLAAueDpYal4OTFl5RQ4iWDpoAHdYAElyABVYAAVIEhAAM3YA2AAdOnsjOBBYzHJqSljYCbgAcU5G6XKFJVV1TRzMAFoAPhk5DY4tjRBcspPKgH0SsYAKB8dbuiIA6AAaWABtABMEnhMGJwOQ6ABdACUwDSGSyHGOFU2aguuWGLXisBexn4UwI3F43HmWPofUwARIYHBw3oJLgjQkWD2zTa5Mpkj0-2xGn+xNpkjY9NgxFIFEYwCRpxUqIkh1GjhMYvM0FyorMNGg90MjmeOoIbw+3z+gO4wNB1MhMLhcARBgcxmUpnFFnRdEaknksA8IJ66m5ExIwpxcFpxLhsDx0Fw024kE8sGuyLK-2ACsdzpV8v1cCdys1uSI-3+6egbDzGoseodWrA-y+IcNnx+AKBIP4YKtkvWlRl2xAAB49qWlZXVeQANbAXZDqW984SXKTpgr1dpnOjl3QbM12AuM0Izy5OFgHo9Txveq3IjYIhgLpBGDamvVsa3Oswkf7tw+zw7sZ7q4h5XNAPRlNwsTXre95EI+WohtwjyfhuFZboc0RxAkIBJGwmDHukp4XrUdRQXeD5PiGr6vB+wAYfEiTJPsBx0VhOHsCBYEJJBN5kbBFE5ohUJAA
http://tinyurl.com/as01v01

D 3.1: Methods for Interoperability and Integration

172 / 220

Figure 58: AS2AS Service Cataloguing.

Step 1: AS2AS user uses the GUI to register a service through Register Client. The user fills the

information and description of the service.

Step 2: The Register Client checks that the information has been entered in the GUI correctly and

sends it to the Service Catalogue. If there are validation failures, the user will be informed of the

errors and must complete the fields again correctly.

Steps 3-5: The Service Catalogue confirms that the service has not been previously registered.

If all validations are correct, the new service is added to the catalogue. After that Service Catalogue

confirms that the service has been successfully registered.

Else, an error indicating that this service has been previously registered is sent to the user.

Steps 6-7: The Service Catalogue notifies the availability of the service to the Service Discovery

component. This component is refreshed to show this new service.

Steps 8-9: The Service Catalogue notifies the availability of the service to the Orchestrator

component. This component is refreshed to show this new service.

Use case AS2AS Service Discovery

Use Case ID #29

Description An AS2AS user will be able to obtain the list of available services in the

catalogue, which comply with a search query or filter.

Objectives Obtain a list of matching services and applications from the IoT platforms

considered.

D 3.1: Methods for Interoperability and Integration

173 / 220

Components

Involved

Modeller

Service Discovery

Service Catalogue

Requirements

Involved

[180], [236], [238]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-777

AS02 AS2AS Service Discovery

View online: http://tinyurl.com/as02v01

Figure 59: AS2AS Service Discovery.

Step 1: A user introduces a query text, to search or filter, in a search box in the Modeller GUI.

Step 2: The Modeller module forwards request to Service Discovery.

Step 3: The Service Discovery processes the request and sends a query to the catalogue.

Step 4: The Service Catalogue responds to Service Discovery with a list of services.

Step 5: The Service Discovery processes the result of the query and sends it back to the graphical

environment.

Step 6: A list of matching services and applications from the IoT platforms considered is available

for the user.

http://jira.inter-iot.eu/browse/INTERIOT-777?jql=project%20%3D%20INTERIOT%20AND%20issuetype%20%3D%20%22Use%20Case%22
http://tinyurl.com/as02v01

D 3.1: Methods for Interoperability and Integration

174 / 220

Use case AS2AS Service Composition

Use Case ID #30

Description An AS2AS user will be able to create added-value services, called

composite services, from existing services.

Objectives The main objective is wiring together APIs and Services from the IoT

Platforms creating new composite services.

Components

Involved

Modeller

Flow Repository

AS2AS API

Orchestrator

IoT Platforms Native Services

Requirements

Involved

[236], [239], [240], [241]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-778

AS03 AS2AS service composition

View online: http://tinyurl.com/as03v01

http://sequencediagram.org/index.html?initialData=FAFwliA2CmAECCBlATE2joCcBuYDGceA9gLYAORAzhGEQHbDACGeIRmsAqpVsGU5nB4w-OiFgBZIgBNokGJj4ChIpmNgAxSEQDusAErQK1NpgCeSwflXqkqRAgAKASUaWVo8QHlMeABbQlCCYTKbu1p6wzkQAKrCOkKEAZuwksAAa4cKR0XEJyamwAJqMTACubHRlJABGvHREIHBE2FhcPJgAXPB0CCho3G14TPKUsCABsD7+gcGh7E7OADpiRLCYZb1MsEnaegAUxORUEHAduAQAlCuy1ADmdNDSsDoQfuOTJDJyvIOYALQAPiksnkWE6ABFAmAHmNtrtdMA-kCQXIFJ1DABHMqzWDbW4w3rYEZgaShWgMVFggHA77UzrEyCk0LQAD6BIe+wROkuwCpCiBWl0BiMJ1MZk6TGk0iFOi5e15-KwAB5-rKRcYIOwJaTWdy3AaDX9VUqukQANZIjpAuxoeAuTpBZR6vb7XXc3m2hz25xA6YBIIhUyOkDO7lu6Qu3S89WGTXi1X+2ZB9idbRSqNy90K4Cx0UmbV+3wBubBi2MfgcdUbOh0MB0O7AJOB+Y05ul1NOwTh0m89spmm5eKJEApTBpdKdGus874aCHEaQWCzgiwMgjscTvvF5Ot1VD-KjwqT8v91tAg8bwpFKebGdYC7z4byZcPudrq-j4rbmYt0z72JhwKL8b3LaA6GkK0sBtfpvQdIIiDITMI09WDFiLX8Oy6BCyB7aReSgzBEx3P9UwtIA
http://tinyurl.com/as03v01

D 3.1: Methods for Interoperability and Integration

175 / 220

Figure 60: AS2AS Service Composition.

Steps for the creation, validation and storage of a flow:

Step 1: A user designs with the Modeller GUI a modeled solution with the available services.

Step 2: The user requests a validation of this design.

Step 3: The Modeller performs a validation of the created design. If there is any error in the

validation, the user will receive a message with a list of errors.

Steps 4-6: The validated design (flow) is stored in the Flow Repository. An identifier is assigned to

the flow. The user is notified of the correct validation.

Steps to run and stop a flow using the API:

Step 7: The user uses the API to start the desired flow.

Step 8: The API calls the Orchestrator to start the desired flow.

Steps 9-10: The Orchestrator loads the indicated flow from the Flow Repository.

Steps 11-15: The Orchestrator module starts the flow and calls IoT platform services in the order

indicated in the design to run the composite service.

Steps 16-17: If the flow does not have a stop condition, the user can call the API to stop the flow.

D 3.1: Methods for Interoperability and Integration

176 / 220

Step 18: The Orchestrator informs the user of the correct execution of the flow. On the other hand,

if there is any problem the user will be informed of any error in the execution of a service.

Use case Request Query to AS2AS

Use Case ID #24

Description An AS2AS user (IoT platform, application, person, etc.) will be able to

exchange information between IoT platform services/applications through

the AS2AS system.

Objectives To let the inquirer exchange information of interest with services and

applications allocated in another platform.

Components

Involved

Modeller

Flow Repository

AS2AS API

Orchestrator

IoT Platforms Native Services

Requirements

Involved

[236], [239], [240], [241]

Use case link http://jira.inter-iot.eu/browse/INTERIOT-775

AS04 Request query to AS2AS

View online: http://tinyurl.com/as04v01

http://jira.inter-iot.eu/browse/INTERIOT-775?jql=project%20%3D%20INTERIOT%20AND%20issuetype%20%3D%20%22Use%20Case%22
http://sequencediagram.org/index.html?initialData=FAFwliA2CmAEBK0COBXaBnEtXQE4E9YQB7WAQQGUAmS2YYAQwGMTdYBVdPYABwd3BMwfAHZYAssQAm0SDFy9+g4QzGwKeAG5gmcACJh0TYprz5FAnSrUbc23bADCDEA0jEA5mgvLRE6bLyPlZ+sABi7gDuCNA8xOgQxATBQqGUNBTkAAoAkvQp1lgA8rhMABYYILguSQWhOcQAKrBZkC4AZkkAtuR1qlgNza0d3bAAQvQixCBwJngcXLgAXGQi5NS0nPPE7S1tIJ24PWSwADoi0AAe5aoecGAih10uYMRrO7APM7iVZyKREDKsEW9gwsFUUnBPB4kB0Lze6D+bncTBc0EhD3BUxAFTYMJGRwA9IjzjjcMQUB4gTkxHgALSDAB0jBQJBEKC6ACNuFtcHSAHySGRyPBLPQYMAeESIhiwdpRYBCwL0-m2UGwAxGOYEJZSQzGUwEAD6PxwmAAFCCdHASMDoCJIVIXLL2uSeviDqMyABKYBq60a-Xa-AC-0OZyudxeaBLHAES3QfjlWAep4nCkgHisu12a3oX1h-RBw34AA8dMLTmdUbQSx+6AppWgRthmEVARFuHLlc1BrMdYwjd0LcMIHbwvkoa0Ad7wd1xbMJuQaAtVoctp+ujAplgTtcKf2T3GBenDlnJanufD1c8tbj+ATSaBqe6Y0+IizWDXGBPV6LWpLbtTzgCM3FvGN6yHZtWzHJVOyAv9AwA-tIJQJsRzbODJ1VYCkL7HU9WQ41TRXEAE0Q21jAuFhyFgAEcWPP1cPPMxL3VUCaxje9zRfI5aNtN8qOgFgkl-dUWIIBD2JvaMBwbNDhxg8dlS7CtmIXHVUPQpTeQFLDRUQM0sFlGQEilWBNDcMA91eERlM7PSO3kJZLNhPdm1MyURHNeViEiX19L5fkIj8mI4gSVh8CWBgpCkELIh8qIAqcvBy3isL4kSHVrKNXzInyAqCt5ctAqWYgAGtgF0-l0loMhciWTAlFyqJzRyvLfVqzJ6pyAUSnKSpqlYRrXAEFq-LaqRxv84B0sQcKsrLOl+oqTAhqSJZ3Bi6bJum305tiTLIr60pVqqGplgq+gVsGi6ToGtaLpGpQ8sm30bse1gBUGPYCWOOsUBEI1v3NVE5FgDNPxzdVeOOd7Ttu1hyx+4ZPT4sgysqj7zq+-kUcPUYxgBoGQbByAIdZKHvwPP7GOx9bVPx2miau6quuyHIRuIHgduszqNm63J7rOhmuZ4V6+foYrloRz6NquhhWTeDluTYABGFk2RV+Y1YABk15WuW2dp2gN9kjfVs3tfV-XFa1i2IZNq2HY1u3DdV2A9edj2dlNt3zY912lYDnXbeD63Hb98OXe90PY7YX3489pOvf9iPE6AA
http://tinyurl.com/as04v01

D 3.1: Methods for Interoperability and Integration

177 / 220

Figure 61: Request query to AS2AS.

An AS2AS User of Platform A exchange information of interest with services and applications

allocated in another platform/s through INTER-IoT.

Steps for the creation, validation and storage of a flow request query:

Step 1-13: A user uses the Modeller GUI to create a query within available services of Platforms A

and B. In this step the desired information exchange is defined.

Step 14: When the user has finished the design, request a validation of this.

Step 15: The Modeller performs a validation of the created design.

Steps 16-18: The validated design (flow) is stored in the Flow Repository. An identifier is assigned

to the flow. The user is notified of the correct validation.

Steps to run and stop a flow using the API:

Step 19: The user uses the API to start the desired flow.

Step 20: The API calls the orchestrator to start the desired flow.

Steps 21-22: The Orchestrator loads the indicated flow from the Flow Repository.

Steps 24-27: The Orchestrator module starts the flow and calls IoT platform services in the order

indicated in the design to run the composite service. First a call is made to platform A service to

D 3.1: Methods for Interoperability and Integration

178 / 220

receive information, then a call to platform B service is made to send information. During this process,

the Orchestrator could execute some internal services to facilitate this exchange of information.

Steps 28-29: If the flow does not have a stop condition, the user can call the API to stop the flow.

Step 30: The orchestrator informs the user of the correct execution of the flow. On the other hand,

if there is any problem the user will be informed of any error in the execution of a service.

3.4.4 Technologies

We have decided to use Node-RED as the central technology of the AS2AS solution. In the SOTA

section 2.4.2.5 we can find the main characteristics of Node-RED and the other tools we have

considered. Explaining the advantages and disadvantages of these tools in an AS2AS

interoperability solution.

In this section we will include a map of AS2AS and Node-RED features establishing a connection

between its elements and our architecture.

AS2AS

ARCHITECTURE

NODE-RED Observations

IoT Native Services A visual tool for wiring together

hardware devices, APIs and online

services.

INTER-IoT focuses on the

creation of new nodes for IoT

services, as well as on the study

of existing nodes.

Service Catalogue Node-RED comes with a core set of

useful nodes and mechanisms to

implement new custom nodes.

The semantic annotations are not

used.

INTER-IoT is working on the

semantic description of the

nodes. In order to extend the

advantages of Node-RED.

Service Discovery Users can search for available nodes

in the Node-RED library or in the npm

repository. New nodes can be

installed, and existing nodes can be

enabled or disabled .

INTER-IoT exploits the
advantages that the use of
semantic annotations in the
nodes provide to the discovery of
services.

Register Client Node-RED lets implement nodes

directly using the editor.

INTER-IoT is able to introduce

semantic annotations when

registering a new node.

Modeller Node-RED provides a browser-based

flow editor that makes it easy to wire

together flows using a wide range of

nodes in the palette.

The Node-RED graphical tool is

a solution that provides the

desired functionalities to the

INTER-IoT modeller.

Flow Repository A built-in library allows users to save

useful functions, templates or flows for

re-use.

Node-RED offers a solution to

work with the flows.

D 3.1: Methods for Interoperability and Integration

179 / 220

Orchestrator Flows can be deployed by the runtime

with a single-click.

Using this element, users can

make calls to the services in the

desired order.

Data semantic

translation support

Does not offer anything related It is one of the main

improvements that IINTER-IoT

implements.

API AdminHTTP-based API can be used to

remotely administer the runtime.

Runtime API can be used when

embedding Node-RED into another

application.

Runtime API provides a pluggable way

to configure where Node-RED runtime

stores data

Some of the INTER-IoT API

needs are already provided by

the Node-RED API.

Table 7: Summary of Node-RED technologies for INTER-IoT.

Our work is focused on expanding the possibilities offered by Node-RED in these directions:

 Development of nodes for access to services of IoT platforms that have not yet been

implemented, thus actively collaborating with the Node-RED community, offering new nodes

that will fit the needs of the users.

 Development of a solution over the Node-RED platform or making changes in their design,

to achieve the needs of the proposed architecture. For example, creating new solutions in

the cataloguing and discovery of services or by bringing out performance to all the

possibilities that the API can offer.

 Being able to take advantage of the benefits provided by containers engines (docker),

combining it with the use of Node-RED.

 Development of new solutions related to semantics that can work with Node-RED.

 Use the solutions designed in this layer in the infrastructures provided by the project partners.

Next we will focus on explaining how the use of Node-RED and other technologies/platforms would

be combined to offer a new interoperability solution in this layer.

Current catalogue of Platform Services Nodes

We are going to list the contributions that are currently offered in the Node-RED library to work with

the main IoT platforms.

D 3.1: Methods for Interoperability and Integration

180 / 220

Platform Node-RED nodes License

OM2M125 oM2M-Application - a node to define a new OM2M

application

 oM2M-Data-Container - A node to register a Data

Container with OM2M

 oM2M-Data-ContentInstance - a node to push

application's data (a.k.a. Content Instance) @ Data

Container

 oM2M-Descriptor-Container - a node to register a

Descriptor Container with OM2M

 oM2M-Descriptor-ContentInstance - a node to set

application's data metadata @ Descriptor Container

 oM2M-Subscription - a node to define a new OM2M

Subscription

Copyright

2015 the

Apache 2.0

license.

FIWARE126 A set of nodes that allow one to interact with a FiWare

instance:

 fiware-device-out, fiware-device-in - a node that

sends the message payload to FiWare's Orion

Context Broker

 Fiware-instance - configuration node

MIT

Azure IoT

Hub127

A set of nodes that allow one to send messages and register

devices with an Azure IoT Hub. This is a fork from the original

Node-RED example by the Azure IoT team. Nodes:

 azureiothub - this node allows one to send messages

to one’s Azure IoT Hub

 azureiothubregistry - this node allows one to

registers devices with one’s Azure IoT Hub

Azure IoT128 This Node-RED node adds Azure IoT connectivity to the

Node-RED flow.

MIT

Azure IoT Hub

Examples129

This flow has several examples to help to get started sending

data from Node-RED to the Microsoft Azure IoT Hubs.

Other (related to IoT platforms, but not necessarily INTER-IoT)

125 https://github.com/themaco/node-red-contrib-om2m
126 http://flows.nodered.org/node/node-red-contrib-fiware
127 http://flows.nodered.org/node/node-red-contrib-azure-iot-hub
128 http://flows.nodered.org/node/node-red-contrib-azureiothubnode
129 http://flows.nodered.org/flow/1270f25a183d67c5b50e6b4eb78cabea

D 3.1: Methods for Interoperability and Integration

181 / 220

SiteWhere130 Allows Node-RED to interact with the SiteWhere Open IoT

Platform. This module allows a device running Node-RED to

interact with SiteWhere via JSON over the MQTT protocol. It

supports the following concepts:

 registration of a new device with SiteWhere

 sending measurements, alerts, and location data to

SiteWhere

 receiving system commands and custom commands

from SiteWhere

Apache 2.0

IBM Watson131 A pair of Node-RED nodes for connecting to the IBM Watson

Internet of Things Platform as a Device or Gateway.

Apache 2.0

IBM Watson
Examples132

IoT Application Node-RED node for the Registered and

Quickstart flows in the IBM Watson IoT Platform. Nodes:

 ibmiot in - to receive device events, status,

application status and device commands in case of

Registered flow

 ibmiot out - to send device events and device

commands in case of Registered flow

 ibmiot - configuration node

Apache 2.0

SOFIA2133 Experimental: A Node-RED node to interact with Indra's
SOFIA2 IoT platform. Nodes:

 sofia2

 sofia2-server - configurationnode

Apache 2.0

AWS134 A Node-Red node to read and write to the Amazon Web

Services AWS IoT. Nodes:

 aws-mqtt in - MQTT input node. Connects to a broker

and subscribes to the specified topic

 aws-mqtt out - Connects to a MQTT broker and

publishes msg.payload either to the msg.topic or to

the topic specified in the edit window

 aws -thing - a thing shadow is a JSON document that

is used to store and retrieve current state information

for a thing. Use thing shadows to get and set the state

of a thing over MQTT or HTTP

Apache 2.0

130 https://libraries.io/npm/node-red-contrib-sitewhere
131 https://www.npmjs.com/package/node-red-contrib-ibm-watson-iot
132 http://flows.nodered.org/node/node-red-contrib-scx-ibmiotapp
133 http://flows.nodered.org/node/node-red-contrib-sofia2
134 http://flows.nodered.org/node/node-red-contrib-aws-iot-hub

D 3.1: Methods for Interoperability and Integration

182 / 220

 Aws-iot-device - device configuration node

ThingSpeak135 A simple node that sends the payload to thinkerspeak.com

with a http get.

MIT

ThingSpeak

Examples136

A node (thingspeak42) that posts data to a ThingSpeak

channel. Capable of aggregating multiple messages into a

single multi-field post.

MIT

AllJoyn137 A collection of Node-RED nodes to access Alljoyn services

by node-alljoyn.

Apache 2.0

Table 8: Summary of existing IoT platform nodes and example flow for Node-RED.

IPSM related nodes

The Inter Platform Semantic Mediator (IPSM) is a solution, within the INTER-IoT, that provides

semantic translation of messages (for details, see D3.1 section DS2DS). The IPSM receives

messages for translation within a communication translation channel dedicated to an “instance” of

communication with translation. Each channel is created dynamically, when needed, and translates

between two chosen semantics. The IPSM communication channels have inputs (through which the

IPSM receives messages) and corresponding outputs (to which translated messages are written).

Before using the IPSM, a channel and an alignment configuration is required.

In the context of Node-RED, the semantic interoperability tasks are assumed to be realized with

dedicated nodes, required to configure, send data to and receive data from the IPSM. The input and

output messages (data) are in the RDF data format, and have, respectively, source and target

artifacts semantics.

In the Node-RED, the following custom nodes need to be created:

 IPSM Configuration - the configuration node(s) that is(are) used by the IPSM in and out

nodes. The initial configuration consists of:

o alignment - at least one alignment must be added to the Alignments Repository IPSM

component to become available to be used in the translation process,

o channel - instantiation of semantic translation channel, which in turn creates a

corresponding Alignment Applicator IPSM component and configures the IPSM

communication channel.

The IPSM provides REST API to manipulate alignments and channels. This API shall be called from

the Node-RED node(s). The IPSM in and out nodes use the configuration to interact with the IPSM.

• IPSM in - node that accepts data in the RDF format, expressed in semantic of the source

artifact, and writes the data to the communication channel (set during configuration).

Communication channel is available in the IPSM Communication Infrastructure.

135 http://flows.nodered.org/node/node-red-contrib-thingspeak
136 http://flows.nodered.org/node/node-red-contrib-thingspeak42
137 https://www.npmjs.com/package/node-red-contrib-alljoyn

D 3.1: Methods for Interoperability and Integration

183 / 220

• IPSM out - node that consumes data in the RDF format, expressed in semantic of the target

platform, from the communication channel (set during the configuration) available in the IPSM

Communication Infrastructure.

Nodes that already exist in Node-RED and can be useful for implementing semantic translation tasks

are:

• Kafka Node - Kafka node can produce/consume the messages to/from kafka cluster along

with topic(s),

• HTTP Request - core Node-RED node (with available extension) for performing

HTTP/HTTPS requests,

• Swagger API - a Node-RED node able to invoke Web APIs generically based on a Swagger

description.

Semantic catalogue annotations

Standards that offer solutions to the functionalities requested by the Service Catalogue and Service

Discovery are described in the section 2.4.2.2. One of these standards is Hypercat, which is the tool

that most closely matches the needs of AS2AS. In this section you can find a description of Hypercat

features.

Some of the factors that have led to the choice of this standard are listed briefly:

 HyperCat standard is a hypermedia catalogue format designed for exposing information

about the Internet of Things. The Hypercat specification allows Internet of Things clients to

discover information about IoT resources and services over the Web.

 HyperCat provides a standard means for resource discovery, which enables an interoperable

ecosystem. The Hypercat standard makes easier to discover and combine data from

connected things to create valuable new applications and services.

 HyperCat developer community is emerging, with open source tools available. More than 40

organisations (including Intel, ARM and IBM) have been working on this project.

In order to combine semantically annotated Service Catalogue with Node-RED, a set of dedicated

nodes need to be implemented, to perform basic operations on the catalogue. HyperCat is an open,

lightweight JSON-based hypermedia catalogue format for exposing collections of URIs (with any

number of RDF-like triple statements about them). It is designed for exposing information about IoT

assets as linked-data descriptions.

The HyperCat specifications have been implemented in Node.js, Java, Python, PHP. For example,

Node.js node-hypercat is a small library for fetching, pushing and manipulating Hypercats. The

following operations are supported:

● Opening/creating HyperCats

● Inspecting a HyperCat

○ Getting items

○ Getting sub-catalogues

To use HyperCat from Node-RED, we have to create nodes that cover specific API functions.

D 3.1: Methods for Interoperability and Integration

184 / 220

Service semantic annotations

A number of technologies can be used to describe semantic Web services. SADI (Semantic

Automated Discovery and Integration) is a project that defines a set of design patterns for services.

The project is rooted in presenting services as instances of OWL classes, expressed in RDF. A

catalogue of SADI services is an RDF graph of instances.

The services themselves can be described in an OWL ontology. WSMO (Web Service Modelling

Ontology) is one such ontology. It provides a basic model in which any Web service can be

described. Because of inherent extensibility of OWL, this ontology may be combined with other (e.g.

domain specific) ontologies to meet the needs of describing very specific services. The WSMO is

built “on top” of the WSMF (Web Services Modelling Framework). Lightweight Semantic Descriptions

for Services on the Web is provided by the WSMO-Lite. The SWSO (Semantic Web Services

Ontology) is a part of the SWSF (Semantic Web Service Framework) - a framework that aims to

enhance existing Web service technologies with semantics. The ontology itself is defined in a SWSF

language, based on first-order logic, and is an extension of OWL-S.

OWL-S is a first major OWL ontology for describing semantic Web services, that was designed to

enable automatic discovering, invoking, composing, and monitoring of Web resources.

More information on service semantics is in section 2.5.

3.5 DS2DS proposed solution

The approach proposed for the DS2DS level is based on:

 Defining explicit, OWL-demarcated, semantics for each IoT artifact that is to interoperate,

communicate and collaborate

 Creating infrastructure that will translate messages / data / communication from its native

format to the common format used across the INTER-IoT infrastructure

 Create an IoT Platform Semantic Mediator (IPSM) component that will be responsible for

translating incoming information, representing semantics of artifact X to semantics of artifact

Y. The IPSM will use ontological alignments to perform ontology-to-ontology translations.

 Alignments in IPSM are uni-directional.

 IPSM is configured with a core ontology and alignments to and from it.

 Each complete process of translation consists of a translation from input semantics to core

semantics and from core semantics to output semantics.

 The IPSM will work concurrently servicing multiple communication channels, each

representing a single “communication”.

 The IPSM will be designed in such way to maximize speed of translation (and, thus, to allow

use on data streams).

 While each channel will have one input and output, multiple artifacts will be allowed to

subscribe to its output, and write to the input. Channels may be combined in the

Communication Infrastructure to facilitate one-to-many, many-to-one and many-to-many

communication.

D 3.1: Methods for Interoperability and Integration

185 / 220

 Channels are dynamically created and destroyed.

In what follows we describe in more details the architecture of the core of the IPSM, as well as

auxiliary components that are needed for its functioning.

3.5.1 Architecture

The architectural model can be seen below in Figure 62.

The Inter Platform Semantic Mediator (IPSM) is a software component that performs semantic

translation of data. In the context of the INTER-IoT, it is used to translate semantics of messages

exchanged by IoT artifacts (platforms, gateways, applications, etc.) within the INTER-IoT software.

It is composed of the IPSM Core and auxiliary components, i.e. Semantic Annotators, and exposes

a REST API (for configuration). An additional Communication Infrastructure is required to enable

communication between the IPSM and all other “artifacts” that are to use its semantic translation

services.

The Semantic Annotators are “located” between the “outside world” and the IPSM. Their role is to

produce RDF triples from data that they receive, e.g. from Bridges (component described in the

MW2MW layer of the INTER-IoT architecture), and forward them to the IPSM Core through the

Communication Channels, instantiated within the Communication Infrastructure. The IPSM Core

performs the semantic translation of the RDF data, by applying pre-stored alignments (representing

relationships between input and output ontologies). An instance of the IPSM can concurrently

“service” multiple “conversations” taking place in separate Communication Channels. To achieve

this goal, it can communicate with multiple instances of Semantic Annotators at the same time.

Furthermore, each Alignment Applicator services a single Communication Channel and applies a

separate alignment within the context of such channel.

Communication Channels work in publish-subscribe mode, which allows a single channel to serve

both, one-to-one and one-to-many communication. It is explicitly assumed that:

 regardless of underlying semantics, each message flow through a channel is served by a

pair of alignments,

o One alignment is appointed to be the “input” alignment, and another one the “output”.

One or both alignments can be empty (in the latter case no actual translation occurs),

 each alignment has a unique ID, and

 alignments are persisted / managed (added, removed), in an Alignment Repository, during

the lifetime of the IPSM.

Main operations that are going to be served by the IPSM and that are described through the

sequence diagrams (in what follows) are:

 management of alignments in the Alignment Repository

 instantiation of a Communication Channel, and

 sending (and translating on the way) a message from one IoT artifact to another (where

another can be one, or more, artifact(s) subscribed to the given communication channel).

D 3.1: Methods for Interoperability and Integration

186 / 220

Figure 62: DS2DS architecture overview

3.5.2 Technologies

At the moment of writing of the deliverable, for the DS2DS solution we have decided to use the

following technologies.

Technology Justification

Scala A general purpose programming language with executable code running on a

JVM, designed to overcome Java shortcomings (but easily integrable with Java).

Akka Toolkit for building highly concurrent, distributed, message-driven applications,

running on a JVM. Language bindings exist for both Java and Scala.

Akka provides libraries that enable the parallel nature and independence of IPSM

Semantic Translation Channels.

Banana-

RDF

A library for RDF, SPARQL and Linked Data technologies in Scala. It provides an

interface to, and a layer of separation from, SPARQL engines used by Alignment

Applicators, and SPARQL converter in the Alignments Repository.

Apache

Kafka

A distributed streaming platform that runs in production in thousands of

companies. It is high-throughput, low-latency platform for handling real-time data

feeds with architecture based on a scalable pub/sub message queue. It is the

basis of IPSM Communication Infrastructure.

Table 9: Summary of technologies used for DS2DS.

D 3.1: Methods for Interoperability and Integration

187 / 220

3.5.3 Acronyms

For the sake of components and sequence diagrams descriptions, the following acronyms are used:

 IPSM – IoT Platform Semantic Mediator

 G – core IPSM ontology. While the ontology will be modular - to facilitate efficiency and

flexibility of the INTER-IoT approach - the architecture of IPSM does not place such

requirement on it. For sake of simplicity, in the description that follows, it will be treated as a

single entity.

 Px – ontology in which input data is described (possibly, to which non-semantic input data

was lifted)

 Py – ontology in which output data is described (possibly, to which non-semantic input data

was lifted)

 AA – Alignments Applicator

 AR – Alignment Repository

 CC - Communication Channel

 CI - Communication Infrastructure

 CM - Channel Manager

 RM – REST Manager

 SA – Semantic Annotator

 STC – Semantic Translation Channel

3.5.4 Components

Component Communication Infrastructure

Description The role of the CI is to facilitate communication between IoT artifacts

and the IPSM.

Functionalities Acts as a message broker that is used for every communication act. It

exposes API for management of CCs and performing common

operations.

Relation with other

component

It manages instantiated CCs.

Use Cases Involved [38], [67]

Requirements

Involved

[2], [20]

D 3.1: Methods for Interoperability and Integration

188 / 220

Component Communication Channel

Description A channel through which SAs and the IPSM communicate.

Communication channels consist of a Source, Sink, and a series of

Flows between sources and sinks. Specifically:

 Source - the data originates at an entity (e.g. Bridge - a

MW2MW component) that writes to a Semantic Annotator,

 Flow - process within which data goes through a SA into a

STC, with an Alignment Applicator (where it is translated

from Px to Py), back to the STC, to a potentially different

(output) SA,

 Sink - the output through which the SA sends the data to a

receiving entity (e.g. a platform).

The proposed architecture allows for dynamic creation of channels

between any number of components, e.g. one SA may write data

through multiple STCs (and thus multiple alignments) to multiple

receiving SAs. A communication channel can be configured to allow

semantic translation that uses a (possibly different) set of STCs for

any combination of sending and receiving SAs.

Functionalities Each CC provides a one-directional communication-translation. It

receives data sent by the “in-artifact” and allows reading “out-data”

by (one or more) “out-artifacts”.

Relation with other

component

CC allows communication between other components: SAs, IPSM.

A STC is a part of CC.

Use Cases Involved [38], [67]

Requirements Involved [20]

Component Channel Manager

Description CM is a component used for IPSM configuration.

Functionalities CM manages (creates, destroys, lists) Communication Channels i.e.

flows in message broker and Semantic Translation Channels.

Relation with other

component

CM receives requests from RM. CM configures CCs and creates STCs.

D 3.1: Methods for Interoperability and Integration

189 / 220

Use Cases Involved [67]

Requirements

Involved

[20]

Component REST Manager

Description Interfacing component used for management of alignments in the

Alignments Repository and for configuration of Communication

Channels within the IPSM.

Functionalities RM provides an API to facilitate alignments and channel management

functionalities within the IPSM.

Relation with other

component

Provides interface to CM and AR (dedicated API for handling requests).

Use Cases Involved #66 IPSM Alignment Configuration, #67 IPSM Channel Configuration

Requirements

Involved

N/A

Component Semantic Translation Channel

Description A lightweight component that stores information about:

 Where to receive data from (i.e. an in-flow in the CC)

 Which alignment to use (from the AR)

 Where to send data to (i.e. an out-flow in the CC)

Within the IPSM, there may be multiple STCs instances and they may

use the same or a different pair of alignments.

Functionalities Each STC instance receives data from an (input) flow in the CC and

forwards it to an AA, along with information, which alignment to use.

AA sends back translated data, which the STC forwards to an (output)

flow. Each STC operates on a designated pair of (input/output)

alignments.

Relation with other

component

STC is part of CC. Communication with AA.

D 3.1: Methods for Interoperability and Integration

190 / 220

Use Cases Involved [38], [67]

Requirements

Involved

[180], [20]

Component Alignments Repository

Description Component for persistence and management of alignments used in the

translation process. Each alignment is stored in an original SRIPAS

alignment format, based on the Alignment Format from Alignment API, and

as SPARQL statements. Alignments are divided into cells, each cell

representing a one-way semantic transformation between two entities

described in the RDF format.

 Input alignments are unidirectional alignments between Px and G

 Output alignments are unidirectional alignments between G and Py

 SPARQL converter performs one-time conversion for each new

alignment written into the repository. Alignment Applicators use

SPARQL queries to apply each cell of the alignment.

Functionalities Stores and manages alignments (read/write alignments).

Relation with

other component

Used by AA and managed by RM.

Use Cases

Involved

[38], [66]

Requirements

Involved

[180]

Component Alignments Applicators

Description A component, instances of which are performing semantic translation. AAs are

created and destroyed dynamically, as needed, to facilitate scalability.

Functionalities Each AA has a unit that takes an RDF graph and an alignment (in SPARQL) as

input, and returns RDF (translated through the alignment).

Relation with

other

component

Each applicator has access to a SPARQL engine, on which the alignments in

the SPARQL format are applied to RDF data. AAs may share SPARQL engines.

STCs communicate with AAs. AAs use AR.

http://alignapi.gforge.inria.fr/

D 3.1: Methods for Interoperability and Integration

191 / 220

Use Cases

Involved

[38], [67]

Requirements

Involved

[180]

Component SPARQL Converter

Description SPARQL converter is called when new alignment is placed in the AR to

convert alignments’ cells from SRIPAS format to internal SPARQL format.

This is done to speed up future usage of the alignment.

Functionalities Conversion of SRIPAS Alignment format into SPARQL queries.

Relation with other

component

Used within AR.

Use Cases Involved [66]

Requirements

Involved

N/A

Component SPARQL engine

Description SPARQL engine is a service used to execute SPARQL queries (i.e. cells of

an alignment stored in SPARQL format), as instructed by an instance of AA.

It is possible that, based on experimental data collected while testing the

initial implementation, multiple instances of the SPARQL engine will be

created, to achieve higher throughput within the IPSM.

Functionalities Library for management of RDF data and SPARQL execution.

Relation with

other component

Used by AA.

Use Cases

Involved

[38]

Requirements

Involved

[180]

D 3.1: Methods for Interoperability and Integration

192 / 220

Component Semantic Annotator

Description This component instances perform two-way syntactic translation

between RDF (which is always the input and output of an STC) and

another format.

This translation preserves the semantics of the data.

Functionalities Produce RDF triples from received data.

Relation with other

component

Sources and/or sinks for CC.

Use Cases Involved [38], [67]

Requirements

Involved

[180]

3.5.1 Use cases

Use case IPSM Alignment Configuration

Use Case ID 66

Description Before utilizing IPSM translation services an appropriate alignment has

to be added to the repository to be used in the translation process.

Objectives IPSM needs configuration before being utilized

Components Involved REST Manager, Alignment Repository, SPARQL Converter

Requirements

Involved

N/A

Use case link http://jira.inter-iot.eu/browse/INTERIOT-846

D 3.1: Methods for Interoperability and Integration

193 / 220

DS01 DS2DS IPSM Alignment Configuration

Figure 63: IPSM Alignment configuration.

Alignment configuration enables operations, such as add, list and get, to be performed.

Step 1: A Client sends a new alignment and a request to add it to the repository. Before utilizing

IPSM translation services at least one alignment must be added to the Alignments Repository to

become available to be used in the translation process.

Step 2: REST Manager (that exposes a dedicated API) receives the request (with the alignment

attached) and forwards it to the Repository.

Step 3:The repository calls the SPARQL converter to produce required internal SPARQL

representation of the alignment.

Step 4: Assuming that the alignment is well-formatted and no error has occurred, the repository

stores the alignment received from client and its SPARQL representation.

Step 5: A message acknowledging the fact of adding a new alignment is returned from Repository,

through REST Manager to the client.

The remaining two operations (get an alignment and list alignments) are straightforward in their

sequence diagram description.

D 3.1: Methods for Interoperability and Integration

194 / 220

Use case IPSM Channel Configuration

Use Case ID 67

Description IPSM Channel configuration is required before establishing communication,

between designated IoT artifacts, which involves semantic translation.

Objectives IPSM needs configuration before being utilized

Components

Involved

REST Manager, Channel Manager, Communication

Requirements

Involved

N/A

Use case link http://jira.inter-iot.eu/browse/INTERIOT-847

DS02 DS2DS IPSM Channel Configuration

Figure 64: IPSM communication channel configuration.

IPSM Channel configuration is required before establishing communication, between designated IoT

artifacts, which involves semantic translation.

Step 1:The client sends a request to the REST Manager to create a new communication channel. It

passes configuration information that includes identifiers of used alignments and input/output topics.

Step 2:REST Manager communicates with the Channel Manager, in order to instantiate an STC

http://jira.inter-iot.eu/browse/INTERIOT-

D 3.1: Methods for Interoperability and Integration

195 / 220

Step 3: The new STCcreates a corresponding AA

Step 4: AA retrieves alignments form the repository.

Step 5: Once AA and STC are ready, the Channel Manager sends a configuration message to the

Communication Infrastructure, in order to configure the CC. The STC instance needs to know which

CC to use and which alignments to apply. It informs AA about the alignments (as part of AA

instantiation process), so that it can retrieve the right alignments from the repository. Upon

successful completion of the process, a CC is ready to send and receive messages.

Step 6: Channel Manager returns the information about channel creation to the Client. The CC is

now ready to send and receive messages.

Use case IPSM Translation

Use Case ID 38

Description Data is exchanged between artifacts that use different semantics. The

message should be translated from the semantics of the source platform to

the semantics of the target platform.

Objectives To establish communication between platform / systems that use different

semantics.

Components

Involved

Semantic Annotator, Communication Channel, Semantic Translation

Channel, Alignment Applicator

Requirements

Involved

N/A

Use case link http://jira.inter-iot.eu/browse/INTERIOT-826

D 3.1: Methods for Interoperability and Integration

196 / 220

DS03 DS2DS IPSM Translation

Figure 65: Semantic translation through IPSM communication channels.

IPSM translation is the basic process performed within the DS2DS layer of the INTER-IoT

infrastructure. The sequence diagram describes actions to be performed to translate semantics of

the input message to the semantics of the output message. Before the communication takes place,

a communication channel and alignments need to be configured (see previous sequence diagrams).

Step 1: SA receives message from sender entity in a given format and transforms it into RDF triples.

A Sender may send messages directly to a CC, if they are already annotated.

Step 2:The annotated message is sent to the CC

Step 3: CC forwards the message to the corresponding STC

Step 4: STC sends the message to the corresponding AA, where the semantic translation is

performed.

Step 5: The translated message is then sent back, through the STC to the CC

Step 6: The message travels through another instance of SA to the Receiver entity. It should be

stressed, that the role of SAs is to convert formats used by sender/ receiver to/from RDF with explicit

Px/Py semantics, that are consumed, or received by/from IPSM core. Consequently, the SAs are an

optional intermediary that is not required if sender or receiver can use RDF with declared semantics

directly. In such case, they may directly read and write to communication channels.

D 3.1: Methods for Interoperability and Integration

197 / 220

3.6 INTER-Layer relation with INTER-Framework

The IoT Interoperability Framework (INTER-FW) aims at providing mechanisms, tools and helper

contents to make proper use of the Layer Interoperability Infrastructures (LIIs) and Interoperability

Layer Interfaces (ILI).

As described in previous sections, each LII provides generic interoperability means for different

identified technology layers in IoT platforms. The INTER-FW provides a way to 1) select the

appropriate LIIs for the particular scenario (e.g. middleware and services); 2) abstract generic

behaviours present in the most common scenarios (e.g. security administration, device discovery)

even though these behaviours apply to different LIIs (e.g. device discovery); 3) extend the generic

functionalities provided to the specific cases of the scenario (e.g. extend the service interoperability

for a particular natively supported service); 4) provide a single entry point (the framework) to start

using the different capabilities of INTER-IoT, with a common, harmonized API with all the

documentation in one place; and 5) unify when possible the development process with a

homogenized approach to access libraries, develop, configure, deploy and test the software

developed with the framework.

Thus, INTER-FW will provide access to INTER-LAYER structures and mechanisms through the APIs

provided by the five layers’ components, as described in the previous sections. In INTER-IoT, these

APIs are exposed only internally (i.e., the ILIs are not accessible directly by an INTER-IoT user or

third party), however, a good part of these APIs will be exposed almost identically through the INTER-

FW API. For this reason, INTER-FW design and ILIs are processes that depend between them.

INTER-FW specifications (especially those coming from the Reference Architecture and the Meta-

Data Model tasks have an influence in the ILIs design, and, at the same time, the LIIs capabilities

affect the framework definition and the global relation among ILIs.

INTER-FW will rely on different specifications and developments from WP4 that are directly linked

to WP3 and INTER-LAYER definitions:

 An Architecture Reference Model for IoT interoperable platforms, whose initial version is

described in D4.1. This model is the highest abstraction of features and components that

enable the IoT Platform interoperability. A first version is delivered D4.1, based on the

theoretical background, the platforms capabilities study and the first hands-on experience

with widespread IoT platforms. The results of this specification define a complete set of

reference model diagrams, based on existing efforts, for interoperable and open IoT

platforms and provide architectural blueprints necessary to build concrete architectures for

IoT platforms including INTER-LAYER components. The architectural meta-model follows a

top-down approach (model-driven engineering), the definition of such diagrams will allow the

creation of specific architectures with well-defined technologies. During next period it is

expected a refinement of the current document, including (or merging) new interoperability

mechanisms if detected, simplifying when possible the definition and interfaces identified

and, finally, providing support for those aspect that still are under study, such as cross-layer

interoperability or IoT-specific security mechanisms.

 A metadata-model for IoT interoperable semantics, developed in T4.2 and whose preliminary

results are included in D4.1. It provides definition high-level data structures of smart objects

& services for interoperable IoT platforms and relationships between data structures. The

meta-data model developed in WP4 as part of INTER-FW has a direct link with the IPSM and

the GOIoTP (Global Ontology for IoT Platforms) specified and developed in T3.5.

D 3.1: Methods for Interoperability and Integration

198 / 220

Additionally, the meta-data model of INTER-FW is associated with the semantic needs of the

mechanisms included in the five layers of INTER-LAYER.

 A programming API and tools allowing global-level management of the integrated IoT

platforms. As already mentioned, the API of INTER-FW will provide also access to the APIs

of the different INTER-LAYER components, but it will be complemented by additional

functions and tools to manage interoperability between platforms. This API will be defined in

D4.3 in collaboration with the LIIs leaders (WP3 task leaders). The use of the INTER-API will

allow third parties to develop new application and services compatible with the INTER-IoT

paradigm and contribute to the creation of the development ecosystem.

In the following diagram are depicted the modules participating in the INTER-FW definition. Initially,

the framework is envisaged as an upper layer consuming the ILIs and providing ways to specialize

the generic features provided by LIIs. Thus, the INTER-FW acts sometimes as a mere proxy of the

ILIs, while in other cases, it combines, complements and/or particularizes through configuration the

behavior of the lower modules. In the framework are located (or abstracted) some essential features

that, because of the heterogeneity of the implementation in the LIIs (security, authentication) or

simply due to the incapability to implement in such as lower levels (meta-data repositories), are

provided at framework level. It also includes framework specific tasks such as configuration,

deployment or management.

Finally, all those features are exposed in a common API which tries to offer a homogeneous access

to the INTER-IoT features regardless the configuration or particularities of the scenario. APIs

management is supported by an adjacent layer and cares about versioning, security, features

supported, documentation, testing and accessibility to documentation, among others. API

management is a relatively new concept that is growing with new Internet services wave, whose

APIs tend to be publicly available, supporting the access to rich and complex contents as those

present in the INTER-FW.

Figure 66: INTER-FW diagram.

D 3.1: Methods for Interoperability and Integration

199 / 220

As it can be seen in this very first draft design of INTER-FW, there will be an INTER-LAYER API

Access layer responsible for the interaction with the bottom layers. Cross-Layer API (CL-API) will be

defined as soon as T3.6 starts in M13.

The design of the relationship between INTER-LAYER and INTER-FW will have a double round trip

approach. First, each layer will design its own API attending to their specific features with a bottom-

up approach, in the sense that INTER-FW will be designed to interact with each interface coming

from the bottom layers. Then, from the upper point of view, that is, from INTER-FW point of view,

the interfaces with all the layers will be homogenized and reviewed. This redesign will be applied

downwards towards the different layers.

D 3.1: Methods for Interoperability and Integration

200 / 220

4 Conclusions

This document presents the initial collection of INTER-IoT interoperability mechanisms and reports

on the first version of the different components, entities and interfaces of the layered approach

proposed by the project, and grouped in the product named INTER-LAYER. INTER-IoT requirements

that have been derived during an iterative process and based on use cases, scenarios and feedback

from stakeholders; have driven the design of INTER-LAYER components. They are related to a wide

range of features across the IoT stack, from smart devices and gateways to cloud-based platform

components and applications, mobility, and data semantics.

The document sets the foundations of the INTER-IoT functional components of INTER-LAYER as

described in the Description of Activity in the context of various interoperability aspects which are

being supported by the INTER-IoT interoperability proposal (syntactic, semantic and layered

interoperability).

INTER-IoT defines an interoperability framework for IoT platforms and thus does not strive to

become another standard IoT platform. INTER-IoT does not store any sensor-generated data

outside of IoT platform boundaries, but rather acts as a mediator between different IoT platforms

ensuring secure and uniform access to platform resources through well-defined interfaces. The

definition of APIs in the different layers of INTER-LAYER allows for the restriction of interoperability

to a certain layer of the IoT platforms involved. It makes the interoperability flexible and allows it to

reflect the interests/needs of the stakeholders, integrators or application developers.

The functional structure of INTER-Layer is built using a layered stack and defines five domains:

Device, Network, Middleware, Applications and Services and Data and Semantics. It is motivated by

different analyzed interoperability proposals as indicated in the state of the art. Device to Device

layer is based on the use of an IoT gateway, which will bring connectivity to devices using different

access networks and legacy gateways and that virtualizes the network intelligence and APIs to

access the upper layers. Network to network layer is based on the use of SDN, SDR and NFV and

will be linked to the virtualized component of the gateway allowing to manage both interoperability

layer in the cloud. The network layer will provide support for mobility and offloading. Middleware to

middleware interoperability is implemented in the way of a super-middleware that allows transparent

access to different IoT platforms, both existing and newly developed ones. It will flexibly be integrated

in INTER-LAYER. Application and services to application and services interoperability allows the

orchestration and connectivity between services from different IoT platforms, and will be based on a

customized version of Node-RED, that is a common approach used by the IoT-EPI projects. Finally,

Data and semantics to Data and semantics layer brings the GoIoTP Ontology that will extend

different state of the art IoT ontologies as indicated and has developed the IPSM, that will be used

by the different layers.

Our approach incorporated different novel contributions for example: the virtual gateway that may

allow integration of IoT interoperability with operators’ data centers; link between SDN/NFV with IoT

and support for interoperability at network layer, which has been also proposed as link between IoT

and 5G and the introduction of the semantic mediator. Additionally, INTER-LAYER includes some

state-of-the-art components that will be used for example for application and service interoperability

(e.g. customized version of Node-RED for IoT platforms).

In this document we have focused on defining the components of the prioritized areas from the

requirements. Thus, the focus has been placed in device to device, middleware to middleware and

D 3.1: Methods for Interoperability and Integration

201 / 220

data and semantics interoperability, however network to network and application and services to

application and services have also been developed, but considering that both may need inputs

respectively from the device to device and middleware to middleware layers.

Developments have already started and there are first releases of the virtual gateway, MW2MW and

IPSM. In the next phase that will be described in D3.2, a second version of every layer and the

integration of the gateway and the network component, the middleware component, and the

applications and services component will be provided. Adjustments in the different layers will be

done in order to achieve performance and scalability. Additionally, as the cross-layer interoperability

task will start in M13 all the functions assigned to this task like QoS, security, privacy and trust will

be included in the following release of INTER-LAYER. And finally as WP4 and WP5 activity

progresses the next release of the deliverable will provide further integration with INTER-FW and

INTER-METH. Both products are under design in the moment of releasing this deliverable and

INTER-LAYER has served as input to them.

D 3.1: Methods for Interoperability and Integration

202 / 220

5 References

[1] K. Waters, Prioritization using moscow, Agile Planning 12, 2009.

[2] N. Omnes, M. Bouillon, G. Fromentoux and O. Le Grand, “A programmable and Virtualized

Network & IT Infrastructure for the Internet of Things,” 2015 18th International Conference

on Intelligence in Next Generation Networks, 2015.

[3] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky and S.

Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE,

vol. 103(1), pp. 14-76, 2015.

[4] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka and T. Turletti, “A survey of

software-defined networking: Past, present, and future of programmable networks,” IEEE

Communications Surveys & Tutorials, vol. 16(3), pp. 1617-1634, 2014.

[5] N. McKeown and G. Parulkar et al., OpenFlow: Enabling Innovation in Campus Networks,

Stanford University, March 14, 2008.

[6] IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless

Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer, IEEE Std. 802.15.4e-

2012, 2012.

[7] IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless

Personal Area Networks (LR-WPANs), IEEE Std. 802-15.4-2011, 2011.

[8] A. Tinka, T. Watteyne and K. Pister, “A decentralized scheduling algorithm for time

synchronized channel hopping,” in International Conference on Ad Hoc Networks,

Springer, 2010.

[9] N. Accettura, E. Vogli, M. R. Palattella, L. A. Grieco, G. Boggia and M. Dohler,

“Decentralized traffic aware scheduling in 6TiSCH networks: Design and experimental

evaluation,” IEEE Internet of Things Journal, vol. 2, no. 6, pp. 455-470, 2015.

[10] RFC 6550 - RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, IETF, 2012.

[11] R. Soua, P. Minet and E. Livolant, “Wave: a distributed scheduling algorithm for

convergecast in IEEE 802.15.4e TSCH networks,” Transactions on Emerging

Telecommunications Technologies, 2015.

[12] S. Duquennoy, B. Al Nahas, O. Landsiedel and T. Watteyne, “Orchestra: Robust mesh

networks through autonomously scheduled TSCH,” Proceedings of the 13th ACM

Conference on Embedded Networked Sensor Systems, 2015.

[13] Q. Liu, X. Wang and G. Giannakis, “A cross-layer scheduling algorithm with QoS support in

wireless networks,” IEEE Transactions on vehicular Technology, vol. 55(3), pp. 839-847,

2006.

D 3.1: Methods for Interoperability and Integration

203 / 220

[14] B. Ji, C. Joo and N. B. Shroff, “Delay-based back-pressure scheduling in multihop wireless

networks,” IEEE/ACM Transactions on Networking, vol. 21(5), pp. 1539-1552, 2013.

[15] B. Li, A. Eryilmaz and R. Srikant, “On the universality of age-based scheduling in wireless

networks,” 2015 IEEE Conference on Computer Communications (INFOCOM), 2015.

[16] A. Saifullah, J. Li, K. Agrawal, C. Lu and C. Gill, “Multi-core real-time scheduling for

generalized parallel task models,” Real-Time Systems, vol. 49(4), pp. 404-435, 2013.

[17] M. J. Neely, “Delay-based network utility maximization,” IEEE/ACM Transactions on

Networking (TON), vol. 21(1), pp. 41-54, 2013.

[18] M. R. Palattella, N. Accettura, L. Grieco, G. Boggia, M. Dohler and T. Engel, “On Optimal

Scheduling in Duty-Cycled Industrial IoT Applications Using IEEE802.15.4e TSCH,” IEEE

Sensors Journal, vol. 13, no. 10, 2013.

[19] O. D. Incel, A. Ghosh, B. Krishnamachari and K. Chintalapudi, “Fast data collection in tree-

based wireless sensor networks,” IEEE Transactions on Mobile computing, vol. 11, no. 1,

pp. 86-99, 2012.

[20] Y. Wu, J. A. Stankovic, T. He and S. Lin, “Realistic and efficient multi-channel

communications in wireless sensor networks,” INFOCOM 2008. The 27th Conference on

Computer Communications. IEEE, 2008.

[21] R. Soua, P. Minet and E. Livolant, “MODESA: An optimized multichannel slot assignment

for raw data convergecast in wireless sensor networks,” 2012 IEEE 31st International

Performance Computing and Communications Conference (IPCCC). IEEE, 2012.

[22] S. Kuhlins and R. TredWell, “Toolkit for Generating Wrappers – A seurvey of Software

Toolkit for Automated Data Extraction from Web Sites,” Net.ObjectsDays, 2002.

[23] A. H. Laender et al., “A brief Survey of Web Data Extraction Tools,” ACM SIGMOD

Record, pp. 84-93, 2002.

[24] A. Firat, “Information Integration Using Contextual Knowledge and Ontology Merging,” MIT

Sloan PhD thesis, 2003.

[25] G. Huck, P. Fankhauser, K. Aberer and E. Neuhold, “Jedi:Extracting and Synthesizing

Information from the Web,” German National Research Center for Information Technology

Integrated Publication and Information Systems Institute IPSI, Dolivostr. 15, 64293

Darmstadt, Germany.

[26] M. E. Califf and R. J. Mooney, “Relational Learning of Pattern Match Rules for Information

Extraction,” in Proceedings of the Sixteenth National Conference on Artificial Intelligence

and Eleventh Conference on Innovative Applications of Artificial Intelligence, Orlando, FL,

1999, pp. 328-334.

[27] A. Soderland and F. Azavant, “Learning information extraction rules for semi-structured

and free text,” Machine learning, Vols. 34 (1-3), pp. 233-272, 1999.

[28] N. Kushmerick and B. Grace, “The Wrapper Induction Environment,” AAAI Technical

Report WS-98-10.

D 3.1: Methods for Interoperability and Integration

204 / 220

[29] I. Muslea, S. Minton and C. Knoblock, “Hierarchical wrapper induction for semistructured

information sources,” Autonomous Agents and Multi-Agents Systems, vol. 4, pp. 93-114,

2001.

[30] B. Adelberg, “A Tool for Semi-Automatically Extracting Structured and Semi-Structured

data from text documents,” in Proceedings of the ACM SIGMOD International Conference

on Management of Data, 1998, pp. 283-294.

[31] D. Pallmann, Network Query Language, Wiley, 2002.

[32] J. Fujima and K. P. Jankte, “Web Service Wrapping Technologies for Customizable

Consumer Electronics,” IEEE 3rd Global Conference on Consumer Electronics (GCCE),

October 2014.

[33] M. N. Kuwahara and Y. Tanaka, “Webbles:Programmable and customizable meme media

objects in a knwoledge federation framework environment on the web,” Second Intl.

Workshop on Konowledge Federation, Oct. 2010.

[34] “FI-WARE Applications/Services Ecosystem and Delivery Framework,” [Online]. Available:

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-

WARE_Applications/Services_Ecosystem_and_Delivery_Framework. [Accessed 15

December 2016].

[35] K. Tollmar, F. Bentley and C. Viedma, “Mobile Health Mashups: Making sense of multiple

streams of wellbeing and contextual data for presentation on a mobile device,” 6th

International Conference on Pervasive Computing Technologies for Healthcare

(PervasiveHealth) and Workshops, 2012.

[36] F. Montesi, “Choreographic Programming,” Ph.D. thesis, IT University of Copenhagen,

2013. [Online]. Available:

http://www.fabriziomontesi.com/files/choreographic_programming.pdf.

[37] “Service Orchestration,” [Online]. Available:

https://github.com/universAAL/service/wiki/Service-Orchestration. [Accessed 15 Dec.

2016].

[38] M. E. Cambronero, G. Díaz, E. Martínez and V. Valero, “A Comparative Study between

WSCI, WS-CDL, and OWL-S,” 2009 IEEE International Conference on e-Business

Engineering (ICEBE 2009) Macau, China, pp. 377-382, 2009.

[39] J. Mendling and M. Hafner, “From WS‐CDL choreography to BPEL process orchestration,”

Journal of Enterprise Information Management, vol. 21, no. 5, pp. 525 - 542, 2008.

[40] “Internet of the Things Architecture, Orchestration of distributed IoT service interactions,”

[Online]. Available: http://www.meet-iot.eu/deliverables-IOTA/D2_3.pdf.

[41] T. R. Gruber, «Toward principles for the design of ontologies used for knowledge

sharing.,» International Journal of Human-Computer Studies, vol. 43, nº 4-5, pp. 907-928,

1995.

[42] “Resource description framework (RDF),” [Online]. Available: https://www.w3.org/RDF.

[43] “RDF schema 1.1,” 2014. [Online]. Available: https://www.w3.org/TR/rdf-schema.

D 3.1: Methods for Interoperability and Integration

205 / 220

[44] “Web Ontology Language,” [Online]. Available: https://www.w3.org/TR/owl2-overview.

[45] “SPARQL 1.1 overview,” [Online]. Available: https://www.w3.org/TR/sparql11-overview.

[46] “oneM2M standards for M2M and the Internet of Things,” [Online]. Available:

http://www.onem2m.org.

[47] “Fiware openstack-based cloud environment and open APIs for Internet of Things,”

[Online]. Available: https://www.fiware.org.

[48] “Gambas generic adaptive middleware for behavior-driven autonomous services,” [Online].

Available: http://www.gambas-ict.eu.

[49] “IoT.est Internet of Things environment for service creation and testing,” [Online].

Available: http://ict-iotest.eu/iotest.

[50] S. De, T. Elsaleh, P. M. Barnaghi and S. Meissner, “An Internet of Things platform for real-

world and digital objects,” Scalable Computing: Practice and Experience, vol. 13 (1).

[51] Internet of Things Success Stories, Series 1-3, Internet of Things European Research

Cluster (IERC) and Smart Action, 2014-2015. URL http://www.smart-

action.eu/publications, P.Cousin.

[52] P. M. Barnaghi, W. Wang, C. A. Henson and K. Taylor, “Semantics for the Internet of

Things: Early progress and back to the future,” International Journal on Semantic Web and

Information Systems, vol. 8 (1), pp. 1-21, 2012.

[53] C. Perera, C. H. Liu, S. Jayawardena and M. Chen, “Context-aware computing in the

Internet of Things: A survey on Internet of Things from industrial market perspective,” URL

http://arxiv.org/abs/1502.00164.

[54] “Csiro sensor ontology,” [Online]. Available:

http://www.w3.org/2005/Incubator/ssn/wiki/SensorOntology2009.

[55] “Swamo ontology,” [Online]. Available:

http://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor_and_Observations_Ontolog

ies#SWAMO.

[56] A. Underbrink, K. Witt, J. Stanley and D. Mandl, “Autonomous mission operations for

sensor webs,” AGU Fall Meeting Abstracts C5, 2008.

[57] “Mmi device ontology,” [Online]. Available:

https://marinemetadata.org/community/teams/ontdevices.

[58] “Seek extensible observation ontology,” [Online]. Available:

https://semtools.ecoinformatics.org/oboe.

[59] C. A. Henson, J. K. Pschorr, A. P. Sheth and K. Thirunarayan, “SemSOS: Semantic sensor

observation service,” Proc. of the 2009 International Symposium on Collaborative

Technologies and Systems (CTS 2009), pp. 44-53. URL

http://knoesis.wright.edu/library/publications/C%2B09-Sem SOS_CTS.pdf, 2009.

[60] K. Janowicz and M. Compton, “The stimulus-sensor-observation ontology design pattern

and its integration into the semantic sensor network ontology,” Proc. 3rd International

D 3.1: Methods for Interoperability and Integration

206 / 220

Workshop on Semantic Sensor Networks 2010 (SSN10) in conjunction with the 9th

International Semantic Web Conference (ISWC 2010), Shanghai, China, pp. 64-78. URL

http://ceur-ws.org/Vol-668/paper12.pdf, 2010.

[61] “Sensor Model Language (SensorML),” [Online]. Available:

http://www.opengeospatial.org/standards/sensorml.

[62] “SSN Ontology,” [Online]. Available: http://www.w3.org/2005/Incubator/ssn/ssnx/ssn.

[63] “Semantic Sensor Network XG Annual report (2011),” [Online]. Available:

http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628.

[64] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, O. Corcho, S. Cox, J. Graybeal,

M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz, W. D. Kelsey, D. L. Phuoc, L.

Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth and K. Taylor,

“The SSN ontology of the W3C semantic sensor network incubator group,” Web

Semantics: Science, Services and Agents on the World Wide Web, vol. 17, pp. 25-32. URL

http://www.websemanticsjournal.org/index.php/ps/article/view/312, 2012.

[65] “DOLCE+DnS Ultralite,” [Online]. Available:

www.ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite.

[66] R. Bendadouche, C. Roussey, G. D. Sousa, J. Chanet and K. M. Hou, “Extension of the

semantic sensor network ontology for wireless sensor networks: The stimulus-wsnnode-

communication pattern,” Proc. 5th International Workshop on Semantic Sensor Networks,

SSN12, Boston, MA, USA, vol. 904, pp. 49-64. URL http://ceur-ws.org/Vol-904/paper5.pdf,

2012.

[67] H. Müller, L. Cabral, A. Morshed and Y. Shu, “From RESTful to SPARQL: A case study on

generating semantic sensor data,” Proc. 6th International Conference on Semantic Sensor

Networks Volume 1063, SSN'13, CEUR WS.org, Aachen, Germany, pp. 51-66. URL

http://dl.acm.org/citation.cfm?id=2874543.2874547, 2013.

[68] G. Atemezing, O. Corcho, D. Garijo, J. Mora, M. Poveda-Villalón, P. Rozas, D. Vila-Suero

and B. Villazón-Terrazas, “Transforming meteorological data into Linked Data,” Semantic

Web, vol. 4, no. 3, pp. 285-290, 2013.

[69] C. Wang, N. Chen, C. Hu, S. Yan and W. Wang, “A general sensor web resource ontology

for atmospheric observation,” Proc. IEEE International Geoscience and Remote Sensing

Symposium, IGARSS 2011, Vancouver, BC, Canada, IEEE, pp. 3436-3439, 2011.

[70] A. J. G. Gray, R. García-Castro, K. Kyzirakos, M. Karpathiotakis, J. -P. Calbimonte, K.

Page, J. Sadler, A. Frazer, I. Galpin, A. A. A. Fernandes, N. W. Paton, O. Corcho, M.

Koubarakis, D. Roure, K. Martinez and A. Gómez Pérez, “A semantically enabled service

architecture for mashups over streaming and stored data,” The Semantic Web: Research

and Applications: 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete,

Greece, Proceedings, Part II, Springer, pp. 300-314. doi:10.1007/978-3-642-21064-8_21.

URL http://dx.doi.org/10.1007/978-3-642-21064-8_21, 2011.

[71] “Stream Annotation Ontology,” [Online]. Available:

http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao.

D 3.1: Methods for Interoperability and Integration

207 / 220

[72] S. Kolozali, M. Bermudez-Edo, D. Puschmann, F. Ganz and P. Barnaghi, “A knowledge-

based approach for real-time iot data stream annotation and processing,” Internet of

Things (iThings), 2014 IEEE International Conference on, and Green Computing and

Communications (GreenCom), IEEE and Cyber, Physical and Social Computing

(CPSCom), IEEE, pp. 215-222, 2014.

[73] “IoT lite Ontology,” [Online]. Available: http://www.w3.org/Submission/iot-lite.

[74] “Smart appliances reference ontology (saref),” [Online]. Available:

https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology.

[75] “oneM2M ontologies,” [Online]. Available: http://www.onem2m.org/technical/onem2m-

ontologies.

[76] “Fiesta-IoT Project,” [Online]. Available: http://fiesta-iot.eu.

[77] “Fiesta-IoT achieves semantic interoperability between FIWARE and OneM2M,” [Online].

Available: http://fiesta-iot.eu/fiesta-achieves-semantic-interoperability-between-fiware-and-

onem2m.

[78] J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J. -P. Calbimonte, M. Riahi, K. A.

Aberer, P. P. Jayaraman, A. Zaslavsky, I. Podnar Karko, L. Skorin-Kapov and R. Herzog,

“OpenIoT: Open source Internet-of-Things in the cloud,” in Interoperability and Open-

Source Solutions for the Internet of Things, Springer, 2015, pp. 13-25.

[79] J. Calbimonte, S. Sarni, J. Eberle and K. Aberer, “XGSN: an open-source semantic

sensing middleware for the web of things,” in Joint Proceedings of the 6th International

Workshop on the Foundations, Technologies and Applications of the Geospatial Web, TC

2014, and 7th International Workshop on Semantic Sensor Networks, SSN 2014, co-

located with 13th International Semantic Web Con, Riva del Garda, Trentino, Italy, 2014,

pp. 51-66.

[80] K. Aberer, M. Hauswirth and A. Salehi, “A middleware for fast and flexible sensor network

deployment,” in Proceedings of the 32nd international conference on Very large data

bases, VLDB Endowment, 2006, pp. 1199-1202.

[81] C. Stadler, J. Lehmann, K. Höhner and S. Auer, “LinkedGeoData: A core for a web of

spatial open data,” Semantic Web Journal, vol. 3(4), pp. 333-354, 2012.

[82] “Basic Geo (WGS84 lat/long) vocabulary,” [Online]. Available:

https://www.w3.org/2003/01/geo.

[83] D. Le-Phuoc, H. Quoc, J. Parreira and M. Hauswirth, “The linked sensor middleware-

connecting the real world and the semantic web,” Semantic Web Challenge (ISWC), 2011.

[84] L. Otero-Cerdeira, F. J. Rodríguez-Martínez and A. Gómez-Rodríguez, “Ontology

matching: A literature review,” Expert Systems with Applications, vol. 42(2), pp. 949-971,

2015.

[85] “50 Ontology Mapping and Alignment Tools,” [Online]. Available:

http://www.mkbergman.com/1769/50-ontology-mapping-and-alignment-tools.

[86] “50 Ontology Matching,” [Online]. Available: http://ontologymatching.org/projects.html.

D 3.1: Methods for Interoperability and Integration

208 / 220

[87] N. Duyhoa and Z. Bellahsene, “Overview of YAM++ -(Not) Yet Another Matcher for

ontology alignment task,” Research report . URL http://hal-lirmm.ccsd.cnrs.fr/lirmm-

01079124, 2014.

[88] E. Jiménez-Ruiz and B. C. Grau, “LogMap: Logic-based and scalable ontology matching,”

in International Semantic Web Conference (ISWC), Springer, 2011, pp. 273-288.

[89] E. J. Ruiz, B. C. Grau, Y. Zhou and I. Horrocks, “Large-scale interactive ontology

matching: Algorithms and implementation,” in Proc. of the 20th European Conference on

Artificial Intelligence (ECAI), 2012, pp. 444-449.

[90] W. F. Dowling and J. H. Gallier, “Linear-time algorithms for testing the satisfiability of

propositional Horn formulae,” The Journal of Logic Programming, vol. 1(3), pp. 267-284,

1984.

[91] D. Aumueller, H. -H. Do, S. Massmann and E. Rahm, “Schema and ontology matching with

COMA++,” in Proc. of the 2005 ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 906-908.

[92] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz and F. M. Couto, “The

Agreement Maker Light ontology matching system,” in OTM 2013 Conferences “On the

Move to Meaningful Internet Systems”, Springer, 2013, pp. 527-541.

[93] D. Faria, C. Martins and A. Nanavaty, “AgreementMakerLight results for OAEI 2014,” in

ISWC Int. Workshop on Ontology Matching (OM), CEUR Workshop Proceedings, 2014.

[94] D. Faria, C. Martins, A. Nanavaty, D. Oliveira, B. S. Balasubramani, A. Taheri, C. Pesquita,

F. M. Couto and I. F. Cruz, “AML results for OAEI 2015,” in ISWC Int. Workshop on

Ontology Matching (OM), CEUR Workshop Proceedings, 2015.

[95] J. David, J. Euzenat, F. Scharfle and C. Trojahn dos Santos, “The alignment API 4.0,”

Semantic Web, vol. 2 (1), pp. 3-10, 2011.

[96] J. Volz, C. Bizer, M. Gaedke and G. Kobilarov, “Silk-A Link Discovery Framework for the

Web of Data,” LDOW, vol. 538, 2009.

[97] F. Giunchiglia, A. Autayeu and J. Pane, “S-Match: An open source framework for matching

lightweight ontologies,” Semantic Web, vol. 3 (3), pp. 307-317, 2012.

[98] G. Fortino, R. Gravina, W. Li and C. Ma, “Using Cloud-assisted Body Area Networks to

Track People Physical Activity in Mobility,” in Proc. of the International Conference on

Body Area Networks (BodyNets 2015), Australia, Sep 2015, pp. 85-91.

[99] R. Gravina, C. Ma, P. Pace, G. Aloi, W. Russo, W. Li and G. Fortino, “Cloud-based

Activity-aaService cyberphysical framework for human activity monitoring in mobility,”

Future Generation Computer Systems, Available online 22 September 2016, DOI:

10.1016/j.future.2016.09.006.

[100] G. Fortino and R. Gravina, “A Cloud-Assisted Wearable System for Physical

Rehabilitation,” in ICTs for Improving Patients Rehabilitation Research Techniques, vol.

515, Nov 2015, pp. 168-182.

D 3.1: Methods for Interoperability and Integration

209 / 220

[101] G. Fortino, R. Gravina, A. Guerrieri and G. Di Fatta, “Engineering Large-Scale Body Area

Networks Applications,” in Proc. of the International Conference on Body Area Networks

(BodyNets 2013), Boston, United States, ACM press, 2013, pp. 363-369.

[102] G. Fortino, S. Galzarano, R. Gravina and W. Li, “A framework for collaborative computing

and multi-sensor data fusion in body sensor networks,” Information Fusion, vol. 22, pp. 50-

70, 2015.

[103] A. Ricauda, N. G. Isaia, V. Tibaldi, G. Bestente, A. Frisiello, A. Sciarappa, S. Cavallo, M.

Ghezzi and G. Larini, “Telecare and Telemedicine in Home Care Practice: Field Trial

Results,” in Distributed Diagnosis and Home Healthcare (D2H2), vol. 2, American Scientific

Publishers (ASP), 2011, pp. 281-303.

[104] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo and C. Savaglio, “Enabling

IoT interoperability through opportunistic smartphone-based mobile gateways,” Journal of

Network and Computer Applications, Available 20 October 2016, DOI:

10.1016/j.jnca.2016.10.013.

[105] World Health Organization, Obesity: Preventing and Managing the Global Epidemic. WHO

Obesity Technical Report Series 894, Geneva, Switzerland, 2000.

[106] World Health Organization, Physical Status: The Use and Interpretation of Anthropometry.

Technical Report Series 854, Geneva, Switzerland, 1995.

[107] World Health Organization, Global status report on non communicable diseases, 2010.

[108] F. Bellifemine, G. Fortino, A. Guerrieri and R. Giannantonio, “Platform-independent

development of collaborative Wireless Body Sensor Network applications: SPINE2,” IEEE

International Conference on SMC, pp. 3144-3150, 2009.

[109] H. Arslan, Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems,

Springer, 2007.

D 3.1: Methods for Interoperability and Integration

210 / 220

6 Annex

In this section we present complementary data mentioned in the other sections of this document.

6.1 INTER-LogP pilot requirements table

ID Name Type Category MoScow

priority

248 Create new services to access

different platforms

Interoperability Non-

functional

Must

Access to resources and services of a virtual entity from another IoT platform or application

when certain rules are met. Modification of services or creation of new ones that take

advantage of shared information.

193 Allow communication between

legacy systems

Operational Functional Must

Connect legacy systems with new services through standard based protocol gateways to

free data from proprietary constraints.

247 Need of object virtualization Operational Non-

functional

Must

The IoT platforms use virtual objects of its physical entities for managing data from different

sources. They can share these virtual objects or part of them with other IoT platforms when

necessary. Capacity to define access rules to different attributes of the virtual entity among

platforms is required.

249 Semantic interoperability among

platforms

Semantics,

Interoperability

Non-

functional

Must

The data provided by an IoT platform to another IoT platform must be understandable for

the receiver platform.

54 High response time Communications Non-

functional

Should

High time responses for accessing data should be established.

84 Priority in alarms Functionality Non-

functional

Should

Alarms should go in priority way, not more than a second, and launch triggers.

168 Provide an alert system Functionality Functional Should

INTER-IoT needs to provide an alert system among heterogeneous IoT platforms

associated with a subscription system (requirement 201) that will notify events when the

attributes of a virtual entity change according to predefined values or ranges.

D 3.1: Methods for Interoperability and Integration

211 / 220

252 IoT platforms are able to stop

sharing an object at any moment

Interoperability Functional Should

The road haulier company is able, at any moment, to finalize the connection with the port

IoT platform if it decides to do that.

166 Detection of passive physical

entities to start communication with

other platforms

Interoperability Functional Should

When you have multiple passive physical entities, you need a mechanism for quick

identification of objects that ensure you know where they are at all times. This allows to

identify entities in any environment.

194 Provide exchange of virtual objects

between platforms

Interoperability Functional Should

INTER-IoT need to provide that a company shares a virtual object with other company when

the physical object is on its facilities. You can share the whole virtual object or a part of it.

167 Provide services to associate and

link two virtual entities

Interoperability Functional Should

INTER-IoT needs to provide services to associate and link two virtual entities handled by

different and heterogeneous IoT platforms when they are in proximity. So that they can

exchange information immediately between them. You can also disassociate the virtual

entities.

195 Provide the creation and monitoring

of geofences

Operational Functional Should

There are actions that must be performed when an object enters or leaves an area.

Therefore, there must be a mechanism to detect it, by using geofences.

197 Beacons to request the

communication from other

platforms and devices

Communications Functional Could

There are some objects that need to send data to nearby devices. This communication may

be indoor or outdoor and low energy consumption, as it will not have access to a power

supply.

79 Service to manage energy

consumption of devices

Feature Functional Could

The framework provides methods for energy management (status, enable/disable, power

saving mode, etc.) to end users, when native platforms allow it.

198 Capacity to achieve a

heterogeneous computing platform

environment

Functionality Functional Could

In INTER-IoT are several platforms, and each has multiple devices or sensors. This

generates a lot of information that must be stored and processed. Therefore it is needed

D 3.1: Methods for Interoperability and Integration

212 / 220

tools that enable processing a large amount of data from several different platforms, such

as Big Data tools.

246 Identification of an object through

multiple techniques

Operational Functional Could

There should be the possibility of identify an object through different techniques, giving

priority to one of them.

81 Services should provide Quality of

Service

QoS Non-

functional

Could

In the INTER-IoT project there are two business use cases related to health and logistics

and transport. In the case of health, if communication fails, a patient may suffer serious

consequences. In the logistics case, you can assume considerable losses for a company. It

is therefore essential to ensure the quality of services. In addition, safety and security could

also be in risk when quality of services is not guaranteed (e.g. dangerous goods inside

container boxes).

139 Multiple interface options Usability Non-

functional

Could

The system shall provide the users with several user responsive interfaces, according to the

individual needs and preferences of a user or the situation the user is in.

Possible types of user interface are:

- graphical user interfaces over all kind of devices (smart phones, tablet PCs, video screens,

virtual reality glasses, touch screens etc.).

- geographical representations of data like map representations.

- audio interfaces, both for alarms/notifications and for interaction.

196 Position detection of objects

through WiFi

Operational Functional Won't

The need of getting the position of the objects with accuracy and reliability becomes

necessary to detect the position through different mechanisms. Therefore, the WiFi signal

received will be use at different access points to calculate the position of the object, as a

complement to other methods such as GPS.

Table 10: INTER-LogP pilot minimum requirements.

6.2 INTER-Health pilot requirements table

ID Name Type Category MoScow

priority

71 Application response time Functionality Non-

functional

Must

D 3.1: Methods for Interoperability and Integration

213 / 220

The "navigation" functionalities on different contents by using both Smartphone or Personal

Computer to access to the platform, have to guarantee a response time of a few seconds.

127 Availability of sensor data Functionality Non-

functional

Must

Health monitoring data must be viewable from a remote location to facilitate patient triage

and inform decision making.

176 User Access Gateway for Patients Operational Functional Must

Gateway main functionalities for patients are:

 Access to services (providing username and password).

 Setting Profile communication and devices pairing.

 Managing measures on the device and releasing them to the gateway which stores

them on a local database.

 Possibilities of inserting measures manually.

 Sending measures to the platform.

 Reporting locally measures already stored.

 In term of interoperability, the INTER-Health gateway uses the gateway architectural

scenarios described in the requirement 175.

146 Information sheet. Processing of personal

data

Privacy Non-

functional

Must

The person tasked with processing must provide the information sheet, to the involved

person or the person from whom you collect the data, in the manner determined by the data

processor of the structure and using the forms, where prepared by the Company.

During the health use case, the information sheet shows in a simple but detailed way:

 Purpose of the study;

 Detailed study protocol;

 Advantages and the risks involved;

 Any costs or compensation for subjects who choose to participate;

 Voluntary participation;

 Right of withdrawal at any time;

 References of the person responsible of the project.

145 Informed consent. Processing of personal

data

Privacy Non-

functional

Must

The informed consent must be:

 freely express,

 specifically performance,

D 3.1: Methods for Interoperability and Integration

214 / 220

 must be known by the involved person, of legal age, not banned and able to

understand or want. For different reasons of incapacity or inability, the privacy code

has the legitimacy of one of the following subjects:

1. operator of the power, in the case of under-age or person prohibited or subject

to support administration;

2. family, close relative or partner (all placed on the same level) for cases of physical

impossibility or inability to understand or want the individual;

3. residually, the Data Processor of the institution where is the involved subject.

218 Personal data collected on Computerized

Nutritional Folder during Experimental and

Traditional Nutritional Counselling

Privacy Functional Must

The data of the recruited subjects, collected on electronic nutritional folder refer to:

 Personal and identification data

 Anthropometric data (weight, height, BMI, waist circumference)

 Food research (eating habits and physical activity)

103 User Authentication to access INTER-Health

services

Security Non-

functional

Must

Nowadays users shall authenticate to the services using their username and password (see

Non Functional Requirements); if needed, a stronger way of authentication will be

implemented.

To guarantee the correct identification of the INTER-Health user (such as Patients and

Sanitary staff) but also the technical addicts such as platforms administrators.

106 Definition of reference meaning for health

information

Semantics Functional Must

Health information can be detected using different devices according to different way of

measurement (unit of measure that could differ from country to country and also depending

on devices manufacturers).

To use same information coming from different systems and going to others, it is mandatory

to establish specific criteria to:

 Define a common meaning if it is possible.

 Determine a correspondence between different data that have the same meaning

and different values.

 Set transcoding tables between different values of the same data.

104 Personal data and user profile management Data model Functional Should

User data and provisioning will be based on:

 A set of identification data (such as surname, name, tax code, country and so on).

 Role and profiling.

D 3.1: Methods for Interoperability and Integration

215 / 220

 Contact data and addresses.

 Anthropometric and health information.

Users can be recorded both locally (on the owner platform) or in the Cloud (on one or more

client platforms).

164 Medical Device informatics Functionality Non-

functional

Should

ISO/TC 215 Health informatics sets international standards for medical data transfer.

107 Exchanging synthetic or statistical health

information between platforms

Interoperability Functional Should

Events, Dashboards, Images, Reports, Graphs and Charts should be exchanged or

executed independently of the owner platforms.

Different information is produced at different levels all over different platforms interoperable

in IoT Galaxy; the purpose of this requirements is to use synthetic or almost worked data

where they are reusing the results without reworking them totally. Many configurations are

possible.

 To use a platform (master) as main point of access, linking the other functions

accessed through APIs to the platforms owner where the functions are executed.

 To use a distributed approach calling different APIs with many interfaces between

different platforms at the same level.

 To use a Business Intelligence platform for synthesis, elaboration, statistics and

presentation, keeping operational analytical data in the owner platforms.

In case 1 e 2 dashboards and reports, produced by the owner platforms are exchanged

without adding elaboration; in case 3 some algorithms could be written and executed directly

on the Business Intelligence platform.

101 Exchanging discrete medical measures

across platforms

Interoperability Functional Should

A discrete health measure must be accessed and used in many platforms, also different

from the one that first physically picked up the information. Semantic Analysis about the

meaning of the data is needed.

102 Exchanging complex medical measures

across platforms

Interoperability Functional Should

A complex health measure (i.e. a file made of different parameters covering a period of time)

can be used in many platforms different from the one that first physically picked up the

information. Data usage and elaboration must be done in accordance with the protocol used

to store the information.

62 Constraints on processing of personal and

health data

Legality Non-

functional

Should

The processing of Personal and Health data must conform to the rules and criteria laid down

in “Personal Data Protection Code - Legislat. Decree no.196 of 30 June 2003” and in

D 3.1: Methods for Interoperability and Integration

216 / 220

“Measures and arrangements applying to the controllers of processing operations performed

with the help of electronic tools -27 november 2008”.

For Italian privacy regulation some specific instances are required:

 Informed Consent: the person in charge of data processing must collect the informed

consent of the involved person to the processing of data disclosing health status (for

more details see requirement 145).

 Information sheet: Art. 13 of the Privacy Codex provides that the people in charge of

data processing or collecting need to be informed orally or in writing about the

processing of data (for more details see requirement 146).

 Privacy Codex: The behaviour of healthcare operators must be respectful of the right

of personal dignity and confidentiality of every citizen and it has to be appropriate to

various situations in which benefits are provided according to the Legislative Decree

196/2003 (for more details see requirement 143).

For United Kingdom regulation some specific instances are required:

 Compliance with the Data protection act: Compliance with the data protection act is

required in all cases of personal data collection, usage and storage. Sensitive data

(such as health data) require a higher level of protection (for more details see

requirement 151).

 Information Security and Information Governance good practice guidelines: The

health and social care information center implements good practice guidelines for

use within the NHS.

 Adoption of any system by NHS funded organizations requires compliance with best

practice guidelines for information security and governance (for more details see

requirement 152).

158 National, regional and local Bioethic

Committee

Operational Functional Should

The clinical trial is an extraordinary means to evaluate the efficacy of a drug or a medical

device, the risks involved and, ultimately, to decide whether it is appropriate to make it

available for the population.

However, the importance of research can never justify the violation of the rights of persons

participating in the trial. For this reason, the European Union has adopted a set of rules,

called Good Clinical Practice, which govern the research correct.

To ensure the observance of "Good Clinical Practice", they have been set up specific bodies

(Ethics Committees) who evaluate and closely monitor each trial overseeing the correctness

and evolution over time.

Ethics Committees are independent bodies formed by health operators and not, with the

task of evaluating the protocols of each trial from the point view of the scientific, ethical and

feasibility.

In Italy it is not possible to conduct any human trials without first this has been assessed

and approved by an ethics Committee. Actually there are more than 200 distributed among

hospitals and local health authorities.

D 3.1: Methods for Interoperability and Integration

217 / 220

Other tasks of ethics Committees are:

 monitor the progress of the studies;

 promote information and training for doctors and patients;

 provide opinion and directions in the case of specific requirements, both individually

(in case of uncertainties concerning the treatment to be applied), both at a general

level (e.g. in case you need to make decisions related to patient groups);

 check the economic coverage for the costs of the trial;

 check that the protocol of the trial must be guaranteed the right to dissemination and

publication of the results by the investigators regardless of the opinion of the

promoter and in compliance with applicable laws regarding the processing of

sensitive data and intellectual protection confidentiality.

157 Seamless patient monitoring Operational Functional Should

All physiological data (e.g. from ECG, Blood Pressure and SpO2 monitors) should be

accessible by specific applications connected to the INTER-IoT.

174 User Access Service for Administrators Operational Functional Should

Administrators main duties in INTER-Health are:

 User provisioning.

 Platform authorization and activation of APIs. For the first process, in accordance to

the architectural choices, different options are possible.

 Keeping the main directory to register users, on the “A” platform (that acts as master,

the only which can update, through platform provisioning on “A” portal, the database)

and then giving access to data, via API to the interested platforms (only query).

 Keeping users on “A” platform (master Director) allowing other platforms to insert

update and query users by APIs.

 Keeping the “A” user database as master and synchronizing the slave directories in

other platforms (redundant way).

 Use third parties Directory as master and keep it synchronized with all platforms

interested.

For the second process the main functionalities for administrators will be:

 Define platforms and systems that may interact (client platforms, suppliers

platforms).

 Set protocols and standards for exchanging data.

 Set APIs authorization and so on.

 Activate/deactivate the use of interface and so on.

177 User Access Gateway for Caregivers Operational Functional Should

INTER-Health gateway for Caregivers is intended to integrate gateways functionalities for

assisted measurements (i.e. measures that patients are not able to do or it’s better to take

with the aid of an expert person). Architectural options are the same of gateways for patients.

D 3.1: Methods for Interoperability and Integration

218 / 220

Caregivers gateway main functionalities in addition to what already described for patients,

are:

 Authentication as assistant.

 Authorization to manage data of different users.

 Choice of patients between a set of cared users.

 Possibilities of inserting measures manually.

 Setting Profile communication and devices pairing.

 Managing measures on the device and releasing them to the gateway that stores

them on a local database.

 Sending measures to the platform.

 Reporting locally measures already stored.

In term of interoperability, the INTER-Health gateway uses the gateway architectural

scenarios described in the requirement 175.

Specific Instances and implementation possible solutions:

 In particular situation, for example assisting patients on an ambulance, all text boxes

must be ‘speech to text’ able.

 Besides, sensor data must be immediately available on gateway display unit to allow

triage to continue in an uninterrupted path. Please see requirement 153 for how to

address drops in server connectivity.

172 User Access Service for Patients Operational Functional Should

User health main functionalities for patients are:

 Access to services (providing username and password).

 Personal settings (contacts, measurements reminders and so on), managed in

registration and updated by patients, later.

 Reporting: access to measures by chronological reports or using graphics and

dashboards.

Each group of user functionalities can be implemented in different ways in accordance to

the choices done in the architectural scenario.

For the patients functionalities and health services specific features is worth what said for

user access services for doctors apart from’ Personal data collected on Computerized

Nutritional Folder’.

173 User Access Service for Doctors Operational Functional Should

User health main functionalities for doctors are:

 Access to services (providing username and password).

 Personal information (contacts, receiving alerts) managed by administrators in

registration and eventually updated by doctors.

D 3.1: Methods for Interoperability and Integration

219 / 220

 Assigned Patients medical parameters settings (measurements schedules,

thresholds).

 Medical report management (special reporting allowing specialists to follow report

workflow).

 General purpose (chronological) or ad-hoc (oximetry, images and so on) reports.

154 Timestamped event recording Operational Functional Should

To highlight specific events within a patient history, a time stamped generic event could be

generated. The time stamp associated with this event should be to the accuracy of seconds.

The ability for INTER-IoT to handle time stamped events with associated meta data should

be supported.

217 Wearable devices support to detect physical

activity level (e.g. number of steps taken,

consumed calories and minutes of physical

activity) took place during the Experimental

Nutritional Counselling

Operational Functional Could

Wearable Mobile Devices used are equipped with wireless interface and are CE labelled in

accordance with Directive 93/42/EEC, which certifies that the device meets the minimum

essential requirements of safety of operators and citizen.

The detection of the physical activity practice will occur daily and in mobility.

The surveys recorded and sent in INTER-Health platform, will be available from both health

staff and the subject.

The information gathered from wearable mobile devices will allow to capture real-time status

of physical activity of the subject and check the achievement of objectives. If necessary

health staff will require additional counselling for subjects who have particular risk situations.

Mobile Devices wearable will detect Routes Steps Number, calories burned and Minutes of

physical activity carried out.

Information gathered from wearable mobile devices will be used to divide patients into

different categories (e.g. Inactive or Sedentary Subjects, Moderately active Subjects,

Sedentary Subject, etc...).

70 User interface Usability Non-

functional

Could

All end user interfaces should be easy to use.

For older people the confidence with the use of smart phones, Internet applications and

information technology in general is very limited.

For younger people the confidence on the use of smartphones Internet technologies and

applications increases.

As services are offered to both types of users, this requirement needs to be considered as

a reference target for the design of web and mobile interfaces.

D 3.1: Methods for Interoperability and Integration

220 / 220

It is assumed that health care providers (doctors, nurses, technicians) have experience with

Internet applications. Access to the management, monitoring and consultation could be

done through a web interface.

Table 11: INTER-Health pilot minimum requirements.

