
D3.2

Methods for Interoperability and Integration v.2

October 2017

Ref. Ares(2017)5351824 - 02/11/2017

D3.2: Methods for Interoperability and Integration v.2

INTER-IoT

INTER-IoT aim is to design, implement and test a framework that will allow interoperability
among different Internet of Things (IoT) platforms.
Most current existing IoT developments are based on ”closed-loop” concepts, focusing on a
specific purpose and being isolated from the rest of the world. Integration between hetero-
geneous elements is usually done at device or network level, and is just limited to data gath-
ering. Our belief is that a multi-layered approach integrating different IoT devices, networks,
platforms, services and applications will allow a global continuum of data, infrastructures and
services that can enable different IoT scenarios. As well, reuse and integration of existing
and future IoT systems will be facilitated, creating a de-facto global ecosystem of interoper-
able IoT platforms.
In the absence of global IoT standards, the INTER-IoT results will allow any company to
design and develop new IoT devices or services, leveraging on the existing ecosystem, and
bring get them to market quickly.
INTER-IoT has been financed by the Horizon 2020 initiative of the European Commission,
contract 687283.

D3.2: Methods for Interoperability and Integration v.2

INTER-IoT

Methods for Interoperability and Integration v.2

Version: 2.3
Security: Public

October 31, 2017

The INTER-IoT project has been financed by the Horizon 2020 initiative of the European Commission, contract 687283

3 / 137

D3.2: Methods for Interoperability and Integration v.2

Disclaimer

This document contains material, which is the copyright of certain INTER-IoT consortium parties, and may not
be reproduced or copied without permission.
The information contained in this document is the proprietary confidential information of the INTER-IoT consor-
tium (including the Commission Services) and may not be disclosed except in accordance with the consortium
agreement.
The commercial use of any information contained in this document may require a license from the proprietor
of that information.
Neither the project consortium as a whole nor a certain party of the consortium warrant that the information
contained in this document is capable of use, nor that use of the information is free from risk, and accepts no
liability for loss or damage suffered by any person using this information.
The information in this document is subject to change without notice.

4 / 137

D3.2: Methods for Interoperability and Integration v.2

5 / 137

D3.2: Methods for Interoperability and Integration v.2

Executive Summary

The aim of Deliverable 3.2, entitled “Methods for Interoperability and Integration v.2”, is to document
the on-going work in the definition and implementation of INTER-LAYER interoperability mechanisms.
The deliverable is the second version of a series of three (i.e. preceded by D3.1 and to be followed by
D3.3). The deliverable provides the refined architecture description, status of components implemen-
tation, documentation and demonstrators. It reports the technical work performed in all WP3 tasks,
T3.1 (Definition and Analysis of Methods for Device Layer Interoperability and Integration, M5-M30);
T3.2 (Definition and Analysis of Methods for Networking Layer Interoperability and Integration, M5-
M30); T3.3 (Definition and Analysis of Methods for Middleware Layer Interoperability and Integration,
M5-M30); T3.4 (Definition and Analysis of Methods for Application Service Layer Interoperability and
Integration, M5-M30), T3.5 (Definition and Analysis of Methods for Data and Semantics Layer Inter-
operability and Integration, M5-M30) and T3.6 (Definition and Analysis of Methods for Cross-Layer
Interoperability and Integration, M13-M30).

INTER-LAYER is an instantiation (reference implementation) of the INTER-IoT Reference Archi-
tecture, which is a result of work carried out in T4.1 (Design of a Reference Meta-Architecture for
Interoperable IoT Platforms, M7 – M24) and T4.2 (Design of a Reference Meta-Data Model for In-
teroperable IoT Platforms, M7 – M24). The RA is defined in the forthcoming deliverable D4.2 (Final
Reference IoT Platform Meta-Architecture and Meta Data Model). On the other hand, INTER-LAYER
exposes a set of APIs that are a foundation of INTER FW and INTER API, described in deliverables
D4.3 (Interoperable IoT Framework Model and Engine v1) and D4.5 (Interoperable IoT Framework
API and Tools v1). The relation between the two work packages (WP3, WP4) is provided in sections
3.2 and 4.8.

As already reported in D3.1, the developments have been based on the layered architecture de-
scription provided in the Description of the Action, requirements described in D2.3 and subsequent
updates (INTER-IoT Requirements and Business Analysis, M9). The work has been further based
on use cases and scenarios described in D2.4 (Use cases and scenarios, M12) in order to be in
line with the proposed pilots. Finally, through interaction with WP4 tasks related to implementation of
INTER FW and INTER API, extensibility and provision of APIs has been defined and implemented.

D3.1 focused on initial collection of the interoperability mechanisms, building blocks and interfaces
of the layers: Device to Device layer with the virtual gateway; Middleware layer with the MW2MW
component and the Data and Semantics layer with the Inter Platform Semantic Mediator (IPSM). In
this deliverable, these layers have reached a maturity level to be applied and evaluated in INTER-IoT
pilots. In D3.2, focus has been expanded to the Network to Network layer solution and the Application
and Services layer.

With all INTER-Layer components defined, work has stated in the definition of Cross-Layer com-
ponents, which heavily depend on both architectural choices made for INTER-Layer, but also on
common needs identified therein: security, virtualisation, clusterisation and cross-component inter-
actions.

6 / 137

D3.2: Methods for Interoperability and Integration v.2

List of Authors

Organisation Authors Main contributions
UPVLC Eneko Olivares, Jara Suárez

de Puga, Andreu Belsa Pel-
licer, Carlos Enrique Palau
Salvador

D2D, N2N, INTERMW, AS2AS and
Cross Layer sections. Internal review.

UNICAL Raffaele Gravina INTERMW, Cross Layer sections. Inter-
nal review.

PRODEVELOP Miguel Ángel Llorente Car-
mona, Miguel Montesinos

INTERMW and Cross Layer sections.
Relation to INTER FW and RA.

TU/e Tim Van der Lee N2N sections.
VPF Pablo Giménez Salazar Requirements and INTERMW sections.

RINICOM Eric Carlson N2N and Cross Layer section.

XLAB Matevž Markovič, Flavio
Fuart, Manja Gorenc Novak

Overall coordination. Introduction,
progress, INTERMW, and conclusion
sections.

SRIPAS Wiesiek Pawłowski,
Paweł Szmeja, Katarzyna
Wasielewska-Michniewska

INTERMW and DS2DS sections.

ABC Alessandro Bassi Deliverable format and template.

NEWAYS Johan Schabbink, Dennis En-
gbers

D2D sections. Internal review.

SABIEN Gema Ibáñez, Vicente Traver Ethics section.

7 / 137

D3.2: Methods for Interoperability and Integration v.2

Change control datasheet

Version Changes Pages

0.0 Formatting, Inter-IoT template

0.1 Table of content draft and basic assignments 5

0.2 SotA chapters defined 8

0.3 SotA chapters first draft 30

1.0 Inter-Layer solutions, draft 80

1.1 Inter-Layer solutions, final draft 98

1.2 Relation with INTER FW, Reference Architecture 122

1.3 Ethics 108

1.4 Intro, conclusion 111

2.0 Ready for internal review 138

2.1 Reviewed by internal reviewers 138

2.2 Addressed review comments 139

2.3 Final review 137

8 / 137

D3.2: Methods for Interoperability and Integration v.2

Contents

Executive Summary . 6
List of Authors . 7
Change control datasheet . 8
List of Figures . 14
List of tables . 15
Acronyms . 17

1 Introduction 21
1.1 Progress since D3.1 . 23
1.2 Constraints based on Requirements . 23

2 Update to the State of the Art 25
2.1 Device Interoperability (D2D) . 25

2.1.1 Current D2D gateway setup and classifications 25
2.1.2 Gateway implementations . 26

2.2 Network Interoperability (N2N) . 27
2.2.1 SDN technologies . 27
2.2.2 QoS in SDN . 29
2.2.3 Software Defined Radio . 32

2.3 Middleware Interoperability (MW2MW) . 33
2.3.1 VITAL-OS . 33
2.3.2 UniversAAL . 34
2.3.3 WSO2 . 35
2.3.4 BodyCloud . 35
2.3.5 Data representation and processing . 36

2.4 Application & Services Interoperability (AS2AS) . 38
2.4.1 Node-RED . 38
2.4.2 Relation of Docker with Node-RED . 39
2.4.3 Relation of Swagger with Node-RED . 40

2.5 Data & Semantics Interoperability (DS2DS) . 41
2.6 Cross-Layer Interoperability . 43

2.6.1 Security in IoT . 43
2.6.2 Virtualization and Clusterization of Layers . 53

3 INTER-LAYER Design 56
3.1 Development and Demonstration Environments Setup 56
3.2 INTER-IoT RA Instantiation . 57

D3.2: Methods for Interoperability and Integration v.2

3.2.1 INTER-IoT RA instantiation for INTER-LAYER 58
3.2.2 INTER-LAYER Functional Components . 60
3.2.3 Functional Components traceability . 72

4 INTER-LAYER Components 74
4.1 Development and Demonstration Environments Setup 74
4.2 D2D solution . 74

4.2.1 Refined Architecture . 74
4.2.2 Components . 75
4.2.3 Implementation Status . 77
4.2.4 API (and Extensibility) . 77
4.2.5 Code and Documentation . 79
4.2.6 Demo . 80

4.3 N2N solution . 81
4.3.1 Refined Architecture . 81
4.3.2 Implementation Status . 82
4.3.3 API (and Extensibility) . 82
4.3.4 Code and Documentation . 84
4.3.5 Demo . 86

4.4 MW2MW solution . 87
4.4.1 Refined Architecture . 87
4.4.2 Components . 88
4.4.3 Use Cases . 94
4.4.4 Implementation Status . 95
4.4.5 API (and Extensibility) . 95
4.4.6 Code and Documentation . 96
4.4.7 Demo . 97

4.5 AS2AS solution . 98
4.5.1 Refined Architecture . 98
4.5.2 Components . 99
4.5.3 Use Cases . 101
4.5.4 Implementation Status . 101
4.5.5 API (and Extensibility) . 104
4.5.6 Code and Documentation . 106
4.5.7 Demo . 107

4.6 DS2DS solution . 112
4.6.1 Implementation Status . 112
4.6.2 API (and Extensibility) . 114
4.6.3 Code and Documentation . 115
4.6.4 Demo . 115

4.7 Cross-Layer solution . 121
4.7.1 Layer security integration . 121
4.7.2 Layer Interactions . 124
4.7.3 Virtualization and Clusterization of layers with Docker 126

4.8 INTER-Layer relation with INTER-Framework . 129

5 Ethics 132
5.1 Introduction . 132

10 / 137

D3.2: Methods for Interoperability and Integration v.2

5.2 Ethics and INTER-LAYER . 132
5.2.1 Data types . 132
5.2.2 Requirements for ethical data processing . 133

6 Conclusions 135

11 / 137

D3.2: Methods for Interoperability and Integration v.2

12 / 137

D3.2: Methods for Interoperability and Integration v.2

List of Figures

1 Proposed reading paths of deliverables D3.1 and D3.2 22
2 Open vSwitch internal components architecture . 29
3 VITAL-OS platform . 33
4 BodyCloud simplified architecture diagram . 36
5 Modular structure of SOSA/SSN . 42
6 SOSA conceptual structure for actuation . 42
7 SOSA/SSN conceptual structure . 43
8 Development and demonstration environment setup 56
9 Process followed for the generation of the INTER-LAYER architecture 57
10 Functional-decomposition viewpoint of the INTER-IoT Reference Architecture 58
11 Functional Groups of the INTER-IoT RA involved in the INTER-LAYER 59
12 FC of the INTER-LAYER architecture according to the INTER-IoT RA 60
13 FC of the Management FG instantiated for INTER-LAYER concrete architecture . . . 61
14 FC of the Security FG instantiated for INTER-LAYER concrete architecture 62
15 FC of the Device Access FG instantiated for INTER-LAYER concrete architecture . . . 63
16 FC of the Device Interoperability FG instantiated for INTER-LAYER concrete architecture 65
17 FC of the MW2MW FG instantiated for INTER-LAYER concrete architecture 67
18 FC of the Service Interoperability FG instantiated for INTER-LAYER concrete architecture 69
19 FC of the Semantics FG instantiated for INTER-LAYER concrete architecture 71
20 Gateway architecture . 75
21 Physical Gateway components . 76
22 Virtual Gateway components . 76
23 D2D Gateway demo . 80
24 Network interoperability architecture . 81
25 Example of setup for network demo . 86
26 INTERMW architecture . 87
27 Example JSON-LD platform registration message . 93
28 INTERMW demo . 98
29 AS2AS architecture . 99
30 AS2AS Native Services . 100
31 Persistence with Docker and GIT . 102
32 Current stauts with Docker . 104
33 Extensibility with Docker . 105
34 AS2AS Demo Scenario . 108
35 Proton Service . 109
36 PCS Service . 110
37 PCS Node . 110

D3.2: Methods for Interoperability and Integration v.2

38 STH Node . 110
39 Dashboard . 111
40 Service Composition . 111
41 Demonstration . 112
42 IPSM architecture overview . 113
43 IPSM demo overview . 116
44 IPSM alignments configuration . 117
45 IPSM channels configuration . 117
46 IPSM channels configuration 2 . 118
47 IPSM translation . 119
48 IPSM translation result . 120
49 Example of deployment of Inter-Layer solutions with Docker swarm 129
50 INTER-IoT global architecture. INTER-FW services lay over the LIIs 130
51 INTER-FW high-level architecture . 131

14 / 137

D3.2: Methods for Interoperability and Integration v.2

List of Tables

1 Classification of constrained devices . 25
2 Security mechanism implemented in FIWARE . 45
3 Security mechanism implemented in UNIVERSAAL 46
4 Security mechanism implemented in OM2M . 47
5 Security mechanism implemented in OPENIOT . 48
6 Security mechanism implemented in SOFIA2 . 49
7 Security mechanism implemented in AWS IOT . 50
8 Security mechanism implemented in AZURE . 51
9 List of functional components instantiated from the RA for the Configuration FC 61
10 List of functional components instantiated from the RA for the Authorisation FC 62
11 List of functional components instantiated from the RA for the Authentication FC . . . 63
12 List of functional components instantiated from the RA for the Communication FC . . . 64
13 List of functional components instantiated from the RA for the Virtual Entity FC 64
14 List of functional components instantiated from the RA for the IoT Service FG 65
15 List of functional components instantiated from the RA for the D2D Interoperability FC 66
16 List of functional components instantiated from the RA for the N2N Interoperability FC 66
17 List of functional components instantiated from the RA for the MW2MW Interop. FC . 67
18 List of functional components instantiated from the RA for the Platform Access FC . . 68
19 List of functional components instantiated from the RA for the Platform Service FC . . 69
20 List of functional components instantiated from the RA for the Service Resolution FC . 70
21 List of functional components instantiated from the RA for the Service Composition FC 70
22 List of functional components instantiated from the RA for the Service Orchestration FC 70
23 List of functional components instantiated from the RA for the Ontology Alignment FC 71
24 List of functional components instantiated from the RA for the Ontology Resolution FC 72
25 Traceability matrix of INTER-LAYER architectural components FC 73
26 D2D Gateway Component implementation status . 77
27 INTERMW inter-component communication topics . 90
28 INTERMW Message types . 92
29 Security analysis of threats in network layer . 122

D3.2: Methods for Interoperability and Integration v.2

16 / 137

D3.2: Methods for Interoperability and Integration v.2

Acronyms

AAL Active-Assisted Living

AC Access Control

ACP Access Control Policy

ACR Access Control Rule

ADC Analog to Digital Converter

A.N. Access Network

API Application Programming Interface

ARM API Request Manager

AS2AS Application & Services Interoperability

BSN Body Sensor Network

CEP Complex Event Processing

CHE Content History Entrepot

CLI Command-line Interface

COAP Constrained Application Protocol

COTS Commercial off-the-shelf

D#.# Deliverable number #.# (D2.1 deliverable 1 of work package 2)

DAC Digital to Analog Converter

DMS Data Management Service

DoA Description of Action of the Project

DoS Denial of Service

DS2DS Data & Semantics Interoperability

D2D Device Interoperability

EC European Commission

EU European Union

FRED Front-end for Node-RED

GA Grant Agreement

geoSPARQL OGC Standard for Geospatial Semantic Data

GUI Graphical User Interface

D3.2: Methods for Interoperability and Integration v.2

HLS High-Level Synthesis

HTML Hyper Text Markup Language

H2020 Horizon 2020 Programme for Research and Innovation

IDM Identity Management

INTER-FW INTER-IoT Interoperable IoT Framework

ILI Interoperability Layer Interfaces

INTER-IoT Interoperability of Heterogeneous IoT Platform

INTER-LAYER INTER-IoT Layer integration tools

INTERMW INTER-IoT Middleware

IoT Internet of Things

IoT-EPI IoT-European Platforms Initiative

IPR Intellectual Property Rights

JSON-LD JavaScript Object Notation used for serialization of Linked Data

jSLP Java Implementation of SLP

JGroup Toolkit for Reliable Messaging

KVM Kernel-based Virtual Machine

LIIs Layer Interoperability Infrastructures

M# #th month of the project (M1=January 2016)

MITM Man-In-The-Middle

ML Model Language

MPLS Multiprotocol Label Switching

MVP Minimum Viable Product

MW2MW Middleware Interoperability

NBI Northbound Interface

NETCONF Network Configuration Protocol

N2N Network Interoperability

ODL OpenDayLight

OF OpenFlow

OF-CONFIG OpenFlow Configuration

OM2M oneM2M

ONOS Open Network Operating System

OS Operating System

OSGi Open Services Gateway initiative

OVSDB Open vSwitch Database Protocol

OWL Web Ontology Language

PC Project Coordinator

PCC Project Coordination Committee

18 / 137

D3.2: Methods for Interoperability and Integration v.2

PCS Port Call Service

PEP Policy Enforcement Point

PIC Project Implementation Committee

PPI Platform Provider Interface

RA Reference Architecture

RBAC Role-based Access Control

RDF Resource description Framework

REST Representational State Transfer

RSPAN Remote SPAN

Ryu Component-based SDN framework controller

QoS Quality of Service

SaaS Software as a Service

SAREF Smart Appliances REFerence

SBI Southbound Interface

SBT Simple Build Tool

SDK Software Development Kit

SDN Software Defined Networks

SLP Service Location Protocol

SDR Software defined Radio

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOSA Sensor, Observable, Sample and Actuator

SPAN Switched Port Analyzer

SPARQL Simple Protocol and RDF Query Language

SotA State of the Art

STH Short Time Historic

STPM Scientific and Technical Project Manager

SSL Secure Sockets Layer

SSN Semantic Sensor Network

TL Task Leader

TLS Transport Layer Security

ToS Type of Service

UDP User Datagram Protocol

UI User Interface

URI Uniform Resource Identifier

VUAIs Virtualized Unified Access Interfaces

XACML eXtensible Access Control Markup Language

19 / 137

D3.2: Methods for Interoperability and Integration v.2

XML eXstensible Markup Language

WP Work Package

WPL Workpackage Leader

W3C World Wide Web Consortium

20 / 137

D3.2: Methods for Interoperability and Integration v.2

1 Introduction

This deliverable is an evolution of D3.1, Methods for Interoperability and Integration v.1, submitted in
December 2016. This report (D3.2) assumes that the reader is familiar with D3.1 in order to follow
the progress of design and implementation approaches provided herein. Of particular importance is
the introductory section of D3.1, where an overview of INTER-LAYER is provided, supplemented with
definitions and terminology used throughout both reports.

State of the Art sections in both deliverables can be read independently, as they are self-standing
overviews of existing approaches, standards, systems and software products. The INTER-LAYER
Design section grabs the attention of the reader interested in the relation between the INTER-IoT
Reference Architecture and INTER-LAYER Components. Of similar nature is the section "INTER-
LAYER relation with INTER-Framework, which explains the usage of INTER-LAYER components in
INTER-FW. The core of this report are the INTER-LAYER components sections that provide, for each
INTER-IoT layer: an updated architectural overview, status of the developments, API and extensibility
considerations, reference to code and documentation, and a description of deployed demonstrators.
An exception is the Cross-Layer component, which is currently in the design phase. The last section
considers the Ethical implications of INTER-LAYER developments. Proposed reading paths of the
D3.1 and D3.2 bundle is provided in figure 1.

The main inputs for WP3, and subsequently for D3.1/D3.2, are the requirements defined in D2.3
(INTER-IoT Requirements and Business Analysis) and Reference Architecture defined in D4.2 (Final
Reference IoT Platform Meta-Architecture and Meta Data Model). The exposed API and extensibility
mechanisms of INTER-LAYER are integrated in INER-FW and INTER API, as described in D4.3
(Interoperable IoT Framework Model and Engine v1) and D4.5 (Interoperable IoT Framework API
and Tools v1).

D3.2: Methods for Interoperability and Integration v.2

Figure 1: Proposed reading paths of deliverables D3.1 and D3.2

22 / 137

D3.2: Methods for Interoperability and Integration v.2

1.1 Progress since D3.1

Since the reporting in deliverable D3.1, a significant progress has been made in further elaboration of
the proposed architecture and implementation (coding) of solutions at Device, Network, Middleware,
Application and Semantic interoperability layers.

In order to support the implementation phase, several new technologies have been explored and
presented in section 2. At the D2D level (Section 2.1) five new gateway implementations have been
analysed since the elaboration of Deliverable 3.1, with focus on interoperability mechanisms they
provide. At the N2N interoperability layer (Section 2.2) SDN and QoS concepts have been further
explored and elaborated in detail. The most important contribution for this layer is the description of
Ryu and the rationale for the shift from OpenDayLight to Ryu as the base controller in INTER-IoT.
At the Middleware interoperability level (Section 2.3) three middleware platforms related to pilot im-
plementations are presented. In order to design a suitable data representation for interoperability at
middleware level, the VITAL-OS platform has been analysed because of it’s use of JSON-LD and
a section devoted to semantic data representation and processing. Section 2.4 further elaborates
Node-RED, a key technology used in INTER-IoT for service interoperability and orchestration at ap-
plication layer. It also describes Docker, used for virtualization and orchestration of interoperability
services, as well ass Swagger, a well established standard for robust REST API definitions. The new
version of the SOSA/SSN ontology is described in the Semantics interoperability section (2.5).

A new SoTA section for Cross-Layer interoperability has been added (2.6). Design and development
of Cross-Layer components started after the most important features of Inter Layer have been de-
fined. Security in IoT is elaborated, identifying and proposing security implementation for INTER-IoT.
Furthermore, communication between layers and approaches for clustering and virtualization are
also part of a common, cross-layer approach.

For each Inter-Layer component, progress since D3.1 is provided in the following structure: refined
architecture, a detailed description of implemented components, typical examples of scenarios (use-
cases), API and extensibility, code/documentation and description of demonstrators. Depending on
the maturity of each component, an appropriate level of detail has been provided. On the other hand,
Cross-layer has not yet reached the development phase, but the architecture and usage scenarios
are provided.

1.2 Constraints based on Requirements

Requirements are the basis for developing any system or application in order to determine the main
features that should be implemented.

During the first stage of the project, deep analysis of the needs of the system was carried out,
particularly those of interoperability at different levels. These requirements have been collected from
end-users of different products of INTER-IoT and from the expertise of consortium partners.

Since the delivery of D3.1 work has been focused on the development of many of the modules that
are part of INTER-Layer. During this process, new requirements have arisen that were not taken into
account in the first stage, for example the inclusion of new technologies and platforms.

23 / 137

D3.2: Methods for Interoperability and Integration v.2

For this reason a process of revision of existing requirements has been carried out and then the new
ones have been added. As with the existing requirements, MosCow methodology has been used.

The definition and revision of requirements is a continuous process that must be carried out through-
out the project development.

For the first stage of the project, when D3.1 was submitted, only requirements with greater priority
(Must) were considered. In this deliverable, requirements have been reviewed in order to consider
some of them with lower priority. These changes are reflected in the development of the different
components (section 4) and in the security of the whole system (section 4.7.1).

24 / 137

D3.2: Methods for Interoperability and Integration v.2

2 Update to the State of the Art

2.1 Device Interoperability (D2D)

The D2D interoperability in this section is about:

• the ability to share information and services,

• the ability of two or more devices, systems or its components to exchange and use information,

• the ability of devices to provide and receive services from other devices.

In IoT this is typically achieved through a gateway. An IoT Gateway has the ability to allow different
devices using the same or different access networks to communicate to other devices and through the
northbound API to the middleware or other applications. These devices can be sensors, actuators
or prosumers (sensor and actuator) and the gateway can provide other services such as device
discovery, QoS, security, cache storage, and so on.

2.1.1 Current D2D gateway setup and classifications

In D3.1 ”Methods for Interoperability and Integration” initial device classifications were proposed, this
has been revisited in order to update the implementation and the device definitions that the D2D
Interoperability Gateway will focus on. The original class designations described in D3.1 are given in
Table 1.

Name Data Size (e.g RAM) Code Size (e.g. Flash)

Class 0, C0 << 10KB << 100KB

Class 1, C1 10KB 100KB

Class 2, C2 50KB 250KB

Table 1: Classification of constrained devices1

• Class 0 devices are very constrained sensor-like motes. As they are severely constrained both
in memory and processing capabilities, they most likely do not have the resources required to
communicate directly with the Internet in a secure manner. They however can participate in

1Source: http://www.rfc-base.org/txt/rfc-7228.txt

http://www.rfc-base.org/txt/rfc-7228.txt

D3.2: Methods for Interoperability and Integration v.2

Internet communications with the help of larger devices acting as proxies, gateways, or servers.
They are most likely preconfigured with a very small dataset.

• Class 1 devices are quite constrained in code space and processing capabilities. They can-
not easily talk to other Internet nodes employing a full protocol stack such as HTTP, Transport
Layer Security (TLS), and related security protocols, as well as XML-based data representa-
tions. However, they are capable of using a protocol stack specifically designed for constrained
nodes (such as the Constrained Application Protocol (CoAP) over UDP) and to participate in
meaningful conversations without the help of a gateway node. In particular, they can provide
support for the security functions required on a large network. Therefore, they can be integrated
as fully developed peers into an IP network, but they need to be sparing with state memory, code
space, and in many cases also power expenditure for protocol and application usage.

• Class 2 devices are less constrained and fundamentally capable of supporting most of the same
protocol stacks as used on notebooks or servers. However, even these devices can benefit from
lightweight and energy-efficient protocols and from consuming less bandwidth. Furthermore,
using fewer resources for networking leaves more resources available to applications. Thus,
using the protocol stacks defined for more constrained devices on Class 2 devices might reduce
development costs and increase the interoperability.

2.1.2 Gateway implementations

New gateway implementations have been considered since the last time the state of the art of D2D
interoperability was made. The new IoT Device Gateway implementations revisited have been:

Proprietary

This implementations were tested only for the features offered by the trial/free version and also the
documentation of the paid features were checked.

• Ubiworx : Intel software focused in IoT gateways solutions easily configured to collect and ana-
lyze locally the measurement from the connected sensors. It provides programmable rules and
events and can communicate with private/public monitoring and reporting system as SCADA or
ERP.

• FogHorn: software at the Edge, provides high performance processing, analytics and applica-
tion closer to physical systems, focused in fog computing.

• Bosch ProSyst : also OSGi based gateway but without focus in edge processing. Provides APIs
and out-of-the box support for most protocols.

Open Source

Apart from the already studied Eclipse Kura and OM2M Gateway implementations it was also con-
sidered IoTivity and Agile (one of the IoT-EPI H2020 projects). Not only for testing features but
also to understand the D2D interoperability patterns that these gateways implemented in their source
code. From one side, IoTivity provides an open source reference implementation of the OCF stan-
dard specification, as a complete software but with a gateway implementation module. The software
provides connectivity with protocols as; Wi-Fi Direct, CoaP, Bluetooth and BLE, ANT+, Z-Wave and
Zigbee, plus other features over this access protocols as discovery, data transmission device and data
management, etc. From the other side, Agile IoT solution offers a modular hardware and software

26 / 137

D3.2: Methods for Interoperability and Integration v.2

gateway with support of protocols for interoperability as WiFi, BLE, ZigBee, ZWave, LoRa, RF and
more modules, data and device management, IoT apps at the top and external Cloud communication.

After testing each new gateway implementation we can assure that INTER-IoT D2D Gateway im-
plementation is still relevant and covers the following main features that are lacking in the analyzed
gateways: Flexibility and modularity (not only supporting different devices and protocols, but also
multiple open source middleware platforms) and Lightweight Physical implementation (since all the
difficult processing tasks is shifted to the virtual gateway in the fog).

2.2 Network Interoperability (N2N)

We understand N2N interoperability as the competence of interconnect heterogeneous elements
conforming a single network, or the interconnection of already created networks with different nature,
to make it easier to include new elements in the network, improving the scalability, dynamically adapt-
ing the network configuration depending on the requirements and managing different QoS parameter
for that purpose.

To make it easier to understand this section, we provide a list of changes and additions from the
previous deliverable D3.1 :

• Included modifications in SDR technologies used, delta from the previous deliverable.

• Included deeper information about RYU and justification of the shift from ODL to RYU.

• Included extra information about QoS in SDN and the protocols used for implement it.

2.2.1 SDN technologies

In the previous deliverable we define what are the Software Defined Networks (SDN) and how these
can be used as an interoperability approximation for the Internet of Things deployments. Addition-
ally, we went across the different technologies available in the market to implement SDN paradigm.
Among these technologies, we selected the most suitable ones to implement our interoperability so-
lution. As this deliverable is an increment form the previous one, we will define in deeper detail the
technologies we implement and which changes have been done from the previous to the current
development state.

2.2.1.1 Open vSwitch as a virtual switch

Open vSwitch is a multilayer virtual switch designed to enable massive network automation through
programmatic extension, supporting standard management interfaces and protocols, additionally
open to a programmatic extension. Moreover, is thought to run in several VM environments (Xen,
KVM, VirtualBox, Proxmox VE, etc.), exposing the interfaces to the virtual networking layer but, also
having the possibility to support distribution across multiple physical servers. Among its feature, the
following are relevant to our purposes:

• Security: VLAN isolation and traffic filtering among others.

• Netflow, sFlow, SPAN, RSPAN for monitoring, mirroring and increased visibility.

27 / 137

D3.2: Methods for Interoperability and Integration v.2

• QoS: traffic queuing and shaping.

• Southbound interface protocols as OpenFlow and OVSDB for automated control.

• Integration with virtual management cloud systems as OpenStack, OpenQRM, OpenNebula or
oVirt.

Open vSwitch provides a more complex design than simple “bridges”, being these the basic compo-
nents to be used but, meanwhile bridges are only executed in host kernel space, our virtual switch,
uses both kernel space and user space, to create more complex rules of packet processing. Main
components that compose the virtual switch are:

• ovs-vswitchd: daemon that implements the switch, together with a compilation of the Linux
kernel module for flow-based switching.

• ovsdb-server: lightweight database server to store and obtain switch configuration.

• ovs-dpctl: tool for configuring the switch kernel module.

• ovs-brcompatd: daemon that allows ovs-vswitchd act as a substitute of Linux bridge.

• ovs-vsctl: command for queuing and updating the configuration of daemons.

• ovs-appctl: utility that sends commands to the switch daemons that are running

• Others: scripts and specs.

Moreover, apart from the main components of the switch, there are some extra tools or extension for
implementation of specific features, such as:

• ovs-ofctl: utility that implements the OpenFlow protocol to communicate with the controller.

• ovs-pki: for creating and managing the public-key infrastructure of OpenFlow switches.

• ovs-testcontroller: in case you don’t have an OF controller, this implements a very simple one
that may be useful for testing.

• tcpdump-patch: enables to parse OpenFlow messages.

We can observe an example of this architecture in Figure 2 and how each component relates with
the other between kernel and user spaces.

The two main protocols of external management implemented in the switch are OpenFlow and
OVSDB. The former protocol was slightly introduced in the first version of this deliverable, some other
aspects as QoS will be contemplated in future sections, the latter protocol is a component to man-
age OVS implementation and state, allowing the request and modification of the switch configuration.
This will be also explained with more detail in further subsections.

2.2.1.2 Ryu as a base controller

As indicated in the previous deliverable D3.1, RYU is a component-based SDN framework controller.
It is simple, modular and highly designed to increase the agility of the network through its easy
management and versatility. Ryu provides a principal component (Ryu-manager) that is the heart

2Source: https://upload.wikimedia.org

28 / 137

https://upload.wikimedia.org

D3.2: Methods for Interoperability and Integration v.2

Figure 2: Open vSwitch internal components architecture2

of the controller and it is in charge of providing the environment where the different modules and
applications will run, and the communication between these modules. Additionally, Ryu defines dif-
ferent APIs to access the software components make it easier for future developers to create control
applications.

With all these advantages in mind and taking into account the possibility of customizing the controller
attending the needs of INTER-IoT, a shift from OpenDayLight to Ryu took place after the research and
delivery of the previous version of this document. Moreover, the simplicity and the lightweight of the
controller are valuable characteristics at the time to take the decision. Additionally, the compatibility
with systems such as OpenStack (a technology that will be explained in following sections), was the
definitive reason to perform this switch in the technological choice. However, OpenDayLight has not
being abandoned. This technology has been studied and analysed in order to obtain information and
requirements for future implementations or improvements of the N2N solution.

2.2.2 QoS in SDN

The booming sector of the Internet of Things is from the standpoint of networking always more de-
manding. Sometimes thousand of IoT devices can be inter-connected, with several applications or
services running on these devices. These applications and services generate their own data traffic
carried through the Internet. The network aspect of these different applications has to be considered
in order to successfully deliver over a dense network. Some applications may require a different treat-
ment. As an example, some applications such as video streaming require a certain bandwidth for its
flows, while other applications such as the alarm system may be more delay-sensitive. Addressing
these requirements needs Quality of Service (QoS) mechanisms implemented over the network.

OpenFlow supports obtainment of a per-flow QoS control in a scalable, flexible and fine-granular way.
In this section, we review the QoS capabilities of the OpenFlow protocol and we do such by looking
at its different versions and those of (well-know) open-source SDN control platforms.

29 / 137

D3.2: Methods for Interoperability and Integration v.2

2.2.2.1 QoS in OpenFlow

Each new OpenFlow (OF) specification introduced new features and changes related to QoS, as
listed below.

• OF1.0: In this version, an OF switch can have one or more queues for its ports. It is also
possible to read/write headers for VLAN priority and IP ToS.3

• OF1.1: This version improves the matching and tagging of VLAN and MPLS labels and traffic
classes.4

• OF1.2: Supports querying all queues of a switch. Introduction of the OF-CONFIG protocol5 to
reconfigure queues within the switch. Max-rate property can be set to the queue. Flows can
also be mapped to queues attached to ports.6

• OF1.3: This version introduced meters. A meter entry consists of “Meter Identifier”, “Meter
Bands”, and “Counters”. A Meter Band, in turn, consists of a “Band Type” (e.g. drop or remark
DSCP etc.), “Rate” (e.g. kb/s burst), “Counters”, and optional “Type-specific arguments”, such
as drop and DSCP remark. Counters may be maintained per-queue, per-meter, and per-meter
band etc. They help controller collect statistics about the network. There may be one or more
meter bands per meter table entry. Meters can be combined with the optional set_queue action,
which associates a packet to a per-port queue in order to implement complex QoS frameworks
such as DiffServ. These meters complement the queue framework already in place in Open-
Flow by allowing for the rate-monitoring of traffic prior to output. More specifically, with meters,
we can monitor the ingress rate of traffic as defined by a flow rule. Packets can be directed
to a specific meter using the optional meter(meter_ id) instruction, where the meter can then
perform some operations based on the rate it receives packets.7

• OF1.4: In this version, a controller can monitor another controller, or more generally, modifica-
tions done in the flow table of predefined switches.8

• OF1.5: Multiple meters can be used.9

2.2.2.2 QoS in SDN frameworks

OpenFlow does not provide support for configuring queues, ports, etc., which therefore requires some
configuration protocol. This could be done by manual configuration with the protocols NETCONF, OF-
CONFIG ONF), etc. or with OVSDB (OpenFlow vSwitch Database Management Protocol - IETF10).
Currently, several SDN platforms offer the possibility to configure these queues and thus handle QoS.

3http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
4http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
5https://www.opennetworking.org/sdn-resources/onf-specifications/openflow-config
6https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.2.pdf
7https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.3.0.pdf
8https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.4.0.pdf
9https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-switch-v1.5.0.noipr.pdf
10www.ietf.org/rfc/rfc7047.txt

30 / 137

http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow-config
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
www.ietf.org/rfc/rfc7047.txt

D3.2: Methods for Interoperability and Integration v.2

There are many proprietary and commercial SDN platforms, as well as collaborative and open-source
projects driven by the research community. An example of them is discussed below.

Open Network Operating System (ONOS)11 It has limited QoS support at the moment. It supports
metering mechanisms but is rarely implemented.

OpenDayLight (ODL)12 ODL consists of many sub-projects, such as southbound protocol plug-
ins (NetCONF, SNMP...) and applications complementing each other to offer a complete controller.
OVSDB southbound plugin has been introduced in ODL-Lithium release, allowing the management
of queues in switches. A Reservation module also allows resource reservation for QoS.

Floodlight 13 QoS module implemented for Floodlight uses the DSCP values, applying specified
rules in switches. The QueuePusher extension (2014) introduces an API for OVSDB protocol to
configure queues.

Ryu 14 Provides a Rest API with the OVSDB protocol to configure queues and meters allowing
external applications to manage Open vSwitches.

As we observe, QoS is barely implemented in the SDN controllers. They offer the mechanisms and
protocols to manage the QoS but usually an external application or algorithm is required to manage
dynamically the QoS parameters of the network attending the status of itself in each moment. To
better understand how the protocols of QoS configuration work, we will introduce them in the next
subsections.

2.2.2.3 OF-CONFIG in Qos-SDN

The called OpenFlow configuration and Management Protocol is a protocol that defines mechanisms
to access and modify the configuration data on an OpenFlow physical switch directly from the con-
troller. Despite OpenFlow determines how packets are forwarded between individual sources and
destinations, it does not provide the configuration and management functions that are needed to
allocate ports or assign IP addresses. For that purpose, the OF-CONFIG was created and imple-
mented in the majority of controllers that manage an SDN network, providing an overall view of this
one and the possibility of set policies and manage the traffic across nodes. The implementation of
OF-CONFIG in a switch requires modifying the switch’s internal configuration database and imple-
ment the Netconf Protocol (RFC 6241) to communicate between configuration points and switches,
using XML encoding for configuration data and protocol messages.

2.2.2.4 OVSDB in QoS-SDN

As OpenVSwitch is a virtual switch that enables its programming and management, its state is stored
in a database server and the switch daemon is used. The named Open vSwitch Database man-
agement protocol is the one used to control the cluster database and determine the configuration of
the virtual switch including its ports, bridges, interfaces and other important switch information. The

11http://onosproject.org/
12https://www.opendaylight.org/
13http://www.projectfloodlight.org/floodlight/
14https://osrg.github.io/ryu/

31 / 137

http://onosproject.org/
https://www.opendaylight.org/
http://www.projectfloodlight.org/floodlight/
https://osrg.github.io/ryu/

D3.2: Methods for Interoperability and Integration v.2

OVSDB Protocol uses the JavaScript Object Notation (RFC 4627) for its schema and wire protocol
format and JSON-RPC 1.0 for its wire protocol.

The differences between OF-CONFIG and OVSDB protocols are several. Mainly the OVSDB is
focused in configuration of virtual switches implemented with Open vSwitch while OF-CONFIG is
focused in configuration of physical switches. However, more and more vendors, including physical
switches manufacturers implement OVSDB within their products. Additionally, these protocols own
many other differences; encoding, features, commands, etc. depending of the element they config-
ure.

2.2.3 Software Defined Radio

Manufacturers continue to make developments building more capable, advanced and power efficient
SDR solutions. Continued work in this area will lead to more capable systems and bring prices down
increasing the likelihood of financially viable solutions being made available to consumers in the IoT
space.

2.2.3.1 Hardware

Recently Xilinx have produced a Zynq Ultrascale+ RFSoC with extremely fast ADC’s and DAC’s 15.
They have a number of variations which include 8x8 and 16x16 channel versions and SD-FEC 16.
Analog devices have produced a newer agile RF transceiver, the AD9377, which has an observation
path 17. Lime micro-systems have the very capable LMS8001+ underdevelopment as well 18.

Continued review of the available hardware and the new features available will be ongoing throughout
the project to ensure that the consortium is aware of the latest available hardware to further this are
of research and development.

2.2.3.2 Software

In addition to GNU radio open source software, we have reviewed Xilinx’s Vivado HLS development
methodology and their SDSoC Development Environment. They have continued to improve it to ease
development cycles.

The methodology focuses on the use of parallel development flows for the valuable differentiated logic
and the shell used to integrate the differentiated logic with the rest of the ecosystem. Additionally,
use of a C-based IP development flows is covered for the differentiated logic to provide simulations
that are orders of magnitude faster than RTL simulations, as well as accurately timed and optimized
RTL. Pre-verified, block, and component-level IP can also be used for shell development. Use of
scripts to automate the flow from accurate design validation through to programmed FPGA. Users
have reported 4X speed up in development time for designs a 10X speed up in the development time
for derivative designs and 0.7X to 1.2X the Quality of Results (QoR).

15goo.gl/QZRWm7
16https://www.xilinx.com/products/silicon-devices/soc/rfsoc.html
17http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/

wideband-transceivers-ic/ad9375.html
18http://www.limemicro.com/products/

32 / 137

goo.gl/QZRWm7
https://www.xilinx.com/products/silicon-devices/soc/rfsoc.html
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9375.html
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9375.html
http://www.limemicro.com/products/

D3.2: Methods for Interoperability and Integration v.2

2.3 Middleware Interoperability (MW2MW)

Elaboration of INTER-IoT pilots resulted in implementation of INTERMW bridges for UniversAAL,
BodyCloud and WSO2. VITAL-OS was researched and we include it in the updated SotA because of
it’s use of JSON-LD in communication.

A common INTER-IoT ontology has been defined at the project level. A concrete instantiation of the
ontology is the implementation of a message structure used throughout INTERMW, and serialized as
JSON-LD. This resulted in adaptation of the following concepts and technologies, further described
in the Semantics section.

2.3.1 VITAL-OS

The main objective of the EU FP7 project VITAL19 was to design and develop/prototype a federated
middleware solution able to integrate and orchestrate heterogeneous IoT platforms/services/data
streams operating/available in the smart city environment. The VITAL-OS platform offers filtering
and processing mechanisms, as well as a range of tools directed towards both data providers, and
end-user application developers.

Moreover, it provides a set of data models and interfaces supporting collection and annotation of data
from heterogeneous sources with the help of a unified JSON-LD data representation. A web-based
central management environment is also included.

Figure 3: VITAL-OS platform20

19http://vital-iot.eu/

33 / 137

http://vital-iot.eu/

D3.2: Methods for Interoperability and Integration v.2

The overall architecture of the VITAL-OS platform is shown in Figure 3. The role of its main building
blocks can be characterized as follows.

• Platform Provider Interface (PPI) defines a unified access to platforms’ components and meta-
data.

• Data Management Service (DMS) offers persistence and basic querying mechanisms for the
semantically enriched data (and meta-data).

• IoT Adapter periodically fetches and pulls data to the DMS.

• Virtualized Unified Access Interfaces (VUAIs) provide a virtualized and platform-independent
access to data and services.

The role of the remaining architectural components is clearly given by their respective names.

The VITAL-OS middleware platform was implemented using the Java programming language, as well
as the JavaScript-centric Node.js ecosystem.

2.3.2 UniversAAL

UniversAAL has been described and related to the IoT-A model in the deliverable D4.1.

The EU-funded project universAAL21 aimed to produce an open platform that provided a standardized
approach to develop Active-Assisted Living (AAL) solutions. The project consolidated previous AAL
efforts and projects and tried to come up with the best solution to make development open, feasible
and economically viable for any developer. It has since then pivoted to an IoT-oriented support22,
given that the base technology is independent from the applications at the top (although AAL-oriented
services will still find more useful resources than others will).

The core of the universAAL platform consists of a semantic matchmaking middleware. All computing
devices running the middleware can communicate with each other through the middleware’s peer-
to-peer communications (based on jSLP23 and jGroups24). For the applications connected to the
middleware, communication is seamless regardless of the device they are in. All they need to do is
connect to one or some of the middleware’s three buses: Service, Context and User Interface.

The Service bus is a call-based bus, which works for pull communications. It is used for executing
services. The Context bus is an event-based bus, which works for push communications. It is used
for publishing information updates. Finally, the UI bus is a combination of both approaches and is
used for creating user interfaces the user can interact with.

In all cases, the information shared through the buses is based on ontologies (using RDF and OWL
semantic technologies for representation). The description of the services, their execution calls,
the events and their subscriptions, everything is described ontologically. This is what enables the
middleware to perform semantic matchmaking: Applications describe their abilities, and what they
what to obtain, semantically, without having to specify explicit addresses, IDs, coded values, etc. . .

20Source: http://vital-iot.eu/
21http://universaal.sintef9013.com/index.php/en/
22http://www.universaal.info/
23http://jslp.sourceforge.net/
24http://www.jgroups.org/

34 / 137

http://vital-iot.eu/
http://universaal.sintef9013.com/index.php/en/
http://www.universaal.info/
http://jslp.sourceforge.net/
http://www.jgroups.org/

D3.2: Methods for Interoperability and Integration v.2

In an example scenario of having to turn on the lights in the bathroom, an explicit service would have
to look up a registry or call all other services that handle lights, probably check some metadata to
determine their location, get their IDs, and then call them one by one. With UniversAAL’s semantic
matchmaking, it would only need to describe what it needs to once. A service call that would read
like “turn on everything that is a light and is in a room called Bathroom”.

A particular type of application are the Exporters. Each of these Exporters connects to a particular
sensor network technology and translates the interaction with the hardware into universAAL semantic
services and events. The universAAL platform already provides Exporters for technologies such as
ZigBee, KNX or Eclipse Smarthome.

In the context of INTERMW, the UniversAAL bridge has been developed to support the INTER-Health
Pilot and also to support any kind of IoT Health or AHA (Active and Healthy Aging) environments that
require interoperability (it will be used as well in the H2020 IoT-LSP ACTIVAGE project).

2.3.3 WSO2

WSO2 has been described and related to the IoT-A model in the deliverable D4.1.

WSO2 is an open source service-oriented architecture (SOA) middleware. It is designed with inde-
pendent components, so it can be adapted for a lean targeted solution to enterprise applications. The
entire WSO2 middleware stack works seamlessly across private, public, WSO2 managed and hybrid
clouds, as well as on-premise.

WSO2 products make heavy use of Java technology and are built on top of WSO2 Carbon, the com-
pany’s SOA middleware platform. Carbon makes use of Apache Axis2 and encapsulates SOA func-
tionality such as data services, business process management, ESB routing/transformation, rules,
security, throttling, caching, logging and monitoring.

In the context of INTERMW, a WSO2 bridge has been developed to support the INTER-LogP Pilot.

2.3.4 BodyCloud

The effective and efficient management of a large number of cooperative and non-cooperative BSNs
is a critical task in supporting a wide range of pervasive applications for communities of users. In fact,
the huge amount of data that networks of BSNs may generates, requires a scalable and flexible in-
frastructure for the collection, storage and processing, including the online and offline analysis of data
streams. The management of networks of BSNs and their gathered data cannot be autonomously
accomplished with their limited resources. BodyCloud [1,2] tackles the problem by exploiting a Cloud
computing infrastructure and providing an integrated platform, namely a Cloud-enabled BSN infras-
tructure, that offers:

• capabilities of using heterogeneous sensors through mobile devices acting as gateways,

• scalability of processing power for different kinds of analysis,

• scalability of data stream storage,

• ubiquitous and global access to the processing and storage infrastructure,

• easy sharing of results and

35 / 137

D3.2: Methods for Interoperability and Integration v.2

• pay-as-you-go pricing for using BSN services.

Figure 4: BodyCloud simplified architecture diagram

BodyCloud is a distributed software framework for the rapid prototyping of large-scale BSN applica-
tions. Currently based on Google App Engine, it is designed as a SaaS architecture to support the
storage and management of sensor data streams and the processing and analysis of the stored data
using software services hosted in the Cloud. In particular, BodyCloud endeavors to support several
cross-disciplinary applications and specialized processing tasks. It enables large-scale data shar-
ing and collaborations among users and applications in the Cloud, and delivers Cloud services via
sensor-rich mobile devices. BodyCloud also offers decision support services to take further actions
based on the analyzed BSN data. Its design (see Figure 4 for a simplified architecture diagram)
and implementation choices allow BodyCloud to flexibly be tailored, in a very effective manner, for
supporting a broad range of application domains, including m-Health, Building automation, and envi-
ronmental monitoring.

2.3.5 Data representation and processing

Semantic web and graph data. The Semantic web is a standard that promotes common data
formats and exchange protocols. It has two main objectives: common formats for integration and
combination of data drawn from diverse sources, and a language for recording how the data relates
to real world objects. Traditionally two approaches have been used to store data, and both are still
very relevant today. The most used has been relational databases (for example MySQL, MS SQL),
as database for all kinds of applications. In addition, hierarchical databases are widely used, such
as XML, for sending information. However, there are other approaches using semantic data such
us RDF (Resource Description Framework). RDF is a common acronym within the semantic web
community because it forms one of the basic building blocks for forming the web of semantic data.
This language is used to define a type of database called a graph database. RDF define statements in
the form of subject, a predicate (property), and an object. These expressions are known as triples in

36 / 137

D3.2: Methods for Interoperability and Integration v.2

RDF terminology. The subject indicates the resource and the predicate denotes features or aspects of
the resource and expresses a relationship between the subject and the object. Relational databases
stores data in tables (rows and columns) while RDF represents data as a list of triples

JSON-LD. The JavaScript Object Notation (JSON), designed by Douglas Crockford, and defined in
the IETF RFC 7159 [3], is a lightweight key-value type data-interchange format. Inspired by the
JavaScript standard object literal syntax, it is currently one of the most widely used data formats.

The JSON format can also be used for serialization of Linked Data [4, 5]. The W3C JSON-LD [6]
recommendation can be seen as effectively defining JSON serialization of RDF [7], although it allows
some extensions, like blank nodes as predicates for example (RDF predicates have to be IRIs).
Fortunately, these differences between the JSON-LD and the RDF can be treated in a uniform way –
some suggested solutions can already be found in the recommendation [6] itself.

JSON-LD can be smoothly integrated into any solution which already utilizes JSON. Since any JSON-
LD document is at the same time a valid JSON document, all programming tools and libraries for
parsing, transforming, and storing JSON can be applied to JSON-LD data as well.

Although it was primarily designed for use in the area of Linked Data, JSON-LD is also a perfect
language for formulating any kind of “self-describing” messages, which in addition to the “raw-data”
can contain meta-information, further specifying their content. Together with the “compatibility” with
RDF, this provides a convincing argument in favor of JSON-LD as an excellent candidate for the data
format of the INTER-IoT internal messaging system.

SPARQL. The most common query language used in for querying RDF resources SPARQL. Along
with RDF, OWL, and SWRL, it is one of the technologies at the core of the Semantic Web "layer cake".
SPARQL is a query language to access RDF data (including insert/delete in SPARQL 1.1). It differs
from SQL in that it was designed to operate over disconnected sources over a network in addition to
a local database. The SPARQL protocol allows transmitting the queries and results between a client
and an engine via HTTP.

Parliament 25. As a database for the INTER-IoT Middleware Services (Platform and Device registry
and discovery) we have decided to use Parliament, a free and open source triple store. Parliament
is a high-performance triple store designed for the Semantic Web. It was originally developed for
internal use in R&D programs and it was released as an open source project under the BSD license
in 2009. It has a number of interesting features:

• Innovative data storage scheme that interweaves the data with a unique index. This keeps
the index small and allows Parliament to keep the index up-to-date with very little extra effort.
Because of the index, Parliament can answer queries efficiently by reordering query execution.

• Use of temporal index, so that it can efficiently answer queries like "find all events that occurred
between times X and Y".

• Supports GeoSPARQL, the newly adopted OGC standard for geospatial semantic data. Using
its geospatial index, Parliament can efficiently answer queries like "find all items located within
region X".

• Parliament directly supports RDF statement reification, enabling efficient storage and lookup of
provenance and other kinds of metadata.

25http://parliament.semwebcentral.org/

37 / 137

http://parliament.semwebcentral.org/

D3.2: Methods for Interoperability and Integration v.2

• Parliament includes a high-performance rule engine, which serves as an efficient means of
inference. The rule engine applies a set of inference rules to the directed graph of data in
the triple store in order to derive new facts. This enables Parliament to automatically and
transparently infer additional facts and relationships in the data to enrich query results.

2.4 Application & Services Interoperability (AS2AS)

In the state of the art of the previous document, we have indicated that access and use of the services
provided by IoT platforms, in most cases, is done through their APIs. We are going to describe in
more detail some of these services in the Demo section (4.5.7) of this deliverable.

In the previous document was justified that the Node-RED tool is an element that allowed easy access
to these services. It also has functionalities to enable interoperability, interconnection and exchange
of messages between them. This tool is in a continuous evolution and has relation with other tools
with different purposes. Therefore, in this state of the art, special emphasis is placed on studying
the evolution of the Node-RED project and its relationship with other tools with purposes such as
virtualization or API’s description.

The software selected to perform the virtualisation is Docker, it is a software that can package an
application and its dependencies in a virtual container that can run on any server with the Docker
platform. For that reason, it offers a portable and efficient solution to run the Node-RED instances.

Finally, the software selected to work with API’s description is Swagger, it is a framework of API
developer tools for the OpenAPI Specification, enabling development across the entire API lifecycle,
from design and documentation, to test and deployment. For that reason, it offers a interesting
solution to document and design the nodes of Node-RED.

2.4.1 Node-RED

We have mentioned, among other things, the advantages of this tool, the functionalities offered, the
existing nodes and the relationship with other projects. Although it is interesting to add a few new
notes, to emphasize the amount of new developments that are generated daily related to this platform.

Node-RED is a project with a large number of collaborators. There are many branches and develop-
ments focused in several directions. But despite this, the main development of the Node-RED tool
has a clear road map. The current state is a stable and open tool that provides a good basis to
work and develop our solution, but the future functionalities that are being developed will give a more
complete functionality. The current direction of Node-RED project is explained in the "Roadmap to
1.0 slides" 26.

The main points of this document are improve the following issues:

• Provide the necessary extension points to be customised

• API Stability

• Support modern development practices
26https://speakerd.s3.amazonaws.com/presentations/f647c01eecd94eb0ba0c0a51bbd755ab/

nr-roadmap-to-onepointzero.pdf

38 / 137

 https://speakerd.s3.amazonaws.com/presentations/f647c01eecd94eb0ba0c0a51bbd755ab/nr-roadmap-to-onepointzero.pdf
 https://speakerd.s3.amazonaws.com/presentations/f647c01eecd94eb0ba0c0a51bbd755ab/nr-roadmap-to-onepointzero.pdf

D3.2: Methods for Interoperability and Integration v.2

• Collaboration issues

• Provide tools to manage a system at scale.

Node-RED growth and expansion is occurring in parallel to the development of our project. We are
creating our functionalities that adapt to our specific needs. For that reason, this roadmap evolution is
closely followed by us, because we must know what is going to happen. Together with this document,
there are channels to follow in real time the evolution of these developments and let us to collaborate
with them like the Google Group 27, Slack 28, Git repository 29 and Trello 30.

There are some projects, including Inter-IoT, that develop solutions related with the Node-RED tool
and they are using different approaches.

Firstly, there are projects that are integrating this interoperability solution in their platform, as is the
case of Sofia231. In this case they have adapted to their needs, have developed new components and
have dedicated effort to create documentation and courses to facilitate their learning. Other projects,
for example, FRED takes advantage of Node-RED instances to create solutions above it.

Secondly, there are other IoT projects that are not including the complete solution but are providing
the development of official nodes to facilitate the work with this platform32. Or in other cases, third
parties have implemented nodes to access the services offered by IoT platforms33.

For that reason, it is necessary a constant search of those trends and contents that are being devel-
oped, to know which can be adapted to the needs of the project and which must be developed by
us. Not only with the purpose to achieve a solution that adapts to the needs of INTER-IoT, also, to
actively collaborate in the ecosystem that is being formed around Node-RED.

2.4.2 Relation of Docker with Node-RED

The instances of the interoperability solution could be contained in a Docker container. This facilitates
portability, scalability, and multi-instance creation of the Inter-IoT Node-RED instances.

The official Node-RED documentation provides many ways to run Node-RED under Docker and
customize the container. Including options like:

• Storing data outside of the container

• Building the container from a source

• Building a custom image

• Updating the base container

• Linking Containers

27https://groups.google.com/forum/#!forum/node-red
28https://nodered.org/slack/
29https://github.com/node-red/node-red
30https://trello.com/b/R0O3CSrI/node-red-whiteboard
31https://about.sofia2.com/2017/05/10/visual-development-in-sofia2-with-raspberry-node-red-and-dashboards/
32https://github.com/lcarli/NodeRedIoTHu
33https://flows.nodered.org/

39 / 137

https://groups.google.com/forum/#!forum/node-red
https://nodered.org/slack/
https://github.com/node-red/node-red
https://trello.com/b/R0O3CSrI/node-red-whiteboard
https://about.sofia2.com/2017/05/10/ visual-development-in-sofia2-with-raspberry-node-red-and-dashboards/
https://github.com/lcarli/NodeRedIoTHu
https://flows.nodered.org/

D3.2: Methods for Interoperability and Integration v.2

There are projects that are working with this relationship between Node-RED containers and the
APIs offered by Docker. Their purpose is to create platforms in the cloud with the main features of
Node-RED. A good example is the FRED project (Front-end for Node-RED).

This project provides a multi-tenant cloud hosted Node-RED system for rapid IoT integration and
application development. It supports the ability to run flows for multiple users. This flows should get
fair access to CPU, memory and storage resources. It provides secure access to flow editors and the
flow run-time. Furthermore, the system scales with the number of users and their hosted flows.

The internal FRED components related with docker are:

• FRED-IS: they are micro services that manage the node-red processes. They are Docker
container instances.

• Proxy: it is used to create, start and stop a Node-RED process, delegating the work of managing
these processes to FRED-IS. Redirects communication from each user’s browser to their node-
red process, devices and services that are communicating with a Node-RED flow using HTTP
or web sockets.

• Instance Server: they host FRED-IS services. To provide isolation from the OS and limit the
memory and CPU, FRED-IS leverages the Docker container system, using the Docker API to
manage processes on the host.

It is related with the solution that is being developed in Inter-IoT, because in this layer one of our
objectives is to extract the best characteristics that the combination of Docker and Node-RED can
offer us.

2.4.3 Relation of Swagger with Node-RED

The interaction with APIs offered by IoT services and its descriptions is a necessary approach in this
layer, this is the reason to include functionalities that can provide work with Swagger.

The main goal of Swagger is to define a standard, language-agnostic interface to REST APIs which
allows to discover and understand the capabilities of the services without access to source code,
documentation, or through network traffic inspection. A consumer can understand and interact with
the remote service with a minimal amount of implementation logic.

There are two types of existing nodes that can provide an interaction with Swagger in the interoper-
ability solution of this layer. Their development is by the Node-RED project community, but, currently,
is not fully completed and they have a list of things to do. But it is a good starting point to facilitate
the tasks of development in our desired solution.

The first type is a Node-RED node able to invoke Web APIs generically based on a Swagger descrip-
tion34. It is a node that provides a generic client for Web APIs by using Swagger javascript client.
All that is required for to automatically be able to invoke a given API is to have the corresponding
swagger description.

This node provides support for:

• Parsing and invoking Swagger 1.0, 1.2 and 2.0 descriptions

34https://flows.nodered.org/node/node-red-contrib-swagger

40 / 137

 https://flows.nodered.org/node/node-red-contrib-swagger

D3.2: Methods for Interoperability and Integration v.2

• Content negotiation both for Request and Response content types

• Authentication via Basic HTTP Auth and API Key

• Invocation of APIs, except those with other non-supported authentication mechanisms.

• Embedded swagger descriptions server

• Feedback information about the status of the remote API

However, for example, it does not support OAuth 2.0 authentication.

The study of this node type is interesting from the point of view of the components of our interoper-
ability solution that need to develop the access to IoT native services.

The second node type is a set of tools for generating Swagger API documentation based on the
HTTP nodes deployed in a flow 35 36.

The study of this second option is interesting from the point of view of the components that are going
to implement the catalogue and discovery of services and flows.

2.5 Data & Semantics Interoperability (DS2DS)

Since publication of the Deliverable D3.1, an important update has been made to the foundational
sensor and observation related ontology – W3C SSN [8,9].

The new version of the SSN [10] introduces several important additions and overall change to the
structure of the ontology. It’s based on the original SSN standard, and influenced by OGC’s O&M,
Sensor ML, as well as various recent attempts at producing ontologies for the IoT.

The ontology has been divided into two main parts/modules – Semantic Sensor Network (SSN) and
Sensor, Observable, Sample, and Actuator (SOSA) ontologies.

The SOSA ontology, which among others, offers long awaited concepts of Actuators and Actuation,
constitutes the core of the new SSN. It has been designed to be lightweight and self-contained (not
depending on any other modules). Its semantics is based on a description logic “profile” ALI(D), for
which efficient support in modern triple stores exists.

The modular structure of the new SOSA/SSN is depicted in Figure 5. Modules are related to each
other in either horizontal or vertical manner. Let us remind here, that horizontal modules can be
understood as (loosely coupled) “subsets” of an ontology, which usually describe distinct aspects of
an area of interest. Vertical ones, on the other hand, are built on top of each other and form hierar-
chies. Due to its modular structure the new SSN should be thought of as an interconnected collection
of ontologies rather than one monolithic ontology. The red parts/modules in Figure 5 represent the
normative modules, i.e., the modules that are formally part of the standard.

In addition to the main problem of the original SSN, namely its heavy-weight nature, the SOSA/SSN
ontology addresses several other issues existing in the old standard. In particular, practically every
concept can now be virtual. It’s a very important change, substantially broadening the applicability

35https://flows.nodered.org/node/node-red-node-swagger-ddm
36https://flows.nodered.org/node/node-red-node-swagger
37Source: https://www.w3.org/TR/vocab-ssn/

41 / 137

https://flows.nodered.org/node/node-red-node-swagger-ddm
https://flows.nodered.org/node/node-red-node-swagger
https://www.w3.org/TR/vocab-ssn/

D3.2: Methods for Interoperability and Integration v.2

Figure 5: Modular structure of SOSA/SSN37

of the ontology. Also semantics of the key notions such as Observation has been clarified, and new
concepts, e.g., Procedure have been introduced. Both Procedure and Observation are now modeled
as dul:Event.

The alignment between SSN and DUL has also been improved and made fully optional at the same
time – in other words SOSA/SSN no longer depends on the DUL ontology.

Conceptually, SOSA/SSN ontology has been divided into: System, SystemProperty, Feature, Result,
Procedure, Observation/Actuation/Sampling, and Deployment “components”. This division, from an
actuation perspective, is depicted in Figure 6 and Figure 7, for SOSA and the entire SOSA/SSN
respectively.

Figure 6: SOSA conceptual structure for actuation38

42 / 137

D3.2: Methods for Interoperability and Integration v.2

Figure 7: SOSA/SSN conceptual structure39

From Figure 6 it can be observed that the structure to represent actuation result has been simplified
in comparison to original SSN i.e.

The SOSA/SSN ontology is an important step towards a truly foundational ontology for the IoT. There-
fore, it shall replace the original SSN as one of the core modules of the INTER-IoT central ontology
GOIoTP.

2.6 Cross-Layer Interoperability

INTER-IoT interoperability solution has been divided in 5 layers: Device to Device, Network to Net-
work, Middleware to Middleware, Application and Services to Application and Services and Data
and Semantics to Data and Semantics. In all these layers there are common features that are de-
veloped as a Cross-Layer solution. These common features are Security, Layer interactions and
Virtualization and Clusterization.

In this state of the art section we cover security in IoT platforms and tools, as well as Virtualization
and Clusterisation tools that have been reviewed to be used as part of our solution. Layer interactions
is not covered in the state of the art section since it is a specific feature of INTER-IoT interoperability
layered solution.

2.6.1 Security in IoT

Security is one of the aspects that are most relevant in IoT. There are many trends to deal with
security, that implies a continuous research of information and test new technologies. Our purpose

38Source: https://www.w3.org/TR/vocab-ssn/
39Source: https://www.w3.org/TR/vocab-ssn/

43 / 137

https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/vocab-ssn/

D3.2: Methods for Interoperability and Integration v.2

is designing and architecture and developing an IoT interoperability solution that also addresses the
security issues that are appearing.

Nowadays, the main security challenges in IoT are communications security and integrity, access
control, data encryption, authorization, authentication and identity management.

As a starting point to achieve this purpose in this section we have studied and classified how current
platforms work with these challenges, classifying this information into a summary table. We have also
studied tools that can help us implement security in Inter-Layer. In section 4.7 we will go deeper into
the security aspects of each layer of our solution, because all layers have both common and specific
needs.

2.6.1.1 Security in IoT Platforms

It is very relevant to revisit and summarize the different security mechanisms that the most relevant
IoT platforms implement nowadays in order to design our security solution. For that reason, in tables
2 to 8 the following security specifications of the selected IoT Platforms have been analyzed: Com-
munications Security, Access-Control Policy, Implementation of Authorization Management
and Additional mechanisms.

44 / 137

D3.2: Methods for Interoperability and Integration v.2

FIWARE

Security Mechanism Platform Specification
Communications Security SSL/TLS protocol with a RSA standard cipher requiring a

security certificate X.509.
Access-Control Policy Access Control module (AC) is a control access policy server

implemented by Keypass, a multi-tenant XACML server with
PAP (Policy Administration Point) and PDP (Policy Deten-
tion Point) capabilities and provides a flexible roles structure.
These roles, policies and credentials are introduced into the
IDM by the application owners.

Implementation of Autho-
rization Management

The “core of the security” is implemented by two components
(IDM and PDP).
• Identity Management (IDM): Authentication implemented

based on OpenStack Keystone APIs plus a SCIM APIs ex-
tension.

• PDP manages authorization policies in XACML format and
enforces decisions based on them when requested by
PEPs to authorize or deny access requests to services.

Additional Mechanisms FIWARE has an additional module, PEP (Policy Enforcement
Point), which is a Token-driven component that runs the iden-
tity, access and authorization process after a service request
using the other components.

Table 2: Security mechanism implemented in FIWARE

45 / 137

D3.2: Methods for Interoperability and Integration v.2

UNIVERSAAL

Security Mechanism Platform Specification
Communications Security Between internal components and services, RSA over

communication bus. Externally, SSL/TLS protocol with
certificate-based server authentication.

Access-Control Policy
• Management of permissions of the bus members is imple-

mented in Java in UniversAAL own way.
• Additional access-control policies can be made by the ap-

plication owner with a UI.

Implementation of Autho-
rization Management • The identity management is carried out by username/pass-

word for PCs or a PIN for smartphones.
• The authentication service validates the entered creden-

tials against the user credentials of the security user’s sub-
profile stored in the local profile service named Context
History Entrepot (CHE).

• The right authentication results in the creation of a session.
• The authenticated user session enables application ser-

vices to make authorization decisions based on access-
control policies.

Additional Mechanisms Application services for security provide value added secu-
rity to the universAAL platform such as document encryption
and consent management. As is a sensitive-data oriented
platform, the storage information is further encrypted accord-
ing to IHE DEN standard.

Table 3: Security mechanism implemented in UNIVERSAAL

46 / 137

D3.2: Methods for Interoperability and Integration v.2

OM2M

Security Mechanism Platform Specification
Communications Security SSL/TLS protocol can be enabled requiring a security cer-

tificate X.509 which isn’t confined to a single cipher algo-
rithm. For COAP communication, OM2M uses californium
which does not implement DTLS, it is possible to change
the binding to scandium (secure californium) to implement
DTSL.

Access-Control Policy Different resources allow access control handling
• Access Control Policy (ACP)
• Access Control Rule (ACR)
• RBAC with assigned privilege for CREATE, RETRIEVE,

UPDATE, DELETE, DISCOVERY, and NOTIFY

Implementation of Autho-
rization Management • Mutual Authentication with each originator and receiver.

• Entities use mutual authentication, both send authentica-
tion tokens derived from master credentials, both send au-
thentication challenge which may or may not be random
dependent on security parameters.

• Mutual authentication is applied to symmetric and asym-
metric key based schemes.

• Authorization Basic Token
• Authorization controls access to resources and services

hosted by all CSEs and AEs (types of node)
• ACP resources include privileges and selfPrivileges that

include ACRs
• SelfPrivileges relate to privileges to change the ACP
• Privileges relate to resources and services linked with the

ACP

Additional Mechanisms
• Identity protection
• AE Impersonation
• Prevention

Table 4: Security mechanism implemented in OM2M

47 / 137

D3.2: Methods for Interoperability and Integration v.2

OPENIOT

Security Mechanism Platform Specification

Communications Security SSL/TLS protocol.
Access-Control Policy RBAC: Roles are containers which contain permissions and

are implemented with Apache Shiro’s wildcard.
A successful access grants the client a single session token
with manageable expiration time.

Implementation of Autho-
rization Management

For authentication and authorization in OpenIoT an
OAuth2.0 enabled CAS server is used in JBoss. Open IoT
uses Apache Shiro for authentication and authorization. buji-
pac4j adds support for OAuth2.0 (using pac4j library) au-
thentication to Apache Shiro. Each client has to be regis-
tered in CAS in order to be recognized for OAuth2.0. Client
modules provide authentication and access control utilities
through a web interface through API REST interaction.

Additional Mechanisms Local Management Console to set-up the configuration im-
plemented with JBoss.

Table 5: Security mechanism implemented in OPENIOT

48 / 137

D3.2: Methods for Interoperability and Integration v.2

SOFIA2

Security Mechanism Platform Specification
Communications Security SSL/TLS protocol with a RSA standard cipher requiring a

security certificate X.509
Access-Control Policy RBAC:

• Administrator
• Collaborator
• User

Implementation of Autho-
rization Management

User identity: own plugin-sofia-user either encrypted or not
encrypted.
Console security: own plugin-console-security based on
Spring Security
Back-end authorization: own plugin-sib-security based on a
mechanism of Token-Session Key.

Additional Mechanisms Ontology Schemas and JSON validation

Table 6: Security mechanism implemented in SOFIA2

49 / 137

D3.2: Methods for Interoperability and Integration v.2

AWS IOT

Security Mechanism Platform Specification
Communications Security TLS encrypting (AES) the connection between the device

and the broker, requiring a security certificate X.509

Access-Control Policy RBAC (IAM Roles)
Implementation of Autho-
rization Management • AWS IoT Policy (JSON Documents)

• Cognito identities
• IAM Policy

Additional Mechanisms AWS Signature Version 4 with AWS IoT

Table 7: Security mechanism implemented in AWS IOT

50 / 137

D3.2: Methods for Interoperability and Integration v.2

AZURE

Security Mechanism Platform Specification
Communications Security TLS with X.509 initially.

TLS/PSK and TLS/RPK on roadmap for compute-
constrained devices and bandwidth limited or expensive
metered links.

Access-Control Policy Cloud-implemented manageable RBAC (IAM Roles), en-
abling policy-based access control (through Azure Portal).
Basic control access is defined by four kind of permissions:
• RegistryRead
• RegistryReadWrite
• ServiceConnect
• DeviceConnect

Implementation of Autho-
rization Management • Single Identity Key for every device which is used to estab-

lish a session token.
• Key Management implemented on-cloud with Docu-

mentDB or SQL.
• Channel-level authentication and authorization against the

gateway.
• Validation of signatures against identity registry and black-

list.
• Azure IoT Hub grants access to endpoints by verifying a

token against the shared access policies and identity reg-
istry security credentials.

• Azure Cloud Mechanisms including Azure Active Directory
and Key Vault

Additional Mechanisms All messages are tagged with originator on service side

Table 8: Security mechanism implemented in AZURE

51 / 137

D3.2: Methods for Interoperability and Integration v.2

2.6.1.2 Security Tools

In this section, we will introduce the security tools being considered for inclusion in Inter-IoT.

Credential store:

A credential store is a library of security data. A credential can hold public key certificates, username
and password combinations, or tickets. Credentials are utilized at the time of authentication, when
subjects are populated with principals, and during authorization, when identifying the actions the
subjects are able to perform.

We have identified the following interesting tools for Inter-IOT:

• Cryptex40 is a secure secret storage and cryptographic key retrieval tool for Node.js.

• Auth0 with AngularJS41 helps to implement client-side and server-side (API) authentication to
add support for username/password authentication to web, API and native mobile apps.

• Passport-auth042 is the authentication strategy for Passport.js

Access to the backend

Oauth2: OAuth 2.0 is an authorization protocol that allows third parties (clients) to access content
owned by a user (hosted in trusted applications, resource servers) without the client having to handle
or know the user credentials. That is, third-party applications can access user-owned content, but
these applications do not know the authentication credentials. It focuses on client developer simplicity
while providing specific authorization flows for web applications, desktop applications, mobile phones,
and living room devices.

In an OAuth 2.0 scenario there are three clearly identified parts:

• The resource owner is an entity capable of giving access to protected resources kept in a re-
source server. The resource owner receives authorization requests and grants authorization to
approved clients if their identity can be authenticated.

• The client (application) is the entity requesting authorization from the resource owner (user). If
authorization is granted, the client also requests an access token from the authorization server
and uses this token to procure the protected resource.

• The authorization and resource servers control access to and host the protected user informa-
tion. In many cases the authentication server is the same as the Resource Server. In case
they are separated, the authentication server is responsible for generating access tokens and
validating users and credentials.

Proposed Backends

OAuth2orize43 is an authorization server toolkit for Node.js. It provides a suite of middleware that,
combined with Passport authentication strategies and application-specific route handlers, can be
used to assemble a server that implements the OAuth 2.0 protocol.

40https://github.com/TechnologyAdvice/Cryptex
41https://github.com/auth0/auth0-angular
42https://github.com/auth0/passport-auth0
43https://github.com/jaredhanson/oauth2orize

52 / 137

https://github.com/TechnologyAdvice/Cryptex
https://github.com/auth0/auth0-angular
https://github.com/auth0/passport-auth0
https://github.com/jaredhanson/oauth2orize

D3.2: Methods for Interoperability and Integration v.2

node-oauth2-server44 Complete, compliant and well tested module for implementing an OAuth2
Server/Provider with express in node.js

Additionally, OAuth provides a list of libraries and services that support OAuth 2.0.45

WSO246 The state of the art of this security backend has been covered in Deliverable 4.1 since this
is the security backend that is being deployed in Inter-IoT.

Oauth Client

Passport:47 Passport is authentication middleware for Node.js. It is designed to serve a singular
purpose which is to authenticate requests. It includes more than 300 authentication strategies and
single sign-on with OpenID and OAuth. It handles success and failure, supports persistent sessions
and has dynamic scope and permissions.

Everyauth48 Is a modular tool covering Facebook and Twitter OAuth logins and basic login/password
support. It is has configurable authorization strategy with an easy-to-read, easy-to-write approach. It
is idiomatic and the syntax for configuring and extending authorization strategies are chainable.

OAuth2 Client49 OAuth2 Client is a library to help you handle OAuth2 access and request tokens.
It’s for browser-only use (it came about because it was used for a single-page application), so it only
includes the OAuth2 Implicit Grant flow.

2.6.2 Virtualization and Clusterization of Layers

Inter-Layer solutions need to take advantage of virtualization tools to improve in scalability, portability,
isolation and flexibility. In addition, one of the main advantages of clusterisation is to simplify the
deployment and management of large pools of servers, providing a unique point of configuration
becoming these cluster of servers as easy to manage as a single workstation. The following tools
offer virtualization, clusterisation or both methodologies:

OpenStack 50

Open Stack is an open source software for creating private and public clouds managed by OpenStack
Foundation. This open-source software platform has a modular architecture that permits to provide
a set of core services. The Datacenter controls large pools of compute, storage, and networking
resources, managed through a Dashboard that provides a web based user interface allowing users
to manage and monitor cloud resources. Moreover, OpenStack differentiates between various types
of cloud users, namely administrator, operator and user distinguishing the level of security access
that each role has. This solution is interesting to our project as an environment for deploying the
different layer solutions, concretely, in the network solution there is a specific plugin in OpenStack to
connect with Ryu and so we can deploy our software defined network within OpenStack.

LXC 51

44https://github.com/oauthjs/node-oauth2-server
45https://oauth.net/code/
46https://wso2.com/identity-and-access-management
47http://passportjs.org/
48https://github.com/bnoguchi/everyauth
49https://github.com/zalando/oauth2-client-js
50https://www.openstack.org/
51https://linuxcontainers.org/lxc/introduction/

53 / 137

https://github.com/oauthjs/node-oauth2-server
https://oauth.net/code/
https://wso2.com/identity-and-access-management
http://passportjs.org/
https://github.com/bnoguchi/everyauth
https://github.com/zalando/oauth2-client-js
https://www.openstack.org/
https://linuxcontainers.org/lxc/introduction/

D3.2: Methods for Interoperability and Integration v.2

In the Operating System (OS) level, LXC is a virtualization technology that allows multiple instances
of isolated operating systems. It permits to control simultaneously multiple virtual units (containers),
allowing the isolation of application and operating systems. In addition, because LXC manages real-
time resource allocation, it provides near-native performance. Through Kernel Control Groups KXG
is capable to manage network interfaces and applying resources inside containers.

LXD 52

It offers a user experience similar to virtual machines but using Linux containers instead. It’s image
based with pre-made images available for a wide number of Linux distributions and is built around a
REST API.

It’s basically an alternative to LXC’s tools and distribution template system with the added features
that come from being controllable over the network.

This solution is interesting because provides an OpenStack plugin that integrates system containers
into a regular OpenStack deployment.

Docker 53

Docker allows to package an application with all of its dependencies into a standardized unit for
software development. Docker containers wrap up a piece of software in a complete filesystem that
contains everything it needs to run: code, runtime, system tools, system libraries; to sum up, anything
that could be installed on a server. This guarantees that it will always run the same, regardless of the
environment it is running in.

The following list shows some interesting tools that work with Docker:

• Dockerode54: Node.js module for Docker’s Remote API.

• Docker-maven-plugin55: Maven plugin for running and creating Docker images.

• Docker plugin for Jenkins56: Docker plugin allows to use a docker host to dynamically provision
build agents, run a single build, then tear-down agent.

• Docker Swarm57: Docker-native clustering system. It turns a pool of Docker hosts into a single,
virtual host.

• Portainer58: A lightweight management UI for managing a Docker host or a Docker Swarm
cluster.

• Rancher59: An open source project that provides a complete platform for operating Docker in
production.

• Portus60: Authorization service and frontend for Docker registry.

52https://linuxcontainers.org/lxd/introduction/
53https://www.docker.com/
54https://github.com/apocas/dockerode
55https://github.com/fabric8io/docker-maven-plugin
56https://github.com/jenkinsci/docker-plugin/
57https://github.com/docker/swarm
58https://github.com/portainer/portainer
59https://github.com/rancher/rancher
60https://github.com/SUSE/Portus

54 / 137

https://linuxcontainers.org/lxd/introduction/
https://www.docker.com/
https://github.com/apocas/dockerode
https://github.com/fabric8io/docker-maven-plugin
https://github.com/jenkinsci/docker-plugin/
https://github.com/docker/swarm
https://github.com/portainer/portainer
https://github.com/rancher/rancher
https://github.com/SUSE/Portus

D3.2: Methods for Interoperability and Integration v.2

• Docker Registry61: Docker toolset to pack, ship, store, and deliver content.

In this state of the art we have presented a list of different virtualization solutions that fit our needs,
after studying all the advantages of those solutions, we have decided to use Docker. In section 4.7.3
will be explained in detail the deployment of our docker based solution, focusing in Docker Swarm and
Docker Portainer. In N2N an approach using OpenStack is being considered, since it offers elements
and functionalities that can be very beneficial in our network solution.

61https://github.com/docker/distribution

55 / 137

https://github.com/docker/distribution

D3.2: Methods for Interoperability and Integration v.2

3 INTER-LAYER Design

3.1 Development and Demonstration Environments Setup

To enable an homogeneous controlled environment for the development of the different layers, offer-
ing the interfaces to other parallel developments such as INTER-FW or INTER-API, a development
cloud environment has been set up. This environment is based in the Microsoft Azure Cloud and
comprises a set of 7 commodity servers to decouple the different software modules development
and, at the same time, making the latest features available to be tested. These servers are all ac-
cessed through a unique stepping-stone server. The access to this environment is securized through
Microsoft Azure standard security mechanisms.

Figure 8: Development and demonstration environment setup

Apart for the development, this environment is also used in the different demonstrations performed
during the project execution, thanks to the possibility of easily exposing ports and the use of dynamic
DNS to link the servers to a single URL. One example of these demonstrations can be currently found
in the address: http://vmbrk03.westeurope.cloudapp.azure.com/interiot_wfk/#.

These servers are available from 07.00 until 19.00 everyday. Since the development they are meant
for development and punctual demonstrations, they are offline during the evening and night, while
having the possibility to extend the online time up to full-time under request.

http://vmbrk03.westeurope.cloudapp.azure.com/interiot_wfk/#

D3.2: Methods for Interoperability and Integration v.2

3.2 INTER-IoT RA Instantiation

In Deliverable D4.1, an Initial Reference IoT Platform Meta-Architecture and Meta-Data Model has
been produced. In this deliverable, INTER-IoT has defined a Reference Model (RM) or “meta-model”
for IoT Platforms Interoperability and a Reference Architecture (RA) (through an Architectural Refer-
ence Model-ARM) defined based on the RM as well. This work is currently under progress towards
a final version of the deliverable (D4.2). This document has a strong basis on the works done in
IoT-A EU Project and a deep analysis of 16 heterogeneous IoT platforms carried out in the INTER-
IoT project. This RA has been used for the design of the INTER-LAYER architecture, and both,
the INTER-IoT RA and the INTER-LAYER architecture (specifically the API design of the different
interoperability layers) has been the foundation for the design of the INTER-FW architecture.

Figure 9: Process followed for the generation of the INTER-LAYER architecture

According to OASIS definition:

A reference architecture models the abstract architectural elements in the domain of inter-
est independent of the technologies, protocols, and products that are used to implement
a specific solution for the domain.

57 / 137

D3.2: Methods for Interoperability and Integration v.2

According to the same organism:

A reference architecture is not a concrete architecture; i.e., depending on the require-
ments being addressed by the reference architecture, it generally will not completely spec-
ify all the technologies, components and their relationships in sufficient detail to enable
direct implementation.

The INTER-IoT RA was designed for the interoperability of IoT Platforms. This was one of the ob-
jectives of the INTER-IoT project (see Objective 2). The explanation of OASIS about a reference
architecture and a concrete architecture is exactly what we have done for the INTER-FW: to create
an instantiation of the INTER-IoT RA to the specific needs of the INTER-FW.

3.2.1 INTER-IoT RA instantiation for INTER-LAYER

The starting point for this instantiation has been the Functional View for the INTER-IoT Reference
Architecture that is depicted in the following figure:

Figure 10: Functional-decomposition viewpoint of the INTER-IoT Reference Architecture62

From these Functional Groups (FGs – the big blocks) and Functional Components (FCs – the in-
ner components of each FG), some of them have been identified as relevant for the INTER-LAYER
according to its defined requirements. The FGs that are involved in the instantiation of the INTER-
LAYER architecture can be seen in the following picture:

62All INTER-IoT Reference Architecture images provide from D4.1 Initial Reference IoT Platform Meta-Architecture and
Meta Data Model, section 4 INTER-IoT Reference Architecture.

58 / 137

D3.2: Methods for Interoperability and Integration v.2

Figure 11: Functional Groups of the INTER-IoT Reference Architecture
involved in the INTER-LAYER

The Application FG is considered out of the scope, under the premise that the Application will access
INTER-FW and not directly the INTER-LAYER. The Management FG is mainly responsibility for the
INTER-FW as the manager of all the features provided by the INTER-LAYER, but a small functional
set regarding Configuration has been identified as relevant for the gateway, thus being instantiated in
it.

The role of the rest of FGs in INTER-LAYER is described below: The Security FG is a key group of
the INTER-LAYER architecture, which is responsible for ensuring all the security aspects involved in
the interoperability of IoT Platforms. The security in our realm has two faces:

• Management of the security aspects related to the connection with underlying IoT Platforms.
This implies to accomplish with the different security features that the platforms require. INTER-
LAYER will need to tackle the user authentication for connecting to a platform, the authorisation
management (e.g. use of authentication tokens) and the encryption of some communications.

• Management of the internal security of INTER-IoT. The connection to INTER-IoT must be se-
cured, with appropriate authentication capabilities, and authorisation management.

The Device Access FG plays a relevant role, being instantiated with the components that provide
the access to devices, implemented through the gateway and the virtual gateway.

The Device Interoperability FG plays a relevant role, being instantiated with the components that
provide the D2D / N2N interoperability layers of INTER-LAYER, implemented through the virtual part
of the gateway and the software defined network capabilities of the N2N layer.

The Platform Interoperability FG will be used for providing access to the different IoT Platforms and
performing platform interactions.

The Semantics FG will manage the different ontologies for the connected IoT Platforms, and the
alignment and end-to-end translation among the available ontologies of the different IoT Platforms.

59 / 137

D3.2: Methods for Interoperability and Integration v.2

The Service Interoperability FG provides the necessary features to access to services from IoT
Platforms, and composing and orchestrating new derived services among IOT Platforms.

Inside each Functional Group, some Functional Components have been identified as necessary for
INTER-LAYER. Please note that other FCs are not discarded in INTER-IoT, but addressed by other
products of INTER-IoT like INTER-FW.

3.2.2 INTER-LAYER Functional Components

The FCs within each FG that are involved in the instantiation of the INTER-LAYER architecture can
be seen in figure 12:

Figure 12: Functional Components of the INTER-LAYER architecture according
to the INTER-IoT Reference Architecture

A more detailed description of each FC is described below. For each FC, a pre-candidate definition
of architectural components is made.

60 / 137

D3.2: Methods for Interoperability and Integration v.2

3.2.2.1 Management FG

Figure 13: Functional Components of the Management FG instantiated for
INTER-LAYER concrete architecture

The list of instantiated FCs of the Security Management FG is described in table 9.

Functional Component Description
Configuration It allows the configuration of the different devices attaches to

a physical gateway and the network and transport protocols
used. It is used to adapt to different situations and react to
changes during the operational phase.

Architectural Components
• D2D Gateway Configuration: It controls the operation

of the physical and the virtual planes of the gateways
during the operational phase of INTER-IoT.

Table 9: List of functional components instantiated from the Reference
Architecture for the Configuration FC

61 / 137

D3.2: Methods for Interoperability and Integration v.2

3.2.2.2 Security FG

Figure 14: Functional Components of the Security FG instantiated for
INTER-LAYER concrete architecture

The list of instantiated FCs of the Security FG is described in tables 10 and 11.

Functional Component Description
Authorisation Performing access control decisions to specific IoT Platforms

and its resources (devices, services, etc.) under certain con-
ditions based on access control policies. This access control
decision can be called whenever access to a restricted re-
source is requested. For instance, a platform owner may will
to give access to a subset of devices to a set of user roles,
but only within a time range, or when mobile devices are at
a certain location.

Architectural Components
• D2D. Middleware controller : It handles the connection

with the upper IoT Platforms.
• MW2MW. Bridges: It handles the connection with the

different IoT Platforms at the middleware layer.
• AS2AS. Orchestrator : It handles the connection with

existing services deployed at the IoT Platforms.

Table 10: List of functional components instantiated from the Reference
Architecture for the Authorisation FC

62 / 137

D3.2: Methods for Interoperability and Integration v.2

Functional Component Description
Authentication The user authentication for connecting to a platform. The

access to the different IoT Platforms maybe user-based or
anonymized depending on the decision of platform owners.

Architectural Components
• D2D. Middleware controller : It handles the connection

with the upper IoT Platforms.
• MW2MW. Bridges: It handles the connection with the

different IoT Platforms at the middleware layer.
• AS2AS. Orchestrator : It handles the connection with

existing services deployed at the IoT Platforms.

Table 11: List of functional components instantiated from the Reference
Architecture for the Authentication FC

3.2.2.3 Device Access

Figure 15: Functional Components of the Device Access FG instantiated for
INTER-LAYER concrete architecture

The Device Access FG will be instantiated completely. It will be responsible for offering a common in-
terface to services and virtual entities that represent and expose functionality of physical devices. The
Device Access FG will be implemented by the physical gateway and the virtual gateway, operating at
the D2D interoperability layer.

The list of instantiated FCs of the Device Access FG is described in tables below:

63 / 137

D3.2: Methods for Interoperability and Integration v.2

Functional Component Description
Communication This FC is instantiated in order to handle the whole commu-

nication protocol stack under the transport layer. This pro-
tocol stack management implies to address all the features
related to the communication tasks (flow control, network ac-
cess, protocol conversion, etc.). Therefore, it’s responsibil-
ity of the Communication FC to manage the communication
with the devices with two different aspects:

• Access network. Handling the access to the different
communication networks that may appear to establish
the contact with the devices (WiFi, LTE, Bluetooth Low
Energy, Serial, etc.).

• Transport Protocol Management. Managing the neces-
sary actions to provide end-to-end communication be-
tween devices and the gateway, specifically supporting
transport protocols like MQTT, CoAP, LWM2M, Raw,
etc.

Architectural Components
• D2D. Access Network Controller : It handles the con-

nection with the underlying sensors through specific
network protocols (WiFi, serial, LTE, BLE, etc.).

• D2D. Protocol Controller : It handles the protocol con-
version among different transport protocols (CoAP,
MQTT, LWM2M, etc.) and the flow control.

Table 12: List of functional components instantiated from the Reference
Architecture for the Communication FC

Functional Component Description
Virtual Entity This VE FC is instantiated to allow the interaction with an

IoT Platform on the basis of Virtual Entities rather than IoT
Services in the virtual gateway.

Architectural Components
• D2D. Virtual Entity Dispatcher : It handles the virtual

representation of physical entities and dispatches the
information between the physical gateway and the IoT
Services .

Table 13: List of functional components instantiated from the Reference
Architecture for the Virtual Entity FC

64 / 137

D3.2: Methods for Interoperability and Integration v.2

Functional Component Description
IoT Service The IoT Service FC is responsible for managing IoT Ser-

vices as well as functionalities for discovery, look-up, and
name resolution of IoT Services. These services expose re-
sources of devices to the rest of the components. It may
allow to gather information about a sensor in a continuous
asynchronous way, after a subscription, for instance. Or it
may allow to submit requests to an actuator. The IoT Ser-
vice will run in the virtual plane of the gateway, decoupling
the interaction with the resources of devices from their us-
age

Architectural Components
• D2D. Registry : It keeps a registry of the physical sen-

sors connected to the gateway.
• D2D. Discovery : It implements the discovery service of

the physical sensors connected to the gateway.
• D2D. Device Manager : It handles the connection and

registry of the physical sensors connected to the gate-
way and the name resolution.

• D2D. Measure Storage: It is responsible for storing
the recent measurements made by the devices and of-
fering access to these measurements from the virtual
plane.

Table 14: List of functional components instantiated from the Reference
Architecture for the IoT Service FG

3.2.2.4 Device Interoperability

Figure 16: Functional Components of the Device Interoperability FG
instantiated for INTER-LAYER concrete architecture

65 / 137

D3.2: Methods for Interoperability and Integration v.2

The Device Interoperability FG will be instantiated completely. It addresses the challenges of making
legacy devices and non-real IoT Platform interoperable with other IoT Platforms and systems. The
Device Interoperability FG will be implemented by the virtual gateway, operating at the D2D interop-
erability layer and the N2N Solution.

The list of instantiated FCs of the Device Interoperability FG is the following:

Functional Component Description
Device to Device Interoper-
ability

This FC implements the needed functionalities to achieve the
interoperability among devices. To enable this interoperabil-
ity among devices rules are defined in the virtual plane of the
gateway using a rule engine.

Architectural Components
• D2D. Rules Engine: It defines rules for performing in-

teroperability among devices.

Table 15: List of functional components instantiated from the Reference
Architecture for the Device to Device Interoperability FC

Functional Component Description
Network Interoperability This FC is responsible for managing the interoperability be-

tween networks or parts of the network that belong to an IoT
deployment. The interoperability solution is based on soft-
ware defined paradigms but mainly on two approaches: SDR
for interoperability on access network and SDN/NFV for the
core network

Architectural Components
• N2N. Openflow connector : It handles the connection

with compatible switches trough OpenFlow protocol.
• N2N. Routing: It is responsible for executing the rout-

ing algorithms.
• N2N. Host Tracking: It handles the tracking of the dif-

ferent assets being managed at the N2N.
• N2N. Storage: It stores the status, QoS, tracking and

routing information being managed in the N2N.
• N2N. Discovery : It performs the provision of a discov-

ery service of network topology.
• N2N. Switch Manager : It controls the different switches

of connected networks.

Table 16: List of functional components instantiated from the Reference
Architecture for the Network Interoperability FC

66 / 137

D3.2: Methods for Interoperability and Integration v.2

Functional Component Description
IoT Platform Interoperability This FC is responsible for enabling the interaction between

the devices available from the Device Access FG and the
Platform Interoperability FG. Please, note that the devices
available from the Device Access FG are not devices tied
to existing IoT Platforms. The devices connected to an IoT
Platform are accessed through the interaction between the
Platform Interoperability FG and the IoT Platform FG, while
the devices not tied to an IoT Platform (those connected to
legacy sensor systems that cannot be considered as IoT
Platform), are accessed through the Device Access FG.

Architectural Components
• D2D. Middleware Controller : It performs the communi-

cation between the gateway and an IoT Platform in two
ways:

The gateway acts as a client of IoT Platforms, thus
being responsible for interconnecting legacy or dis-
parate devices into existing IoT Platforms.

The gateway can also act as a kind of legacy IoT
Platform from the point of view of the Platform Interop-
erability. This may happen when there is no IoT Plat-
form where to attach the devices, but there is a need
from an external application to access these devices in-
teroperating their data with information from other IoT
Platforms.

Table 17: List of functional components instantiated from the Reference
Architecture for the IoT Platform Interoperability FC

3.2.2.5 Platform Interoperability

Figure 17: Functional Components of the Platform Interoperability FG
instantiated for INTER-LAYER concrete architecture

67 / 137

D3.2: Methods for Interoperability and Integration v.2

The Platform Interoperability FG will be instantiated to interact with the different IoT Platforms to be
interconnected. It is the responsible for accessing the IoT Platforms, not for implementing any of the
features that the IoT Platforms provide. Only the Platform Access and Platform Service FCs will be
instantiated. The Platform Resolution will be instantiated in the INTER-FW, as the purpose of this FC
better fits into the INTER-FW objectives.

The list of instantiated FCs of the Platform Interoperability FG is the following:

Functional Component Description
Platform Access This FC implements the functions needed for connecting to

an IoT Platform and accessing their resources (specific dis-
covery, lookup, data query, data subscription, device registry,
etc.). This includes the use of the appropriate protocols and
APIs that each platform exposes.

Architectural Components
• MW2MW. Bridges: They are in charge of specific de-

tails of implementation for each of the IoT Platforms
supported. A bridge for each platform is expected.

• MW2MW. Resource Registry : It keeps a registry of the
different resources available at each IoT Platform.

• MW2MW. Resource Discovery : It provides the service
for discovery of resources available at each IoT Plat-
form..

• MW2MW. Routing and Roaming: It performs the rout-
ing and roaming of a device among different IoT Plat-
forms.

Table 18: List of functional components instantiated from the Reference
Architecture for the Platform Access FC

68 / 137

D3.2: Methods for Interoperability and Integration v.2

Functional Component Description
Platform Service This FC is responsible for performing device and platform in-

teractions, like querying data from different devices and plat-
forms in a common way, mapping sensor data flows from a
source to a destination, offering subscriptions to sensor data,
etc.

Architectural Components
• MW2MW. Message Broker : Communication channel

for the message flow to and from IoT Platforms and for
communicating with the IPSM.

• MW2MW. Platform Request Manager : It control the
flow of messages between the API and the bridges and
also controls the service requests, acting as a mediator
between the API and the Platform Resolution FC.

• MW2MW. Request Manager : It keeps a record of the
requests received from the API to provide the neces-
sary callbacks for data streams and providing replies
to specific requests.

Table 19: List of functional components instantiated from the Reference
Architecture for the Platform Service FC

3.2.2.6 Service Interoperability

Figure 18: Functional Components of the Service Interoperability FG
instantiated for INTER-LAYER concrete architecture

The Service Interoperability FG will be instantiated completely to support the Application and Ser-
vice to Application and Service (AS2AS) interoperability through the definition and execution of new
compound services that make use of already existing services in the underlying IoT Platforms.

The list of instantiated FCs of the Service Interoperability FG is the following:

69 / 137

D3.2: Methods for Interoperability and Integration v.2

Functional Component Description
Service Resolution This FC implements the functions needed for is responsible

for the storage of what we call flows. A flow is a logical defi-
nition of a sequence of steps, each of which can be a service
existing in an IoT Platform.

Architectural Components
• AS2AS. Service Catalogue: It stores a list of the regis-

tered services that are available at the connected IoT
Platforms.

• AS2AS. Register Client : It provides the registry of sin-
gle services that are available at the connected IoT
Platforms.

• AS2AS. Service Discovery : It provides the discovery
of the registered services that are available at the con-
nected IoT Platforms.

• AS2AS. Flow Repository : It stores the flows that have
been defined for performing their further orchestration.

Table 20: List of functional components instantiated from the Reference
Architecture for the Service Resolution FC

Functional Component Description
Service Composition This FC allows for the design of new compound services

based on services that IoT Platforms expose.
Architectural Components

• AS2AS. Modeller : It allows a graphical definition of the
compound services re-using already existing services
in IoT Platforms.

Table 21: List of functional components instantiated from the Reference
Architecture for the Service Composition FC

Functional Component Description
Service Orchestration This FC is responsible for the execution of the flows that are

stored in the catalogue managed by the Service Resolution
FC.

Architectural Components
• AS2AS. Orchestrator : It performs the execution of

flows which are initiated by triggers (user request, IoT
Platform event or alert, data received, etc.) that have
been defined for each flow.

Table 22: List of functional components instantiated from the Reference
Architecture for the Service Orchestration FC

70 / 137

D3.2: Methods for Interoperability and Integration v.2

3.2.2.7 Semantics

Figure 19: Functional Components of the Semantics FG instantiated for
INTER-LAYER concrete architecture

The Semantics FG will be instantiated completely to addresses the challenges related to semantic
interoperability of IoT Platforms. It will provide semantic translation capabilities to the rest of the
interoperability layers of INTER-IoT.

The list of instantiated FCs of the Semantics FG is described below:

Functional Component Description
Ontology Alignment This FC was responsible for performing the alignment from

a source data with an ontology to a target data with its own
ontology. It makes the data translation between two ontolo-
gies, using the ontology definitions resolved by the Ontology
Resolution FC

Architectural Components
• AS2AS. Semantic Translation Channel : It is responsi-

ble for, configuring a channel which all the translations
of the same type go through. It calls the proper align-
ment applicator for the needed translation.

• AS2AS. Alignment Applicators: It is responsible for
performing the translation from input ontology A to out-
put ontology B.

Table 23: List of functional components instantiated from the Reference
Architecture for the Ontology Alignment FC

71 / 137

D3.2: Methods for Interoperability and Integration v.2

Functional Component Description
Ontology Resolution This FC responsible for managing the different ontologies

used at the various IoT Platforms that are connected through
INTER-IoT. The semantic knowledge is about being aware
of the structure and meaning of the data. It stores these
data descriptions and offers access to them for the Ontology
Alignment FC

Architectural Components
• AS2AS. IPSM Communication Infrastructure: It is re-

sponsible for, given an RDF input flow, to direct the in-
put messages to the appropriate semantic translation
channel and after the translation has been performed,
to direct the output messages to the RDF output flow.

• AS2AS. Channel Manager : It is responsible for creat-
ing new semantic translation channel for any request
of new translation from input ontology A to output on-
tology B.

• AS2AS. Alignment Repository : It stores the registered
ontologies for the connected platforms and the Global
Ontology.

Table 24: List of functional components instantiated from the Reference
Architecture for the Ontology Resolution FC

3.2.3 Functional Components traceability

For ensuring the right engineering process of development, we have elaborated a traceability matrix
of the different Functional Components against the architectural components of INTER-LAYER.

72 / 137

D3.2: Methods for Interoperability and Integration v.2
A

rc
hi

te
ct

ur
al

C
om

po
ne

nt
s

M
an

ag
em

en
t

D
ev

ic
e

A
cc

es
s

D
ev

ic
e

In
te

ro
p.

S
em

an
tic

s
S

er
vi

ce
In

te
ro

p.
P

la
tf

or
m

In
te

ro
p.

S
ec

ur
ity

Configuration

Communication

Virtualentity

IoTService

D2DInteroperability

IoTPlat.Interoperability

NetworkInteroperability

OntologyResolution

OntologyAlignment

ServiceResolution

ServiceComposition

ServiceOrchestration

PlatformAccess

PlatformService

Authentication

Authorisation

D
2D

.G
at

ew
ay

C
on

fig
ur

at
io

n
X

D
2D

.M
id

dl
ew

ar
e

co
nt

ro
lle

r
X

X
M

W
2M

W
.B

rid
ge

s
X

X
A

S
2A

S
.O

rc
he

st
ra

to
r

X
X

D
2D

.A
cc

es
s

N
et

w
or

k
C

on
tro

lle
r

X
D

2D
.P

ro
to

co
lC

on
tro

lle
r

X
D

2D
.V

irt
ua

lE
nt

ity
D

is
pa

tc
he

r
X

D
2D

.R
eg

is
tr

y
X

D
2D

.D
is

co
ve

ry
X

D
2D

.D
ev

ic
e

M
an

ag
er

X
D

2D
.M

ea
su

re
S

to
ra

ge
X

D
2D

.R
ul

es
E

ng
in

e
X

N
2N

.O
pe

nfl
ow

co
nn

ec
to

r
X

N
2N

.R
ou

tin
g

X
N

2N
.H

os
tT

ra
ck

in
g

X
N

2N
.S

to
ra

ge
X

N
2N

.D
is

co
ve

ry
X

N
2N

.S
w

itc
h

M
an

ag
er

X
D

2D
.M

id
dl

ew
ar

e
C

on
tro

lle
r

X
M

W
2M

W
.B

rid
ge

s
X

M
W

2M
W

.R
es

ou
rc

e
R

eg
is

tr
y

X
M

W
2M

W
.R

es
ou

rc
e

D
is

co
ve

ry
X

M
W

2M
W

.R
ou

tin
g

an
d

R
oa

m
in

g
X

M
W

2M
W

.M
es

sa
ge

B
ro

ke
r

X
M

W
2M

W
.P

la
tfo

rm
R

eq
ue

st
M

an
ag

er
X

M
W

2M
W

.R
eq

ue
st

M
an

ag
er

X
A

S
2A

S
.S

er
vi

ce
C

at
al

og
ue

X
A

S
2A

S
.R

eg
is

te
rC

lie
nt

X
A

S
2A

S
.S

er
vi

ce
D

is
co

ve
ry

X
A

S
2A

S
.F

lo
w

R
ep

os
ito

ry
X

A
S

2A
S

.M
od

el
le

r
X

A
S

2A
S

.O
rc

he
st

ra
to

r
X

A
S

2A
S

.I
P

S
M

C
om

m
un

ic
at

io
n

In
fra

st
ru

ct
ur

e
X

A
S

2A
S

.C
ha

nn
el

M
an

ag
er

X
A

S
2A

S
.A

lig
nm

en
tR

ep
os

ito
ry

X
A

S
2A

S
.S

em
an

tic
Tr

an
sl

at
io

n
C

ha
nn

el
X

A
S

2A
S

.A
lig

nm
en

tA
pp

lic
at

or
s

X

Ta
bl

e
25

:
Tr

ac
ea

bi
lit

y
m

at
rix

of
Fu

nc
tio

na
lC

om
po

ne
nt

s
of

IN
TE

R
-L

AY
E

R
vs

.
IN

TE
R

-L
AY

E
R

ar
ch

ite
ct

ur
al

co
m

po
ne

nt
s

73 / 137

D3.2: Methods for Interoperability and Integration v.2

4 INTER-LAYER Components

4.1 Development and Demonstration Environments Setup

Including a chapter about the development environment, CI and tools (Jenkins, SonarQube, slack,
etc.) and a chapter about the demo environment (including NEWAYS virtual machines etc.)

The content of this section provide a specific delta from the previous version of this deliverable (D3.1)
and has been done in concordance with the solutions provided there. Also, this delta has followed the
guidelines provided by architectural workpackages and requirements (D2.3 and D4.3). This section
will present the improvement of the interoperability solutions presented at the beginning of WP3 and
the implementation status, as well as the steps to follow in the next stages of implementation.

4.2 D2D solution

4.2.1 Refined Architecture

Due to some new insights the architecture changed slightly from the one proposed in D3.1 “Methods
for Interoperability and Integration”. The new architecture of the gateway is given in figure 20.

Compared to the architecture proposed in D3.1 “Methods for Interoperability and Integration” some
minor changes have been initiated. The most important change is the added connector module be-
tween the physical and virtual part of the gateway. This connector module controls the communication
between the physical and virtual part of the gateway. It is worth noticing as well that during devel-
opment we realized that many COTS IoT sensors and actuators have already their own dedicated
protocol communication and supporting libraries to interact with them. This created a braking change
in the gateway, where a Device Controller has to be created inside the Device Manager module.

Our gateway is suited to handle the current evolvement in IoT devices and sensors. For our new
gateway we will define a slightly different approach which is also more aligned with the state of the
art developments in IoT devices and sensors. Figure 20 shows the architecture of the gateway. In
the physical architecture now there are 3 different ways to connect to IoT sensors and actuators:

1. The lowest level where a connection can take place is at the Access Network controller (A.N.
controller). This is for very simple sensors or actuators that have no or very limited processing
power and can be off-line for longer time periods. Sensors are commonly battery powered,
actuators may have a power grid connection but usually also no or very limited processing

D3.2: Methods for Interoperability and Integration v.2

Figure 20: Gateway architecture

power. The A.N controller will do all routing and will serve as a master or access point for the
sensors, afterwards the Protocol Controller will manipulate the data and create the messages
to be sent to the virtual gateway.

2. At the middle level the dedicated sensors and actuators can connect, these are the COTS
IoT devices. Usually these sensors and actuators have some dedicated communication proto-
col between the wireless sensor and some piece of electronics with a small processing core.
They are capable of handling their own access controller and protocol controller and can be
connected through a dedicated extension module implementing a Device Controller.

3. At the highest level we find the COTS IoT systems, they manage their own gateway and pro-
tocols and A.N. controllers. These systems can be connected via the connector directly to
the Virtual Gateway of the Inter-IoT system. In this case, the COTS system software has to be
modified to add a specific connection capabilities and implementation of the reference Physical-
Virtual Gateway communication protocol.

4.2.2 Components

The physical and virtual gateway implementation share a common base and runtime code. Both
are based in an OSGi framework wrapper (the OSGi framework has to be R4 compliant) with a
customized bootstrap and initiation routines. This framework first load the third party libraries, then
the core components and afterwards the extension modules. Then a routine to initiation all the
modules starts, and the Physical and Virtual Core take the main thread to control the gateway. In

75 / 137

D3.2: Methods for Interoperability and Integration v.2

figure 21 and figure 22 a schema and summary of the OSGi Framework, wrapper and components
is shown.

Figure 21: Physical Gateway components

Figure 22: Virtual Gateway components

76 / 137

D3.2: Methods for Interoperability and Integration v.2

4.2.3 Implementation Status

Although the development of the D2D Gateway is iterative, the following table summarizes the state
of development as of writing this deliverable:

Development Phase
Component GW. Type Mod. Type Design Implementation Test

Commons Common Core X X X

Logging Common Core X X X

Connector Common Core X X 80%

Configuration Common Core X X X

Console Common Extension X X X

Physical Core Physical Core X 80% 50%

Registry Physical Core X X 75%

Device Manager Physical Core X 80% 60%

Protocol Controller Physical Core X 80% 50%

A.N. Controller Physical Core X 80% 50%

Discovery Physical Extension X 20% -

Serial Physical Extension X 80% 50%

CoAP Physical Extension X 80% 50%

Arduino Physical Extension X 75% 50%

PanStamp Physical Extension X 90% 75%

SDR Physical Extension 60% - -

Virtual Core Virtual Core X 80% 60%

Dispatcher Virtual Core X X 75%

MW Controller Virtual Core X X X

Storage Virtual Extension X 50% -

API Engine Virtual Extension X X X

Rules Engine Virtual Extension 90% - -

Orion MW Virtual Extension X 75% 50%

UaaL MW Virtual Extension 50% - -

Table 26: D2D Gateway Component implementation status

4.2.4 API (and Extensibility)

In the INTER-IoT device-to-device interoperability gateway there are four different APIs:

• Gateway CLI: The gateway console extension provides a Command-Line Interface (CLI) to

77 / 137

D3.2: Methods for Interoperability and Integration v.2

control the physical or virtual gateway instance.

• Gateway REST API module: REST API exposed by the virtual gateway API Engine extension
module to interact with the virtual and physical gateway.

• Physical/Virtual Communication API: Messages exchanged between the physical and virtual
through the connector module.

• Programmatic API: Libraries and interfaces needed to develop new extension modules for the
gateway.

4.2.4.1 Gateway CLI

The gateway CLI is a basic command line interface to interact with the gateway instance that has been
deployed. This API is provided by the gateway console extension module, so it can be optionally
included in deployment. This module provides a gateway service to the core, so it is loaded and
executed by the bootstrap runtime in a separate thread, once started it will capture the standard input
and output of the system.

There is also an command interface exposed in the commons module that any other module and
extension can implement and expose in order to provide more control and functionalities to new mod-
ules. Classes implementing this interface will be detected and automatically loaded in the console
module.

The command list definitions for both the physical and virtual part of the gateway can be found in the
following Wiki page: https://git.inter-iot.eu/Inter-IoT/gateway/wiki/CLI+commands.

4.2.4.2 Gateway REST API module

The gateway API engine module is loaded also as a gateway service as an extension. Once the
bootstrap runtime loads the API engine module it will search for classes exposed by other modules
(core and extension) that implement an interface provided by the commons module and automatically
provide new endpoints.

Once the API engine is loaded and started, it will run an embedded web server in a separate thread
and provide the endpoints and an automatically generated swagger file to document the REST API.

The REST API definition can be found in the following Wiki page: https://git.inter-iot.eu/Inte
r-IoT/gateway/wiki/API.

4.2.4.3 Physical/Virtual Communication API

Between the physical and virtual parts of the gateway there is a communication protocol consisting in
a json message exchanged through a websocket connector. This allows to have different implemen-
tations of physical gateways (i.e. more flexibility and implementation options) if the communication
fits with the reference implementation for a given version. A list of the exchanged message in the
json protocol can be found in the Annex.

78 / 137

https://git.inter-iot.eu/Inter-IoT/gateway/wiki/CLI+commands
https://git.inter-iot.eu/Inter-IoT/gateway/wiki/API
https://git.inter-iot.eu/Inter-IoT/gateway/wiki/API

D3.2: Methods for Interoperability and Integration v.2

The specification of the communication protocol between the physical and virtual part of the gateway
can be found in the following Wiki page: https://git.inter-iot.eu/Inter-IoT/gateway/wiki/Ph
ysical-Virtual+Communication+Protocol.

4.2.4.4 Programmatic API

All the gateway modules are developed as OSGi bundles, in order to extend the gateway providing
new modules and extensions they only need to implement the correct interfaces depending of the
type of extension (note that this is subject to change in the future):

• Gateway Service: Register a OSGi service that implements CoreService.class from the Com-
mons module.

• Device Controller: Register a OSGi service that implements DeviceControllerService.class
from the Device Manager module. Additionally add the controller-key property to the service
registered.

• Protocol Controller: Register a OSGi service that implements ProtomoduleService.class from
the Protocol Controller module. Additionally register the protocol instance creator class in the
ProtocontrollerService service.

• Access Network Controller: Register a OSGi service that implements ANModule.class from
the Access Network Controller module. Additionally register the access network instance cre-
ator class in the ANController service.

• MiddleWare Controller: Register the MiddleWare controller class implementing MWModule.class
from the MiddleWare Controller module in the MWRegistryService service.

Additionally, any module can also register new commands for the console module and API endpoints
as already explained in section 4.2.4.1 and 4.2.4.2.

4.2.5 Code and Documentation

The D2D Gateway software components, binaries and documentation can be found in the following
sites:

• Code and some draft documentation: Can be found in the INTER-IoT git repository: http:
//git.inter-iot.eu/Inter-IoT/gateway.

• Latest compiled artifacts: Can be found in the INTER-IoT nexus repository: http://nexus.
inter-iot.eu.

• Latest Virtual Gateway docker image: Can be pulled from the INTER-IoT docker repository:
docker.inter-iot.eu/vgateway

• Latest Implemented API definition: Can be found in the INTER-IoT azure cloud machine:
http://vmplsp03.westeurope.cloudapp.azure.com:8080/

79 / 137

https://git.inter-iot.eu/Inter-IoT/gateway/wiki/Physical-Virtual+Communication+Protocol
https://git.inter-iot.eu/Inter-IoT/gateway/wiki/Physical-Virtual+Communication+Protocol
http://git.inter-iot.eu/Inter-IoT/gateway
http://git.inter-iot.eu/Inter-IoT/gateway
http://nexus.inter-iot.eu
http://nexus.inter-iot.eu
docker.inter-iot.eu/vgateway
http://vmplsp03.westeurope.cloudapp.azure.com:8080/

D3.2: Methods for Interoperability and Integration v.2

Other tools are used internally for development purposes, such as Jenkins63 for continuous integra-
tion, SonarQube64 for code inspection and Slack65 for communication.

4.2.6 Demo

An example demo setup was implemented to be shown in the mid-term review of this project. This
setup is shown in Figure 23.

Figure 23: D2D Gateway demo

The setup consisted in a deployment of two physical gateways deployed in two Raspberry Pi units,
one of them connected to PanStamp temperature and humidity sensors and the other connected to
an Arduino board controlling some LEDs as actuators. Both of the physical gateways are connected
to their virtual counterpart, dockerised in an Azure machine. These virtual gateway are controlled and
managed through the API and Inter-FW. Finally, this virtual gateways are connected through an SDN
network to the same IoT Middleware (Orion from Fiware) with a Complex Event Processor configured
with simple rules.

63https://jenkins.inter-iot.eu/
64https://sonar.inter-iot.eu/
65https://inter-iot.slack.com/

80 / 137

https://jenkins.inter-iot.eu/
https://sonar.inter-iot.eu/
https://inter-iot.slack.com/

D3.2: Methods for Interoperability and Integration v.2

The demo consisted in updating the actuators state based on the reading of the sensors, while
demonstrating how the data flows through all the setup. This showed the versatility of the gateway
and the different device controller modules to achieve D2D interoperability, while the an API exposed
by the virtual gateway (without bothering the low-level physical part) and the connection through
the IoT SDN network from INTER-IoT Network-to-network interoperability layer to the middleware
components.

There was a second part of the demo, where a third virtual gateway was deployed but this time
connected to the RINICOM Prime-IoT Gateway (the first commercial implementation of a physical
gateway able to connect to the INTER-IoT virtual gateway66) and the actuators where controlled this
time based on the readings of the new gateway, showing the possibility of interchanging the Physical
Gateway if the reference communication protocol is implemented.

4.3 N2N solution

4.3.1 Refined Architecture

No additional changes have been implemented in the architecture at the moment. The creation of
a SDN has been performed by means of the installation and configuration of virtual switches with
Open vSwitch technologies and its connection with the Ryu controller (figure 24). The development
of modules at the top of the Ryu controller, following the specified architecture, is ongoing. In the next
section we will describe the progress work and the future objectives.

Figure 24: Network interoperability architecture

66http://rinicare.com/products/remote-monitoring/prime

81 / 137

http://rinicare.com/products/remote-monitoring/prime

D3.2: Methods for Interoperability and Integration v.2

4.3.2 Implementation Status

Our SDN solution main objective is to provide seamless integration between virtual elements within
our INTER-IoT deployment. The implementation of the solution includes the creation of this software-
defined network with a controller adapted for the IoT deployments. The status of this task includes:

• Install and configuration of virtual switches using Open vSwitch technology. This brings the
possibility of create custom topologies (they have been created for testing purposes) with the
specific characteristics of each deployment including redundancy of links or interconnection of
different environments.

• Development of modules within the controller: the creation of a simple switch management
application to insert rules in the switches attending the flows and the QoS parameters, the
customization of topology module to show switches, links and hosts connected by the network
and customization of rest API to obtain information about the switches.

• Development of a command line interface (CLI) to introduce direct commands to the controller.

• Inter-connection of virtual gateways thought this network. And connection of the virtual gateway
with an IoT platform (Orion).

• Development of automatic script to run and stop the solution.

• Definition of the REST API in Swagger to be used by higher levels of INTER-IoT

• Development of a GUI embedded in INTER-FW with modules of Topology, Information and QoS
to facilitate the visualization, control and configuration of the network.

Moreover, our following steps will include the improvement of both modules; information/statistics
and QoS, for more automation and dynamism when it comes to acting on the network. Also, the
implementation of mechanisms for network slicing and offloading are being study to be developed in
the next stages of the project.

4.3.3 API (and Extensibility)

The design of an API to access the information and resources within the SDN has been also carried
out as a part of the network to network solution. For this API, we took in account the possibilities that
the REST interface provided by Ryu offered us and we gather the most interesting one to be specified
in Swagger and to be used for other components of INTER-IoT as INTER-FW. The API is available
through the WSO267 portal.

A description of these APIs is the following:

• Switches

– /stats/switches GET

– /stats/desc/id GET

• Flows

– /stats/flow/id GET
67https://vmplsp02.westeurope.cloudapp.azure.com:9443/publisher/site/pages/login.jag

82 / 137

https://vmplsp02.westeurope.cloudapp.azure.com:9443/publisher/site/pages/login.jag

D3.2: Methods for Interoperability and Integration v.2

– /stats/flowentry/add POST

– /stats/flowentry/modify POST

– /stats/flowentry/delete POST

• Ports

– /stats/port/id GET

– /stats/port/id/port GET

– /stats/portdesc/modify POST

• Tables

– /stats/table/id GET

– /stats/tablefeatures/id GET

• Roles

– /stats/role POST

• QoS Queues

– /qos/queue/status/id GET

– /qos/queue/id GET

– /qos/queue/id POST

– /qos/queue/id DELETE

• QoS Rules

– /qos/rules/id GET

– /qos/rules/id POST

– /qos/rules/id DELETE

• QoS Meters

– /qos/meter/id GET

– /qos/meter/id POST

– /qos/meter/id DELETE

In the previous list we observe the diverse resources we can request information an manipulate with
respect to the network. A brief definition of each one is the following:

• Switches; the operation performed over the switches affect the configuration stored in each of
them. We can obtain information about number of ports, manufacturer, software, etc.

• Flows; is the information stored within the switches following the OpenFlow protocol. These
flows are stored in tables and its field are; match, statistics and actions.

• Table; a collection of flows. By default, there is always a flow installed in the first table of each
switch indicating the routing of the new processed packets to the controller.

83 / 137

D3.2: Methods for Interoperability and Integration v.2

• Ports; virtual ports configured in the switch. The characteristics of these ports can be consulted
and modified.

• Queues; associated to a port, define a priority treatment depending on the configuration, also,
they could define the rate of the packets.

• Rules; rules to be implemented in the queues and define the aforementioned treatment.

• Meters; switch element which measures and controls the ingress rate of packets which is the
rate of packets prior to the output.

Moreover, the extensibility at network layer could be achieved by two means:

• Including new elements into the network: usually new virtual switches that connects to other
elements or networks and work as a dawn between the element we want to connect and our
actual virtual network. These new switches could be directly created within Open vSwitch, cre-
ating new interfaces and bridges where we connect the new elements or connecting a different
virtual (or physical) legacy switch provided by a different technology.

• Or including a whole new SDN with different controller: in this case we want to include another
whole network with its controller and interconnect this to our network. In this case as the
direct connection between several controller is something no optimum we should make use
of a hypervisor that acts as another layer of network abstraction to manage or orchestrate all
controllers that manage the networks. But this approach has not been yet contemplated.

4.3.4 Code and Documentation

The code can be divided into two main blocks:

• front-end modules

• back-end modules

The back-end modules comprise all modules related to SDN and acting at the network level. This
includes mostly the SDN framework Ryu, but also APIs, as well as our custom INTER-IOT Ryu ap-
plications. The front-end modules are designed to enable the back-end modules to their full capacity.
A graphical user interface (GUI) allows edition of the SDN network and QoS settings. This interface
can be run locally, but should be used within the INTER-FW portal. In some cases, such as for de-
vice to device interoperability, the framework is not deployed. Therefore, a CLI has been designed to
configure the SDN network and QoS parameters.

Internal documentation describes more precisely these modules, and a summary is presented below.
Please note that this documentation is often subject to changes. The full code and documentation
can be found on the GitHub repository68.

4.3.4.1 Back-end modules

• Ryu Install Ryu with pip install ryu. Install a custom made application by using the com-
mand python setup.py install in the main directory of Ryu. Start any app with ryu-manager

68https://git.inter-iot.eu/Inter-IoT/sdn

84 / 137

https://git.inter-iot.eu/Inter-IoT/sdn

D3.2: Methods for Interoperability and Integration v.2

yourapp assuming your app is installed, otherwise the path must be specified ryu-manager
path/to/yourapp.py.

• INTER-IOT Simple Switch. INTER-IOT Simple Switch is a custom made switch app that au-
tomatically handles flows. This app is located in ryu/ryu/app/InterIoT-simple_switch13.py and
is based on the provided example simple_switch13.py. The example switch supports Open-
Flow1.3 and adds flows according to the first route found. Upon packet reception, if the des-
tination is not known in the MAC address table, the network is flooded until the destination is
found. Then the switch learn which ports correspond to this destination and the appropriate
flow is added. INTER-IOT Simple Switch also integrates a QoS REST API, and a websocket
for GUI. See the previous section for an API description.

• GUI and QoS interface. All corresponding apps for QoS are called upon InterIoT simple switch
start (rest_qos and rest_conf_switch). A custom GUI app is called in parallel of the Inter-IoT
switch in order to start the graphical interface. The file is located at /app/gui_topology/gui_topology.py.
The following apps are then called in order to ensure a good functioning of GUI ryu.app.rest_topology,
ryu.app.ws_topology and ryu.app.ofctl_rest.

4.3.4.2 Front-end modules

• CLI The CLI is located in the folder /cli and is written in python. Running the command sh
CLI.sh in administrator mode will launch the command line interface. Python2.7 is required.
This command line interface will run and understand commands described in files located in
the command folder, and whose name starts with cmd_. Integrated commands are:

– commands: displays all the commands

– exit: exits CLI

– mininet: run Mininet (for test purposes)

– controller: start predefined SDN controllers (SDN controllers start scripts can be added
in the folder commands/pkg_controller)

– switch: allows to configure switches, set Openflow versions, get configuration and flow-
tables of the switch

– qos: allows to set rules, set queues, get rules and get queues of a QoS switch. This
command also allows to set the OVSDB address, and set the controller’s port and address.

For future implementation, the QoS command should allow the user to edit and modify meters.
Some security has been embedded at this level, to avoid intentional of accidental command
injection.

• GUI assets for local use GUI assets are located in ryu/ryu/app/gui_topology/html. All tabs
are located in the directory /tabs and combines both HTML and javascript in order to ensure a
correct web display.

• GUI assets for INTER-FW See INTER-FW.

85 / 137

D3.2: Methods for Interoperability and Integration v.2

4.3.5 Demo

As in the previous review there was not a specific demo for Network, we built demos to show, when
needed, the characteristics of the network solutions. These demos are the following:

• Demo Device + Network + Framework: it shows the connection of virtual gateways through
the network and together with a Middleware component (in this case Orion), also it shows the
graphical tool developed within the FW to show topology and information from the network and
QoS configuration. There graphical tool will be used also for the following demos.

Figure 25: Example of setup for network demo

• Demo QoS-Priority: The demo is based in the set up of a video server that streams a high
quality video and a gateway that send alarms when needed. An example of this architecture
can be seen in Figure 25. In the first phase of this demo the server is streaming a video and the
network link is configured without QoS so no priority is set. When the gateways send an alarm,
also without QoS configuration, a best effort method is applied so the alarm most probably
could not arrive due to the video streaming is taking the whole bandwidth. In the second phase,
the QoS application is running so the priorities to the links are set, higher priority for the alarms
and lower for the video. Thus, when the video is streaming and an alarm is triggered the video
will drop its quality or even freeze to allow the priority alarm to arrive to its destiny taking part of
the link bandwidth of the video.

86 / 137

D3.2: Methods for Interoperability and Integration v.2

4.4 MW2MW solution

4.4.1 Refined Architecture

Figure 26: INTERMW architecture

The core functionality of INTERMW is facilitation of interoperability among IoT Middleware platforms,
as well as the provision of a common abstraction layer to provide access to platform’s features and
information. Further developing these concepts, the architecture of INTERMW has evolved substan-
tially since D3.1, as seen in picture 26. Two important design choices have been taken:

• Common ontology. INTERMW uses the common INTER-IoT ontology (GOIoTP) to represent
all messages routed through the system. The result of work described in section 4.4.2.3 and
Deliverable D4.2 has been extensively used in the implementation of INTERMW components.
Thus, the InterIoT JSON-LD message structure is in the core of INTERMW.

• Middleware abstraction. Unifies work with IoT platforms through extensible middleware ser-
vices. Common abstraction layer unifies the view on all interconnected platforms, devices and
services. It does not matter what device belongs to what platform, or what service is in which
platform. Implementation of a REST API interface further extends the usability of this abstrac-
tion layer by exposing this functionality through a widely used technology.

87 / 137

D3.2: Methods for Interoperability and Integration v.2

In order to implement the above mentioned design decisions, a REST API interface has been devel-
oped northbound of the API Request Manager. This REST API interface takes care of all interfacing
of INTERMW with application layer components.

The logical concept of the Data Flow Manager, introduced in D3.1, has been further elaborated.
The concept has been implemented through the introduction of "conversations" and consequently of
data flow control. A group of messages belongs to the same conversation, if they share the same
conversation identifier (ConversationID). For example, in a single conversation we would typically
have first a message, that subscribes to a particular group of sensors, and then messages with
sensor readings, going upstream from the sensors to the application. Subscriptions in INTERMW
are also tracked by ConversationID. Technically, data flows are implemented through a message
broker.

The integration with IPSM is achieved through the IPSM Request Manager component that orches-
trates the communication between IPSM and INTERMW components (Bridges, Platform Request
Manager).

A triplestore database provides persistence and advanced querying mechanisms for the Services
subsystem. All registry-related requirements that need persistence or querying support are indirectly
implemented through this triplestore. Currently, Platform Registry, Resource Registry and Subscrip-
tions Registry use functionalities provided by this component. The Parliament triplestore database is
used, as described in section 2.3.5.

Syntactic conversion and semantic translation of platform-specific messages have been de-coupled.
Implementation of a Bridge to provide interoperability for a new platform means, for a bridge devel-
oper, implementation of a communication protocol with the platform and syntactic translation of the
message between platform-specific format and INTER-IoT JSON-LD. Definition of rules for semantic
translation (alignments) is still necessary, but not at the Bridge level. That part of the process if fully
implemented in IPSM.

4.4.2 Components

4.4.2.1 REST Interface

INTERMW provides REST API interface that can be used by client applications. As already ex-
plained in Section 2.4.3 and D4.3 (Section 4.3 API Design), Swagger (OpenAPI) REST API definition
language has been selected for definition of all REST API interfaces throughout INTER-Layer com-
ponent. To facilitate the development of INTERMW and keep the definitions up-to-date, the Swagger
annotation library for Java has been used to document the INTERMW REST API.

INTERMW is deployed as a webapp with the exposed REST API interface. Although in principle it
can run in any web servlet container, Jetty 69 is used for development and demonstration purposes.
The deployment platform will be selected in the final phase of the project.

69https://www.eclipse.org/jetty/

88 / 137

https://www.eclipse.org/jetty/

D3.2: Methods for Interoperability and Integration v.2

4.4.2.2 Data Flow Management

As described in the architecture, the data flow management concept has been elaborated through the
definition of a "conversation" concept and of an abstract broker client interface. On a conceptual level,
INTERMW components communicate through channels (queues) that connect two components. The
full list of those channels is provided in table 27.

Conversations get initiated at the API Request Manager (ARM) level. This means that, for each
new group of messages, ARM creates a new Conversation Id and returns it to the caller. The caller
than uses this identifier in two scenarios: when sending requests for change of the original request
in that conversation (for example, unsubscribe to an original subscribe request) or when matching
responses from the middleware to an original request (for example, receiving observations - sensor
readings- for a subscribe request). As consequence, components such as Bridges or Services must
keep track of active conversations an match responses to a correct conversation. We could also
think of conversations as permanent "sessions" or "channels" between API clients and middleware
components.

The actual messaging has to be instantiated through implementation of message broker clients. Ba-
sically, any message broker that provides the basic messaging functionality can be used. At the
moment of writing of this deliverable, clients for the following message brokers have been imple-
mented: Apache ActiveMQ 70, Apache kafka 71, generic MQTT client 72, Vortex OpenSplice 73 and
RabbitMQ 74.

Notes to table 27:

1. The coding convention of topic names between INTERMW and IPSM is as follows.
[mw -ipsm|ipsm-mw] is the direction of the flow (source to destination), which means from IN-
TERMW (MW) to IPSM or the opposite. The second part, [interiot-format |platform-format],
designates the format that is posted to the topic: InterIotMsg format or platform specific. The
last part is the platform type (FIWARE, universAAL, etc.).

2. These are messages sent between bridges and IPSRM. The suffix is the platform identifier.
Messages flowing through these channels use platform-specific semantics. Each bridge in-
stance is subscribed to its own topic and published data to a specific topic as well. Bridges do
never share topics.

70http://activemq.apache.org/
71https://kafka.apache.org/
72http://mqtt.org/
73http://www.prismtech.com/vortex/vortex-opensplice
74https://www.rabbitmq.com/

89 / 137

http://activemq.apache.org/
https://kafka.apache.org/
http://mqtt.org/
 http://www.prismtech.com/vortex/vortex-opensplice
https://www.rabbitmq.com/

D3.2: Methods for Interoperability and Integration v.2

Topic Description
arm_prm API Request Manager messages to Platform request manager. ARM relates API

requests with client identifiers and forwards messages to PRM. ARM communi-
cates only with the PRM.

prm_arm Platform request manager messages to the API Request Manager. API request
manager relates message responses, through conversation identifiers, with API
client identifiers and invokes client callback messages.

prm_srm Platform request manager to Services. PRM sends all requests related to reg-
istry and discovery messages to SRM. The invocation of Services depends on
message types.

srm_prm Services response to PRM. In principle, the response contains a set of attributes
from the registry. It may also contain a discovery request for platforms, which
means that PRM will re-route it southbound, towards the bridges.

prm_ipsmrm All southbound flow towards platforms passes through the IPSM Request Man-
ager (IPSMRM), which takes care of message translation (by invocation of IPSM)
and forwarding to bridges.

ipsmrm_prm IPSM Request Manager to Platform request manager messages are already
translated responses from platforms.

mw-ipsm-interiot-
format-{Platform
Type}

Messages in InterIotMsg format sent for translation (see note 1). These are
messages to be sent to platforms after they have been translated by IPSM.

ipsm-mw-platform-
format-{Platform
Type}

Messages in IoT platform-specific formant returned from IPSM (see note 1).
These are messages ready to be sent to platforms.

mw-ipsm-platform-
format-{Platform
Type}

Messages in IoT platform-specific format sent for translation (see note 1). These
are messages sent by platforms to INTERMW.

ipsm-mw-interiot-
format-{Platform
Type}

Messages in InterIotMsg format translated by IPSM (see note 1). These are
messages sent by platforms to INTERMW and already translated by IPSM.

ipsmrm_bridge_
{Platform Id}

Message flow from IPSRM to a bridge (see note 2).

bridge_ipsmrm_
{Platform Id}

Message flow from bridge to IPSRM (see note 2).

rest_api_{client Id} Topic for client callback messages (REST). There is one queue per REST API
client. Clients use pull method to get messages form the response queue.

error Global INTERMW error topic. In case of any errors, messages get posted to this
topic.

Table 27: INTERMW inter-component communication topics

90 / 137

D3.2: Methods for Interoperability and Integration v.2

4.4.2.3 Messages

The core of INTERMW are messages expressed in the common ontology. The same message
structure is used by IPSM, whose role is to semantically translate messages to and from the common
INTER-IoT ontology. Each message is composed of message metadata and payload.

All message routing within INTERMW is done based on information, found in the metadata message
part. In the case that the payload contains essential information for routing of the message, this is in-
formation first transferred to the metadata of the message and only then used in message processing
and routing within INTERMW. Within the message metadata the following information for processing
and routing messages is provided: message types, destination platform(s), source platform, message
id and conversation id (see also section 4.4.6 for more details).

Although implementation of the Message class allows for a message to have multiple types, in prac-
tice a message has one or two types. In these cases, RESPONSE is the second message type. This
reflects the message flow mechanism: some message types are request, which expect responses
from INTERMW components. The table 28 lists all message types, their usage and typical data flow
scenarios.

Internally, the Message implementation used the JSON-LD format, which is divided into two RDF
graphs: InterIoTMsg75:Metadata and InterIoTMsg:Payload. Metadata graph uses a custom INTER-
MW RDF vocabulary in order to store information used by INTER-MW to route and manage mes-
sages. Metadata properties are managed by INTER-MW libraries.

Technically, metadata graph must contain a single instance of a InterIoTMsg:Meta class, called a
"metadata instance". URI identifier of the instance can be any URI, but the identifiers generated by
INTER-IoT are from the InterIoTMsg namespace. The instance can have any number of types, as
long as it is at least of type InterIoTMsg:meta. Other types used by INTER-MW are described in
table 28. The URIs of those types are prefixed by InterIoTMsg (e.g. "InterIoTMsg:SUBSCRIBE").

The fields (properties) of the metadata instance are as follows:

• InterIoTMsg:messageID - a string identifier of a message

• InterIoTMsg:conversationID - a string identifier of a conversation, of which this message is a
part of

• InterIoTMsg:dateTimeStamp - a time information in xsd:datetimestamp format denoting time of
creation of the message

• InterIoTMsg:query - Discovery service query

• InterIoTMsg:errCode, InterIoTMsg:errDesc, InterIoTMsg:errOriginalMsg, InterI-
oTMsg:errStackTrace - description of an error, optionally including another message that
caused the original error, and a Java exception stack trace serialized in RDF

• InterIoTMsg:senderPlatformID, InterIoTMsg:receiverPlatformID - identifiers of platforms that
take part in the communication

• InterIoTMsg:status - General status information, usually used to acknowledge a message (STA-
TUS = "OK")

75Prefix: http://inter-iot.eu/message/

91 / 137

http://inter-iot.eu/message/

D3.2: Methods for Interoperability and Integration v.2

Message Type Description
PLATFORM REG-
ISTER

This request creates a new Platform entry in the Registry, crates a new Bridge
instance for the platform and sets up the bridge.

PLATFORM UN-
REGISTER

The opposite from PLATFORM REGISTER: Platform information with corre-
sponding devices and subscriptions data is removed from the Registry, clean up
operations performed at the Bridge level and finally, the Bridge itself is destroyed.

SUBSCRIBE Subscription request to a set of devices, defined with a SPARQL query. The list
of devices and platforms they belong to is created at the Services - Registry level
and this information is sent to the platforms: PRM ⇒ IPSMRM ⇒ IPSM ⇒
IPSMRM ⇒ Bridge(s). A new conversation, with a corresponding identifier is
created and maintained at the ARM level.

UNSUBSCRIBE The opposite of SUBSCRIBE. The Bridge informs the IoT platform about the end
of the subscription and the ARM removes the active conversation.

QUERY Similar to SUBSCRIBE, but executes the query only once and returns current
sensor readings.

DISCOVERY A discovery mechanism that returns a set of resources (platforms, devices, ser-
vices) that fulfill a condition defined by a SPARQL filter.

OBSERVATION This message contains a set of observations (sensor readings) form a device.
Typically, multiple messages of this type are generated as response to a SUB-
SCRIBE request, each with a single observation. In principle, INTERMW expects
OBSERVATION messages as long as the subscription is active.

THING UPDATE Changes the status of a thing/device.
RESPONSE Response generated as fulfillment of a request. This type is always combined

with one of the requesting types.
ERROR The error message is sent by any INTERMW component to the global INTERMW

error handler (currently implemented as a error topic). It wraps the original mes-
sage that caused the error, along with additional information useful for debugging
and error handling.

Table 28: INTERMW Message types

92 / 137

D3.2: Methods for Interoperability and Integration v.2

The payload graph, in principle, can contain any RDF code. INTER-MW requires the payload
to use the common ontology, and utilizes IPSM to translate to and from it. Bridges use the
syntactic translation components to transform messages from platforms into RDF, and put them
in the payload.

Figure 27: Example JSON-LD platform registration message

4.4.2.4 IPSM Request Manager

IPSM Request Manager acts as a mediator between the Platform Request Manager, Bridges and the
IPSM. It redirects messages for translation towards IPSM and receives translated messages from the
IPSM. There is no direct connection between the bridges and IPSM, but instead all communication
with Bridges for IoT platforms is now handled by the IPSM Request Manager. It also implements

93 / 137

D3.2: Methods for Interoperability and Integration v.2

the IPSM-specific broker mechanism, which in principle can be different that the one used through-
out INTERMW. The current implementation used RabbitMQ for communication among INTERMW
components, while Kafka is used for communication INTERMW ⇐⇒ IPSM .

4.4.2.5 Services

Implementation of services has been realized by connecting these to the Parliament triplestore-based
database and introducing support for the SPARQL RDF query language in the QUERY and DISCOV-
ERY message types76. SPARQL is custom-tailored for complex queries, and the Parliament database
allows for fast (optimised) execution of those. An example of such a complex query would be return-
ing a list of all sensors, connected to a specific platform and which are located in one location, as well
as owned by one person. Wrapping such queries in QUERY and DISCOVERY messages enables the
applications from the outside world and the Platform Request Manager within INTERMW to obtain
lists of resources (connected platforms, things, etc.) dynamically. QUERY and DISCOVERY mes-
sages also abstract the need for INTERMW users/developers to understand the specifics of different
platforms or learn discovery mechanisms they may (or may not) support.

4.4.2.6 Bridges

Bridges in INTERMW act as a middleman between INTERMW and IoT platforms. For messages that
come downstream from INTERMW, a bridge processes the message and acts upon it if necessary.
When a platform wants to send a message upstream, the bridge creates a message using information
provided by the IoT platform and sends it upstream towards INTERMW. In addition to communication
with platforms bridges also handle syntactic translation of payload between syntax used in the data
model and the IoT platform format.

Semantic translation (alignments) performed by IPSM complements the syntactic conversion per-
formed by bridges. Data models of platforms participating in communication through INTERMW thus
use a two-step approach to map between format and semantics of the INTER-IoT data model. The
need for platform’s compliance with the internal INTER-IoT data model is in this way totally nullified,
thus facilitating interoperability among heterogeneous middleware platforms, as long as someone
has developed bridges for these platforms. Addition of a new platform does not require any changes
in implementation of already existing bridges. This allows effective decoupling at both conceptual
and implementation middleware levels.

4.4.3 Use Cases

Basic sequence diagrams have been defined in D3.1. Although further architectural and technical
choices made during the INTERMW development slightly changed sequences and naming conven-
tions defined there, the main iterations between components are still valid. The only notable differ-
ence is the implicit implantation of data flows, which means the Data Flow Manager component does
not exists as a physical software components, but is rather an abstract concept implemented through
conversation identifiers and the message broker.

76 https://www.w3.org/2009/sparql/wiki/Main_Page.

94 / 137

https://www.w3.org/2009/sparql/wiki/Main_Page

D3.2: Methods for Interoperability and Integration v.2

4.4.4 Implementation Status

Bridges for the following platforms have been implemented: UniversAAL, FIWARE, WSO2 and Body-
Cloud. BodyCloud is being integrated into INTERMW to support the INTER-Health pilot. Bridge for
oM2M is currently in development. Platforms UniversAAL and FIWARE were used in a functional
demo, where a scale was connected to UniversAAL and sent data through INTERMW to the demo
application, which pulled the data using a pull() REST call, and sent it back downstream towards the
display, which was connected to the FIWARE platform. For the purpose of testing, we also developed
bridge emulators, which enabled us to test INTERMW without connecting it to actual platforms.

Thus, at the present moment INTERMW already implements a subset of INTER-IoT requirements
(D2.3), and most importantly, facilitates communication between platforms without the need to im-
plement platform-to-platform information translation. INTERMW is also being validated through the
open Call for INTER-OM2M and SensiNact projects.

INTER-OM2M will compare the development, deployment and exploitation of a demonstrator, featur-
ing widely used application protocols (HTTP, MQTT, CoAP), over different radio (BLE, LoRA, IEEE
802.15.4) and power line communication (PLC), including security mechanisms, in the oneM2M and
INTER-IoT framework.

SensiNact is a horizontal platform dedicated to IoT and in particularly used in various smart city and
smart home applications. The project will provide to INTER-IoT the opportunity validate interoper-
ability approaches with the integration of the sensiNact platform and thus access to all compatible
data sets from different domains such as smart cities, smart farming, smart ski resort, smart building,
smart living and well-ageing.

Important choice of using a triple store database (Parliament) for INTERMW persistence and as
basis for INTERMW discovery and registry services has been made. The connection with IPSM has
been implemented that we control with REST calls and send messages to and receive them from via
Kafka broker client77. Note that Kafka is also one of Broker types supported in the abstract broker
implementation, as described in D3.1.

Currently, analysis is performed to design the deployment framework in order to allow easy extensibil-
ity of the system. Then additional services have to be implemented, most notably the routing service.
The last two steps to be performed is integration of results form Open Call projects and validation
through the pilots.

4.4.5 API (and Extensibility)

There are several areas where INTERMW provides API and extensibility mechanisms:

• REST API. REST API is provided for application-layer usage. Applications can make use of the
REST API in order to implement high level, application-specific functionality. This is also the
interface exposed to INTER FW. REST API documentation is referenced in the documentation
section (4.4.6).

• IoT Platform Bridges. As explained in Section 4.4.2.6, for each IoT platform to be added to
INTERMW a new bridge has to be developed. In order to allow developers add new bridges

77See https://kafka.apache.org/.

95 / 137

https://kafka.apache.org/

D3.2: Methods for Interoperability and Integration v.2

with minimal effort, this mechanism will be refined and provided as part of the SDK being
developed in INTER FW.

• Services. INTERMW has the capability to provide various MW2MW services. Currently, only
registry and discovery services are provided, as they represent the minimum set of functional-
ities needed for MW2MW interoperability. However, more complex services may be needed in
some use case scenarios, as for example Routing and Roaming Services. INTERMW provides
an abstract interface that can be implemented for provision of new services. Documentation,
libraries and possibly an SDK for services development will be provided in the second phase of
INTERMW implementation.

• Broker abstraction. INTERMW defines an abstract broker interface that is being used for all
INTERMW communication between components (see Section 4.4.2.2). This interface can be
implemented for any message broker that supports a basic set of functionalities. As a need to
extent the system to a wide range of message broker implementations has not been identified,
there will be no dedicated SDK solutions for this type of extensions. Extensible documentation
and examples will be provided in order to facilitate implementation.

4.4.6 Code and Documentation

INTERMW modules are implemented in the Java programming language and Apache Maven 78 is
used as software project management and comprehension tool. A set of supporting tools has been
provided in order to facilitate integration and management of software releases:

• GIT Repository. The Gogs git source repository is used for source code management. The
repository is deployed at https://git.inter-iot.eu/.

• Nexus Repository. The Nexus Repository Manager has been deployed in order to organise,
store and distribute INTERMW software components: http://nexus.inter-iot.eu/.

• Jenkins Continuous Integration. Jenkins is an automation server that supports support building,
deploying and automating software development. The INTER-IoT instance is available at http
s://jenkins.inter-iot.eu/.

Currently INTERMW software repositories are private, but they will be released under the Apache
2.0 license after the initial validation phase. INTERMW related source repositories are:

• INTERMW project repository. The repository contains all INTERMW main modules described
in this section. Location: https://git.inter-iot.eu/Inter-IoT/intermw.

• Message. This project implements the InterIotMsg class and related helpers. It contains the
JSON-LD implementation of the message. Location: https://git.inter-iot.eu/Inter-IoT
/messaging.

• Syntactic translator. A set of syntactic translators for specific IoT platform messages. Location:
https://git.inter-iot.eu/Inter-IoT/syntactic-translators.

• Swagger REST API definition. The latest REST API documentation is available as part of the
INTER-Layer API repository: https://git.inter-iot.eu/Inter-IoT/layer_apis.

78https://maven.apache.org/

96 / 137

https://git.inter-iot.eu/
http://nexus.inter-iot.eu/
https://jenkins.inter-iot.eu/
https://jenkins.inter-iot.eu/
https://git.inter-iot.eu/Inter-IoT/intermw
https://git.inter-iot.eu/Inter-IoT/messaging
https://git.inter-iot.eu/Inter-IoT/messaging
https://git.inter-iot.eu/Inter-IoT/syntactic-translators
https://git.inter-iot.eu/Inter-IoT/layer_apis
https://maven.apache.org/

D3.2: Methods for Interoperability and Integration v.2

• API Management. Latest REST API definitions and API Manager deployment scripts, as part
of INTER API are available at: https://git.inter-iot.eu/Inter-IoT/api_manager.

4.4.7 Demo

A demo application has been implemented in order to test and demonstrate the applicability in prac-
tice. The demo set-up, shown in Figure 28, has been built based on some INTER-Health pilot el-
ements. It connects two middleware platforms (UniversAAL and FIWARE) enables interoperability
between them. The deployment integrates the following components:

• Digital scale. A digital, Bluetooth-enabled, scale that is paired to a smartphone and sends
weighing values.

• Smartphone. An Android phone with an app that gets weighing values from the scale and
forwards them through its universAAL app to other universAAL instances on the local network.

• universAAL. An IoT open platform oriented to Active-Assisted Living applications.

• Inter-IoT Middleware-to-Middleware. Inter-layer component that acts as a bridge between Am-
bient Assisted Living platforms and Hospital ICT systems. In this demo deployment we bridge
UniversAAL and FIWARE.

• IPSM. Inter-layer component that translates IoT platform messages to the global INTER-IoT
structure and vice-versa.

• INTER FW (INTER API). INTER FW API Request Manager, used for INTERMW management.

• FIWARE. The FIWARE platform provides a set of APIs that ease the development of Smart
Applications in multiple vertical sectors.

• FIWARE Orion. Context information manager and broker for entities updates, queries, registra-
tions and subscriptions, based on FIWARE/OMA NGSI9/10 interfaces.

• Wirecloud GE. A next-generation end-user centered web application mashup platform aimed at
leveraging the long tail of the Internet of Services built on top of FIWARE.

While the demo is relatively simple, it encompasses most of INTERMW functions: deployment of
different bridges, subscription management, message routing, using of registry/discovery services
and API Management.

97 / 137

https://git.inter-iot.eu/Inter-IoT/api_manager

D3.2: Methods for Interoperability and Integration v.2

Healthcare provider

Patient’s home Hospital

universAAL

Pa�ent

Digital scale

Wirecloud GE

Inter-IoT Inter-Layer
Middleware to Middleware

FIWARE
FIWARE Orion

IPSM

INTER-FW
PORTAL

Figure 28: INTERMW demo

4.5 AS2AS solution

4.5.1 Refined Architecture

Since the publication of the Deliverable D3.1, the architecture of Application and Service to Appli-
cation and Service Interoperability did not notably changed. Figure 29 shows the previous image of
the architecture, highlighting and grouping the defined components and its relationship between the
internal elements of the interoperability solution: the nodes and the flows.

Figure 29 emphasizes the link between these two elements and the architecture. This is the previous
step to understand the following sections of this chapter, because they are the basic elements of the
interoperability solution in this layer.

As a brief summary of the architecture, the Catalog, Register and Discovery components work with
the nodes and its properties. The Modeller is responsible to create and modify the flows, which are
composed by the interconnection of several nodes. The purpose of the Modeller is to define the
service composition.

These flows are stored and loaded in the Flows Repository. These are executed by the Orchestrator,
which is the one who starts the operation of the service composition. This component is the one that
makes calls to the native services of the IoT platforms through the nodes. Furthermore, manages the
execution of the interaction between nodes. Finally, the API interacts with the Orchestrator and the
Flow Repository to work with the interoperability solution in real time.

The use of nodes and flows will be discussed in more detail in the next section 4.5.2, Components.
This section details the process of creation and implementation of this elements. The section 4.5.6

98 / 137

D3.2: Methods for Interoperability and Integration v.2

Figure 29: AS2AS architecture

indicates the code and documentation of nodes developed and the flows created. Finally, the sec-
tion 4.5.7 show real examples of nodes and flows running.

The other aspect to comment about the architecture is the access to a complete instance of the
interoperability solution. The flow designed by the modeller and executed by the orchestrator, can be
accessed by one or more users, at the same time and with different permissions, through the APIs.
But, only one flow can be executed in each instance of the solution. Therefore to have several flows
of the interoperability solution running at the same time, we need to work with different instances of
the solution. These aspects will be explained in section 4.5.5 API (and Extensibility).

4.5.2 Components

One of the main requirements identified to achieve an interoperability solution in this layer is access to
native services and applications offered by IoT platforms. Figure 30 explains how we do this process:

On the left side of the image there is an IoT platform and its components. In the northbound of this
architecture two services are offered (in this example, a CEP and a Short Term Historic). Our interop-
erability solution needs to use the functions provided by these services, therefore, it is necessary to
study the modes (REST API, SOAP...) available to access to the service and to implement a solution
that provides access to these functionalities. In the D3.1 we defined that the node will be the element
in charge of sending the requests, executing the services, managing the results and the returned
messages, in a format compatible with our interoperability solution.

In the first example, all the functionalities of the service are contained in a single node, in contrast
to the second example, in which four nodes have been used to access the service. If the function is
implemented by a greater number of nodes, it is easier to understand the purpose of the functions,
but the code updates are more complex. On the other hand, a smaller number of nodes for a service
means, implies that you have to enter more parameters in the form and the functions are complicated

99 / 137

D3.2: Methods for Interoperability and Integration v.2

Figure 30: AS2AS Native Services

to understand by the user. It can be observed in the form that appears in the first example, where the
user has to fill several parameters to use the node.

Paying attention to technical issues, a node consists in a JavaScript file that runs in the Node-RED
service, and an HTML file consisting in a description of the node. The description appears in the
node panel with a category, colour, name and an icon, code to configure the node, and help text.
Nodes can have at most one input, and zero or more outputs. During the initialization process, the
node is loaded into the Node RED service. When the browser accesses the Node RED editor, the
code for the installed nodes is loaded into the editor page. Node RED loads both HTML for the editor
and JavaScript for the server from the node packages.

There are three main types of nodes. Firstly, the input nodes that generate messages for downstream
nodes. Secondly, the output nodes that consume messages, for example to send data to an exter-
nal service, and may generate response messages. Finally, the processing nodes: messages that
process data in some way, emitting new or modified messages.

Generally nodes are designed to interact with a service, but there is a type of nodes called configura-
tion nodes, which are responsible of share configuration information between the different nodes that
are part of a service, for example, connection data to the same service. These nodes do not access
to the service, they are only used to create and store this type of configuration data.

The flows are a collection of nodes wired together to exchange messages, the data contained in the
flow is stored in a file in JSON format. It consists in a list of JavaScript objects that describe the nodes
and their configurations, as well as the list of downstream nodes they are connected to, the wires.
The wires define the connections between node input and output endpoints in a flow. The messages
passed between nodes in Node-RED are, by convention, JavaScript Objects called msg. Messages
are the primary data structure used in Node-RED and are, in most cases, the only data that a node
has to work with when it is activated. This ensures that a Node-RED flow is conceptually clean and
stateless.

The components interact with the nodes and flows in the way explained in D3.1 and in the Refined

100 / 137

D3.2: Methods for Interoperability and Integration v.2

Architecture section of this deliverable. Furthermore, in D3.1 (section 3.4.4 Technologies) it was
established a map of AS2AS and Node-RED features establishing a connection between its elements
and our architecture. We continue to work in that direction.

Once the first instances of the interoperability solution are designed, it is necessary to explain a
new issue that involves the deploy of our solution, this is the place where the nodes and flows will
be located to interact with the elements of the interoperability solution. Assuming that in the early
stages of the solution the Node-RED environment will be found in a Docker container, inside a docker
container server. We are working on the following storage distribution:

As shows in figure 31, to facilitate a solution that provides extensibility, persistence and collaborative
work, a Git repository is used to storing and accessing to nodes and flows. Using a dockerised
instance of the Gogs environment, which is a self-hosted Git service. It is the current solution but not
final, because we are analyzing other types of repositories that better fit the needs of the catalog of
services and discovery.

It can be observed that each instance of Node-RED has associated an external folder to the instance,
but accessible from it. It stores all the information related to the flows and nodes, in addition to some
external data that may be necessary for the solution.

The Dockerfile file is responsible for creating the running instance of Node-RED custom solution. A
list of the services selected by the user of the node catalog is generated. These selected nodes are
added to a clean image in docker of the interoperability solution. This is a Dockerfile repository with
the custom images of Node-RED developed by Inter-IoT. The user can choose between some Node-
RED images with different characteristics, versions and customized elements. Finally, the result is
a docker file, which results in an instance of the interoperability solution with those services that the
user has selected.

Once the instance was created if someone wants to add a new node, it would be necessary to install
it from Inter-FW and restart the instance to be uploaded. The flows are in another file, the user can
start to develop a new flow from scratch or take a copy of the json file from the repository to work with
it. The changes made in the flow will be stored in the shared folder of the instance and can be sent
to the flows repository.

In Cross-layer section, it will be explained generic concepts about how docker facilitates the scalability
Inter-Layer, helping to define security, having a solution with multiple users and facilitating integration
into Inter-FW.

4.5.3 Use Cases

As indicated there are no significant changes in the architecture, so the sequence diagrams designed
in the D3.1 deliverable are still valid. Any changes that are made in the future, will be contemplated
in the following deliverables.

4.5.4 Implementation Status

We are offering a solution based on Flow-Based Programming that defines applications as “black-
box” processes, which exchange data through predefined connections with message passing. These

101 / 137

D3.2: Methods for Interoperability and Integration v.2

Figure 31: Persistence with Docker and GIT

102 / 137

D3.2: Methods for Interoperability and Integration v.2

can be connected to create different solutions without the need of being modified internally by an
end-user.

We are adapting a tool (Node-RED) that implements this paradigm according to the INTER-IoT in-
teroperability requirements. The solution enables a number of IoT services to be available in our
development environment. Access to IoT services has been achieved by accessing its REST APIs
and wrapping them through a node with a series of functionalities for the user. For those services
that do not have REST API other alternatives have been looked (e.g SOAP web services).

A demo related with transport and logistics to illustrate a practical example has been developed
(section 4.5.7), involving two IoT applications provided by FIWARE and a Port Community System.
This applications exchange its data to display alerts with this information and create extra value
adding new services over these two as a dashboard, a map, etc.

A common methodology has been established for the study of the new services, following a series of
steps to carry out the implementation and documentation of the nodes, as presented in section 4.5.6.
We have used this methodology to implement our own nodes.

A node (IPSM node) has been developed to work with the semantic aspects. Furthermore, we are
improving the security and authorization in the access to the nodes. This two issues will be explained
in the Cross Layer Section 4.7.

Regarding more specific aspects, in Figure 31 it is possible to observe how we have implemented the
relationship between an instance of the interoperability solution and the access to nodes, flows and
our custom Node-RED images stored in our Git repository. Currently, it is the way we are working
because it allows us to take advantage of the persistence and control of versions to program and
access everything that we designed in a centralized way.

All third party information is accessed directly in their repositories, although the access links are
stored in our repository. We have elaborated an internal catalog of available nodes and services of
IoT Platforms and we are updating it with the new nodes available. This is often accompanied by
information on how to deploy the services in order to work with them.

The catalog solution has to be improved in the future; we are working on having a hybrid system
based on Git for the data and store the descriptions of the services in another place, with metadata
and links to the addresses of this. Different options are being considered as a custom solution
designed by us, semantic databases in the style of the solution of MW2MW or Hypercat as mentioned
in the previous deliverable. As indicated in the State of the Art, we are working with Swagger nodes
to validate if they can be a key element to unify the description and catalog of services and to facilitate
the process of create flows.

Furthermore, the current development is focused in the following steps, such as:

• introducing new platforms and services,

• standardizing the JSON messages returned by the nodes,

• improving the components,

• developing functionalities above Node-RED,

• creating new functionalities to interact with nodes and flows,

• improving the interaction with the available API and create new APIs,

103 / 137

D3.2: Methods for Interoperability and Integration v.2

• defining new scenarios and demonstrations,

• dealing with the security.

Other aspect is the interaction with Docker, to generate multiple instances. Now we are providing an
environment like the one presented in Figure 32:

Figure 32: Current stauts with Docker

A solution in a docker container allows us to access to different instances of the interoperability
solution on the same host. Each instance of the server have its own folders with the same distribution
shown in Figure 31.

4.5.5 API (and Extensibility)

There are several interactions between the users and the AS2AS solution. As can be seen in Fig-
ure 29 (AS2AS architecture), users interact with the modeller to define the composition of services.
The modeller is a web environment with a palette of nodes and functions to define a flow. The
designed flow is stored in a JSON file.

The other graphic element to interact with the user, is the node registration client. Currently the graph-
ical interface of this component is not designed, and the nodes are being loaded in a Git repository
through a script. New features of the services catalog have been defined, then that user interface will
be finally defined.

Node-RED instances provide APIs that interact with their following elements:

• Authentication: Get the active authentication scheme, exchange credentials for access token
and revoke credentials. It is used for the security/authentication options.

• Setting: Get the runtime settings of Node-RED. It is used in Cross-Layer.

• Flows: Get/Set the active flow configuration.

• Flow: Add a flow to the active configuration and get/update/delete a flow configuration.

104 / 137

D3.2: Methods for Interoperability and Integration v.2

• Nodes: Get a list of the installed nodes in a instance of the solution and install a new node

These APIs are going to be consumed by Inter-FW, but are also consumed by the components of the
architecture to interact internally with the Node-RED tool.

The APIs related to the Flow Repository are being defined in this moment and will be updated in the
next version of this deliverable.

As explained in the previous section, the creation of instances of docker with a custom version of
Node-RED allows to create multiple instances managed by multiple users. Figure 32 shows the
current state with a host that had multiple instances of docker. However, in Figure 33 we can observe
the proposed architecture for future deployment of AS2AS.

Figure 33: Extensibility with Docker

In Figure 33 there are multiple hosts with multiple instances of Node-RED, which must be treated in
the same way despite being on different hosts. Some tools like Docker Swarm and Docker Portainer
facilitate this management, this is described in the Cross-Layer Section 4.7. But in summary, this
relationship with the APIs or options offered by Docker facilitates the extensibility of the solution in
terms of scaling, portability, security and easy deployment of solutions.

Finally, another relevant issue related to the extensibility of the solution is the development of new
nodes compatible with the Node-RED tool and the development of components to interact with this
tool. In the following section, details are provided about these tasks.

105 / 137

D3.2: Methods for Interoperability and Integration v.2

4.5.6 Code and Documentation

The documentation of the project has been produced using shared documents or files uploaded to
the Git79 or Horde repository.

It has been used for different purposes:

• Internal methodology for the analysis of services and the creation of nodes.

• Internal document about the evolution of the development of the interoperability solution.

• Guide about how to create a basic node.

• Documentation of APIs available in Node-RED.

• Explanation of the demonstration.

• Use of docker instances of Node-RED.

• Support material like presentations or videos.

The code is available in the AS2AS repository, where there are the nodes developed by us, the
services associated with these nodes, our current custom Node-RED version, the current status of
the developments in the components, the demonstration, the swagger description of the APIs, the
developed flows and the scripts of the dockerfiles.

In the early stages of the project development, it was necessary to make an effort to become familiar
with the nodes, services and work environment. So we have defined a methodology to create nodes
that implies an effort in elaboration of documentation and code. The document of how to elaborate
a node was sent to all the participants in this task and was explained by videoconference, to clarify
possible doubts. Significant effort was also put into knowing the Node-RED community and code in
depth. The steps that follow this methodology are as follows:

1) Analysis of the service:

• Development or access to a functional instance of the IoT platform.

• Get access to the services that the platform offers.

• Deploy or access an instance of the service.

• Test the service with data.

• Analyze the functionalities offered by the service.

• Study the API that provides the service.

• Document the functionalities and APIs.

• Analyze the methods of access and execution of these functionalities.

• Analyze the messages or actions that return the execution of the functionalities of the service.

2) Node Implementation:

• Group the functionality of the service, to choose the number of nodes and how they will be the
nodes that implement it.

79https://git.inter-iot.eu/Inter-IoT/interas

106 / 137

https://git.inter-iot.eu/Inter-IoT/interas

D3.2: Methods for Interoperability and Integration v.2

• Identify the parameters needed to access the service.

• Creation of configuration nodes. For example, they store the connection variables.

• Create the interface that collects the parameters that will consume the service. (html)

• Create the code that will execute the functionality (JavaScript).

• Define the messages that the node sends and receives.

• If it is possible attach an instance of the service in docker.

3) Test:

• Access to the node with real data.

• Test the correct operation.

• Fix bugs and catch errors.

4) Documentation

• Document about how to deploy service with real data, to have examples of operation.

• Document about the characteristics of the node

This methodology will be followed throughout the project. It is recommended to attach a Readme.txt
file in the Git folders of the nodes, containing a summary of the main information of this process,
to improve their usability. Now, the weight of the efforts will be transferred to other tasks. But the
services analysis should be completed with more precise descriptions of the nodes (for example
metadata description). This will be done when the complete functionalities of the service catalog
component have been defined.

Concerning the flows, they are stored in repositories and a file with its characteristics is attached.
The mechanisms (function nodes) that act as gateways to connect two services, are being described.
The flow documentation part will also be taken into account how are working the connection between
services and the modeling of the glow, in order to extract information to define good practices. We
are working on providing small examples of how to make the most common connections.

It is also documented the modifications made over the original Node-RED code. Thus, it is possible
to know how to act in case of an update of the Node-RED version. This will be fundamental in the
new development phase, because the code and documentation are now focusing on changes on the
components. We will proceed to restructure these sections in our repositories to adapt them to the
needs that are emerging.

4.5.7 Demo

In this section we can find a practical example developed to show the interoperability in this layer,
involving several IoT applications. A test scenario was defined, with a series of services that were
deployed and nodes were programmed by us to access them. From our programming environment
we created a flow that allowed the connection between them. The interoperability flow is accessible
and executable from Inter-FW.

The interoperability solution is in a docker file, where our nodes and our custom Node-RED solution
are available. To facilitate the test of the example a Docker Compose file was created that allows to

107 / 137

D3.2: Methods for Interoperability and Integration v.2

configure and to execute all the services included in the test, except the PCS that is accessed from
its Website.

4.5.7.1 Test Scenario

The demonstration starts with the position and data of a truck.

This information is obtained from the platforms that monitor the position of the devices that are present
in the vehicles.

The designed flow, depicted in Figure 34, is responsible of composing this services.

Figure 34: AS2AS Demo Scenario

Automatically when a rule is fulfilled, in the terminal of the port, they will receive information of the
truck, the scale where it is directed and information of historical events of this truck. In addition, this
information can be presented through maps, dashboards and panels offered by a dashboard service.

The flow is managed via the INTER-FW.

4.5.7.2 Services/Nodes Involved

Nodes provide access to native services. These nodes facilitate a simple and visual access to the
functions provided by the services. This section will describe the functionality related to the demon-
stration and how some nodes are related to each other. To each node we are going to describe the
service that is going to be accessed and the node created to access to it.

The nodes that access to the services of this demo have been developed by us, because they did not
exist. However, the nodes responsible for representing the information and designing the dashboard,

108 / 137

D3.2: Methods for Interoperability and Integration v.2

were already available.

Proton:

Proton Service:

Provides the following actions:

• Analyses event data in real-time.

• Generates immediate insight.

• Enables instant response to changing condition

Figure 35: Proton Service80

In this demonstration, The CEP activates an action when a rule is detected. It is responsible of
activating the execution of the flow.

Proton Node:

The Proton Node-Red node provides the following ways to interact with the proton CEP:

• Sending Events

• Managing the Definitions Repository

• Administrating Instances

PCS

PCS Service:

Port Call Service: PCS users have access to the Port Call Service inquiries that provide real-time
information on both planned and current vessel port calls.

In this demonstration, with the CEP data, a Node-RED node makes the call to the PCS, obtaining the
port call data from PCS (port call data retrieval service).

80Source: https://www.ibm.com/developerworks/ssa/local/im/ssa/identity-insight-complex-event-process
ing/index.html

81Source: http://www.valenciaportpcs.com/valenciaportpcs/

109 / 137

https://www.ibm.com/developerworks/ssa/local/im/ssa/identity-insight-complex-event-processing/index.html
https://www.ibm.com/developerworks/ssa/local/im/ssa/identity-insight-complex-event-processing/index.html
http://www.valenciaportpcs.com/valenciaportpcs/

D3.2: Methods for Interoperability and Integration v.2

Figure 36: PCS Service81

PCS Node:

The PCS node-red node provides two methods to access the port call information:

Figure 37: PCS Node

• Get the port call data from PCS from its identification number.

• Get a list of port calls from PCS in a range of dates.

STH

STH Service:

Short Time Historic: manages the historical raw and aggregated time series context information about
the evolution in time of context data.

In this demonstration, the flow makes a call to the Historical Node to get information about the evolu-
tion in time of context data.

STH Node:

Figure 38: STH Node

The STH node has the following features:

• It is the first existing node integrated with FIWARE-STH.

• Gets the historic values of a node.

• STH attached to FIWARE Orion.

• Brings data visualization powers to Context-Based components.

110 / 137

D3.2: Methods for Interoperability and Integration v.2

In this demo concept, it gathers last call IDs of a truck when it is inside port area.

Dashboard nodes

This nodes provides, among others, the following functions in the demonstration:

• The quickly creation of a live data dashboard.

• Send and receive emails, with valid email credentials for an email server.

• A world map web page for plotting things on.

Figure 39: Dashboard

4.5.7.3 Service Composition/Flow

Figure 40: Service Composition

The steps required for service composition (as represented in figure 40) are the following:

• CEP FIWARE (Proton) receives information from Truck Companies.

• CEP calculates the distance of the trucks to a defined point.

• It triggers an alert when the truck is nearer than 10 kilometers. It gives the call ID (call number),
truckID and position (lon, lat).

111 / 137

D3.2: Methods for Interoperability and Integration v.2

• Obtains the layover data from PCS (Layover Data Retrieval Service).

• Obtains Historical Data from the STH

• Shows data to the Port Terminal via maps/dashboards/email.

Figure 41 is the representation of the data being displayed in real-time using the dashboard service:

Figure 41: Demonstration

This screenshot of the dashboard service shows a truck inside the indicated area (less than 10
km), then the truck has a red color and the information obtained from the services is shown in the
dashboard (the portcall information and the last port call numbers visited) and send an email to the
terminal informing that it is arriving. The other truck has a green color, because it is outside the
indicated area, therefore, the information we have from it is its position.

We are working to integrate more companies, which are using other IoT platforms and to include new
services to extend this demo flow.

4.6 DS2DS solution

4.6.1 Implementation Status

The initial version of the Inter-Platform Semantic Mediator (cf. Figure 42) has already been imple-
mented and was successfully utilized during the IoT-EPI Review Meeting in Athens, in September
2017. Presentations at the Review demonstrated IPSM not only as a standalone semantic trans-
lation component, but also as a part of the INTER-MW infrastructure (for more information, see
Section 4.6.4). Prior to the Review Meeting we have also conducted a series of performance, and
“vertical” scalability tests for the IPSM. Their results (as described in [11]) are very promising. They

112 / 137

D3.2: Methods for Interoperability and Integration v.2

indicate that both the IPSM design/architecture and the choice of the technological stack, described in
Section 3.5.2 of Deliverable D3.1, and subsequently used in the implementation process were appro-
priate. IPSM accepts JSON-LD messages in the same format as INTER-MW (see Section 4.4.2.3).
The “metadata” graph in JSON-LD messages is ignored, and only “payload” is translated. Although,

Figure 42: IPSM architecture overview

in its current state, the IPSM is already fully functional we plan to further optimize and enhance it.
One of the areas of enhancement is the data format for representing alignments. Currently IPSM
uses an XML-based format (cf. [12]) inspired by the Alignment API [13] and EDOAL [14]. We plan
to replace it with an RDF-based IPSM Alignment Format (IPSM-AF), that we have introduced in [15],
and which is fully compatible with the Alignment API. We also plan to enhance and simplify the way
functions/transformations are defined within alignments. Currently, the IPSM offers support for func-
tions natively provided by Apache Jena library, as well as for several additional operators offered by
the IPSM implementation itself. We plan to extend this support to an even wider set of functions/op-
erators.

Thanks to the excellent scalability properties of Akka toolkit and Apache Kafka, the “horizontal” scala-
bility of the IPSM is also good. As a standalone component, IPSM can be deployed and concurrently
utilized in many instances. In the near future we shall investigate the possibility of forming “IPSM
clusters” which could be configured and operated in a uniform way.

113 / 137

D3.2: Methods for Interoperability and Integration v.2

4.6.2 API (and Extensibility)

The IPSM has a REST API exposing operations for configuration. The operations are divided into
two groups – related to alignments and translation channels.

For alignments there are:

• GET [host:port]/alignments - lists alignments available in the IPSM instance; format is
JSON which object for each alignment has fields:

– descId (string): business identifier

– id (integer): technical identifier

– date (integer): UNIX timestamp of upload to IPSM

– name (string): Name of the alignment

– sourceOntologyURI (string): URI of the source ontology for alignment

– targetOntologyURI (string): URI of the target ontology for alignment

– version (string): alignment version

– creator (string): alignment creator

– description (string): alignment description

• POST [host:port]/alignments - uploads a new alignment as XML,

• DELETE [host:port]/alignments/[alignmentId] - deletes an alignment with an identi-
fier passed as parameter,

• GET [host:port]/alignments/[alignmentId] - gets an alignment with identifier passed
as parameter as XML.

For channels there are:

• GET [host:port]/channels - lists translation channels created in the IPSM instance; format
is JSON which object for each channel has fields:

– id (integer): identifier of the channel

– descId (string, optional): business identifier of the channel

– source (string): identifier representing the source of the channel, i.e. Apache Kafka topic
from which IPSM reads the RDF data to be translated

– inpAlignmentId (integer): identifier of the input alignment, used for translating the in-
coming RDF data

– outAlignmentId (integer): identifier of the output alignment, used for translating the out-
going RDF data

– sink (string): identifier of the sink of the channel, i.e. Apache Kafka topic to which IPSM
publishes translated RDF data

• POST [host:port]/channels - creates a new translation channel; format is JSON object
with the following fields:

114 / 137

D3.2: Methods for Interoperability and Integration v.2

– source (string): identifier representing the source of the channel, i.e. Apache Kafka topic
from which IPSM reads the RDF data to be translated

– inpAlignmentId (integer): identifier of the input alignment, used for translating the in-
coming RDF data

– outAlignmentId (integer): identifier of the output alignment, used for translating the out-
going RDF data

– sink (string): identifier of the sink of the channel, i.e., Apache Kafka topic to which IPSM
publishes translated RDF data

– parallelism (integer, optional): internal parallelism of the channel, e.g., the value 5
means that the channel can consume 5 messages in parallel (preserving their time order),
default: 1

• DELETE [host:port]/channels/[channelId] - deletes a channel with identifier passed
as parameter.

The Swagger documentation of REST API is available on IPSM Azure deployment (see Sec-
tion 4.6.3).

IPSM is extensible in terms of configuration – new alignments can be uploaded, and based on them
new communication channels can be created.

4.6.3 Code and Documentation

The full IPSM source code is available from the INTER-IoT code repository82. To compile it only
the Simple Build Tool (SBT)83 is required. All necessary libraries, even Scala compiler, will be au-
tomatically downloaded when “sbt compile” command is issued for the first time. The only user
documentation for the IPSM available at the moment is the description of its REST API. It can be
accessed, for example, from the Azure deployment of the IPSM at:

http://vmplsp01.westeurope.cloudapp.azure.com:8080/swagger/.

The Azure machine should normally be accessible between 7am and 7pm as indicated in section 3.

4.6.4 Demo

A demo presenting how IPSM works in available on the IPSM Azure deployment at:

http://vmplsp01.westeurope.cloudapp.azure.com:3000/.

It is accessible from IPSM dashboard application that was developed to provide more “user friendly”
interface for configuration, and possibility to the translation channels defined in related IPSM instance.
Specifically, it allows to perform semantic translation of sample messages (with the possibility to
modify the message inline).

The background story for the demonstration is as follows (see Figure 43):

82https://git.inter-iot.eu/Inter-IoT/ipsm/src/master/ipsm-core
83http://www.scala-sbt.org/

115 / 137

http://vmplsp01.westeurope.cloudapp.azure.com:8080/swagger/
http://vmplsp01.westeurope.cloudapp.azure.com:3000/
https://git.inter-iot.eu/Inter-IoT/ipsm/src/master/ipsm-core
http://www.scala-sbt.org/

D3.2: Methods for Interoperability and Integration v.2

• There are 4 IoT artifacts/platforms that cooperate in e.g. a port environment. They have the
following roles: P1 – produces sensor observations; P2 – analytical platform that should receive
observations produced by P1; P3 and P4 – business logic platforms that consume observations
published by P2.

• The architecture of IPSM assumes an agreement on central ontology (CO) specific for a deploy-
ment. In this case, central ontology is based on SOSA and geoSPARQL for geospatial data
representation.

• Each platform uses a different ontology:

– P1: http://platform1.eu/sensors#
extending SSN and Basic Geo Vocabulary for geospatial data,

– P2: http://platform2.eu/sensors#
extending SAREF and Basic Geo Vocabulary for geospatial data,

– P3: http://platform3.eu/sensors#
extending SSN and Basic Geo Vocabulary for geospatial data,

– P4: http://platform4.eu/sensors#
extending SSN and geoRSS for geospatial data.

Figure 43: IPSM demo overview

To verify alignment configuration go to Configuration→Alignments (Figure 44).

To verify channels configuration go to Configuration→Channels (Figure 45).

If not defined, add channels with the following definitions:

116 / 137

D3.2: Methods for Interoperability and Integration v.2

Figure 44: IPSM alignments configuration

Figure 45: IPSM channels configuration

117 / 137

D3.2: Methods for Interoperability and Integration v.2

• source: P1, sink: CO,
input alignment: alignDemo_P1_CO,
output alignment: IDENTITY

• source: P1, sink: P2,
input alignment: alignDemo_P1_CO,
output alignment: alignDemo_CO_P2

• source: P2, sink: CO,
input alignment: alignDemo_P2_CO,
output alignment: IDENTITY

• source: P2, sink: P3,
input alignment: alignDemo_P2_CO,
output alignment: alignDemo_CO_P3

• source: P2, sink: P4,
input alignment: alignDemo_P2_CO,
output alignment: alignDemo_CO_P4

Note that IDENTITY alignment results in no translation applied.

After adding, newly created channel should appear on the list as in Figure 46.

Figure 46: IPSM channels configuration 2

To run translation select Translation from the main menu (Figure 47). From drop down lists select a
channel and a sample message (it can be edited in place). Sample input messages that can be used
include: demoMsg12 – input message for channel with P1 source; demoMsg34a, demoMsg34b – input
messages for channels with P2 source.

The translated message will appear in the box on the right as in Figure 48.

118 / 137

D3.2: Methods for Interoperability and Integration v.2

Figure 47: IPSM translation

119 / 137

D3.2: Methods for Interoperability and Integration v.2

Figure 48: IPSM translation result

120 / 137

D3.2: Methods for Interoperability and Integration v.2

4.7 Cross-Layer solution

Having already described the different layered solutions that INTER-IoT provides we have to focus
our view in the aspects that are left out of the scope of a specific layer. These aspects can be
defined as transverse elements that affects more than one layer and can be divided in three main
areas: security (4.7.1), layer interactions (4.7.2) and virtualization and clusterisation of the solutions
(4.7.3). Security refers to the attribute of protect the system and the data being treated within them.
This could be implemented directly within the solutions, together as one more piece into the software
puzzle, or externally and crossed giving more resilience to the solution from an external point of
work. Layer interactions refers to the modules created to communicate the solutions of each layer
with each other in case a deployment needs the information from one layer to feed or actuate on
another. Clusterisation is defined as the creation of system collections that work together with the
same objective. This attribute in particular is highly interesting for scalability issues and to provide
same solutions located in the same cluster to different tenants sharing resources.

As these elements are developed in the last states of the solution implementations, here we intro-
duce the analysis, design and documentation of them. However, some of them are being currently
implemented, the state of implementation is also contemplated in below sections.

4.7.1 Layer security integration

Security in D2D

Security in D2D gateway will be handled in four different levels:

• Device Level: At device level the security will be provided by the corresponding
A.N/Protocol/Device Controller module. If the connected device has an option to use a se-
cure communication channel or authorization mechanism will be handled by the corresponding
module.

• Physical-Virtual Communication Level: The communication channel between the physical
and virtual gateways will be performed through a secure websocket connection (wss protocol),
thus providing a basic TLS encryption layer. Furthermore, there is an option to accept only TLS
connection whose certificate root is specified by the user, trusting in this way both origin and
destination in the connection.

• Middleware Level: This level is similar to the device level, in the sense that it will be the cor-
responding Middleware module that has to support the security mechanisms of the Middleware
platform that will be connecting to.

• API module: The Gateway API extension module is secured using SSL connections (https
protocol) and also providing Basic Authentication. The Basic Authentication credential store is
connected to the security backend of Inter-IoT in order to manage users, roles and credentials.

Security in N2N

In case of network solution we will have a special treatment of the security. Firstly, we will analyze
the treats and lacks in the technologies we utilize to implement the network interoperability solutions.
And secondly, we will provide the security mechanism we implement to solve the lack we found in the
previous study.

121 / 137

D3.2: Methods for Interoperability and Integration v.2

We can summarize Network solution main security problems as the lack of authorization by switches
in the Southbound and application in the Northbound, the lack of secure communication in both
bounds, the possibility of DoS attack and tampering of information. A summary of these threats can
be found in Table 29 and will be explain below.

Virtual
Switches

Southbound
Interface

Controller
core

Northbound
Interface

Application

Spoofing X X X
Tampering X X X
Repudiation X X
Information
Disclosure

X X

DoS X X

Table 29: Security analysis of threats in network layer

In the security analysis we perform on the network solution we identified clear sections or planes, as
shown in the Table, where different approaches has to be taken to secure the solution. These planes
are from the bottom parts to the upper parts: the control plane or virtual switches, the southbound
interface and channel to connect the virtual switches, the core of the Ryu controller, the northbound
interface and communication channel with the applications and the applications themselves. We can
explain the threat by planes as follow:

• Control Plane (Virtual Switches): due to the lack of authentication is possible to alter fraud-
ulently a virtual switch and can be attacked by manipulating their behaviour to disrupt network
operations.

• Southbound Interface: also because of no authentication mechanism the tampering and in-
formation disclosure threats arise. Also there is no access control implementation in Ryu which
prevents denial of services attacks resulting in the crash of the system.

• Controller Core: As no authentication is provided, no trusted sources from both SBI and NBI
can tamper information to be send to the controller. Also a major problem within the controller
core is the lack of isolation of applications within the controller. Then the control core process
and the applications run in the same context and the failure of one application could endanger
the whole system. Additionally, no role based security for applications is implemented.

• Northbound Interface: Information Disclosure is feasible from a data flow between the con-
troller and NBI since the channel is not encrypted and uses only HTTP instead of HTTPS. An
intruder can avail all information from the traffic between controller and a NB application with a
simple ARP spoofing and Man-In-The-Middle (MITM) attack. Also, the content of packets can
be so modified being this plane vulnerable to data tampering.

• Application: as in the first case, the missing authentication mechanist to trust in the correct
application could drive into Spoofing or Repudiations.

List of best practices to implement for improving the security in the solution:

• Isolation of the user process context from the core context is very important to achieve role
based security for individual layers. Ryu uses a single context for execution, to secure this it is
necessary to have a clear separation between core process and applications.

122 / 137

D3.2: Methods for Interoperability and Integration v.2

• Monitoring of resources: a single malicious process can lead to DoS the entire SDN network.
These threats can be found in SBI and NBI, hence the controller should have distributed mon-
itoring for SBI (monitoring the data path, already done in Ryu) and centralized monitoring for
NBI. For the NBI take in considerations some monitoring applications like Snort. There is a need
of an active monitoring with real time information analysis to detect if there is any abnormality
in the system or in the traffic.

• Access Control or Authentication: Implementation of authentication mechanisms in both SBI
and NBI. To avoid repudiation and spoofing. In the SBI this is mitigated recording the data
path id (dpid) of individual message received. But in the NBI elevation of privileges for the
applications is recommended or another access control implementation.

• IDS: easiest solution should be Snort that could be running in the same controller machine, so
Ryu receives the notification through Unix Domain Sockets or Snort could be directly located
in other machine so Ryu receives the notifications alerts via Network Socket. For both cases,
you need to install a mirror flows to redirect the packets to Snort. Also, Snort will avoid the DoS
attacks from both interfaces.

• Secure communication channel: in the SBI activating the TLS communication to avoid tam-
pering and Information disclosure and in the NBI activating the HTTPS communication to avoid
ARP spoofing, the modification of the content of the packets and MITM attack.

• Safe model or partial restart: for recovery purposes. To have a faster recovery mechanisms
install a solution that brings only critical systems up as a first phase (the core process ryu-
manager) of recovery followed by non-critical components (the application process). This is
only possible if we fulfil the first practice of isolation.

As we have seen, most of the security risks can be mitigated or eliminated activating simple mech-
anism as TLS or HTTPS in the South and North bounds. Others, need an external software to help
securing the system. An example of this is Snort 84. Snort is a free and open source network intru-
sion prevention system (NIPS)and network intrusion detection system (NIDS) owned by Cisco since
2013. Snort has the ability to perform real-time traffic analysis and packet logging on IP networks.
Additionally, it performs protocol analysis, content searching and matching.

Security in MW2MW

The INTERMW solution needs to take into account security at several levels, as it acts as a mediator
between platforms and applications. This, security should be considered as follows:

• INTERMW components communicate through a message broker. This means that, no matter
of the concrete message broker implementation used, communication between each compo-
nent and the message broker should be secure. To this end, the security back-end will be used
to generate trusted digital certificates for secure communication.

• REST API security is achieved through the deployment of an API Request Manager (See
deliverables D4.3 and D4.5 for details). API request manager supports integration with different
identity/authentication servers. In this case, the API Request Manager will be integrated with
the Cross-Layer security back-end.

• IoT Platform authentication will be analyzed on case-by-case basis and implemented in
bridges. During this process, where appropriate, cross-layer security mechanisms will be used.

84https://www.snort.org/.

123 / 137

https://www.snort.org/

D3.2: Methods for Interoperability and Integration v.2

Security in AS2AS

The AS2AS solution needs to apply security to the following levels:

• Modeller and Orchestrator level: The editor to provide access to the graphical environment
that allows users to edit and configure service composition, is not secured by default. It is
necessary to apply one of these types of authentication available:

– Username/password credential based authentication.

– Use an external authentication source through OAuth/OpenID based authentication. For
example, Node-RED provide use a wide range of the strategies provided by Passport.

The users have two type of permissions, full or read-only access.

Furthermore, each instance should use HTTPS to encrypt the traffic between the client browser
and the Modeller/Orchestrator and a non-standard IP PORT to implement the instances. The
use of containers will provide other security features to protect the instances by adapting the
security mechanisms of the Docker platform.

• API level: API is secured by access token. To access to the APIs, the users can obtain an
access token and all subsequent API calls should then provide this token in the Authorization
header.

• Node level: Nodes must manage internal security mechanisms to access to the services.
These mechanisms will be those that the service provides to access it and it must be taken into
account in the creation of the node. For example, if an authentication parameter is required in
a service to access to it, this parameter must be provided as an input parameter of the node.
Configuration nodes allow these tasks to be performed only once for each service.

• Flow level: There are also nodes that are developed to provide security functions in the com-
munication between the elements of the flow. Such as nodes that encrypt and decrypt mes-
sages, to create secured HTTP endpoint or to interact with the security functions available in
the IoT platforms.

Security in DS2DS

The IPSM component needs to consider security at two levels:

• Data-Flow level: where it receives/sends JSON-LD messages for/from translation through
Apache Kafka message broker, the security is based on the SSL and uses digital certificates.

• Configuration level: the IPSM REST API will be protected by suitable security token mecha-
nism. Both the digital certificates and security tokens will be generated/managed by the security
back-end.

4.7.2 Layer Interactions

Part of the work done in Cross-Layer has been the identification and definition of the interaction
between the layers. Not every layer interacts with each other, and each interaction is different. In this
section are described and explained the main interactions between layers.

D2D ⇔ N2N

124 / 137

D3.2: Methods for Interoperability and Integration v.2

The relationship between these lower layers is specially close due to is sharing of common protocols
and technologies. When we talk about access network protocols or network technologies we used to
reference the two or third first layers of the network stack; hence, protocols as WiFi, Bluetooth, etc.
affects these layers sometimes providing new approaches to the access networks. These different
access network modules are located in the Physical part of the Gateway and, in the end, the infor-
mation will be translated and encapsulated to be sent through a network over IP to the Virtual part,
where the connection to the IoT Platform will be done as well through an IP-based network. Here is
when our software defined network solution takes its role and manage the packets coming from the
virtual gateways to the platforms.

So, as we demonstrate in our first demo the virtual gateways can communicate with the external
elements among the software defined network created in the network solution. Hence, the routing
between the different virtual machines that allocate the virtual gateways or other resources is man-
aged by the controller.

Additionally, in a further approach we want to strengthen the bond between device and network layer
and we will implement a module inside the virtual gateway to mark the packets sent using the IPv4
field of Differentiated Services Code Point (DSCP) previously known Type of Service (ToS), defining
different services in order to treat them in a different manner within the network (QoS).

D2D ⇔ MW2MW

There is no direct iteration between the two INTER-Layer components. The reasons is, that D2D has
been designed to communicate (northbound) to an IoT middleware platform. However, INTERMW is
not "yet another IoT platform", but rather a set of components that allows IoT platform interoperability.
This means that D2D may be "attached" to INTERMW indirectly, through another IoT platform. One
such setup would be, for example, D2D attached to FIWARE, which is then attached to INTERMW.

N2N ⇔ MW2MW

The same way in the interaction between device layer and network layer the network solution in
charge of routing the information between the virtual resources where virtual gateways are allocated,
here is also in charge of routing the information between virtual resources where platforms are lo-
cated. In many cases, there is no direct connection with the middleware to network and gateways but
in some specific scenarios this could be beneficial.

MW2MW ⇔ DS2DS

INTERMW translates messages through the IPSM component for all communication with IoT plat-
forms. This means that, in principle, all messages coming from an IoT platform get first syntactically
transformed into platform-specific semantic representation (expressed in JSON-LD) and sent to IPSM
for translation into the appropriate target semantics/ontology. In the opposite direction a similar pro-
cedure is in place: a message gets semantically translated into the platform-specific ontology, and
later, syntactically transformed into a data format recognized by the receiving platform and sent to
that platform.

D2D ⇔ AS2AS

The interaction between the D2D Gateway and AS2AS component is performed through specific
nodes designed to invoke functions of the REST API published by the Gateway API extension module.
All functions of the REST API are supported but the most notable nodes are the ones that allow the

125 / 137

D3.2: Methods for Interoperability and Integration v.2

control and management of IoT Devices, those are: Device Status, Device Start, Device Stop,
Read device, Write device.

It is worth noticing that this interaction process can be fully automatized since the Swagger documen-
tation of the Gateway is already automatically generated from the code and there is the possibility
(still under development) of generating nodes automatically from a swagger definition.

N2N ⇔ AS2AS

It is important to notice that even if there is a portal to access graphically the configuration options and
information that the network solution provides, may be interesting to create nodes on the Application
and Services solution layer to be used in concordance with other services. Thus, you can create
composed services using the information of the network or create flows that acts over the network
following criteria coming from different applications.

MW2MW ⇔ AS2AS

INTERMW exposes all its functionality through the REST API interface defined in https://git.inte
r-iot.eu/Inter-IoT/layer_apis/src/master/middleware/intermw-swagger.json. Although any
REST endpoint could be exposed as an AS2AS node, in this phase the most suitable candidate is
the subscription flow. A subscription, which provides a series of observations form a set of sensors
can provide information to consumer nodes, like visualisation dashboards or CEP services of other
IoT platforms.

AS2AS ⇔ DS2DS

In the solution proposed for AS2AS layer, based on Node-RED, a set of nodes dedicated for inter-
action with IPSM is offered. They allow to send messages to any instance of IPSM (publish them to
input topics of semantic translation channels) for translation, and receive translated messages from
IPSM (consume them from output topics of semantic translation channels). The assumption is that
input and output messages have to be in RDF, specifically in JSON-LD message format.

4.7.3 Virtualization and Clusterization of layers with Docker

The State of the Art has described and indicated that we are using Docker to perform issues related
to virtualization. The use of Docker in Inter-Layer provides the following advantages:

• Rapid Deployment: Bringing up a new IoT Platform or Service resource took a considerable
time, sometimes more than a day. When platforms or services offer a deployment in a container,
this time slot down to minutes. This has been fundamental in AS2AS and MW2MW in which
these deployments were continually required to be carried out in the development phases.

• Consistent Environment: The immutable nature of Docker images, provides a consistent
environment for the application from development through production.

• Improve Developer Productivity: In the development phases of interoperability solutions, pro-
grammers have close conditions to working with real platforms and services in a production
environment.

• Portability: The containers can be easily moved between different servers that have the Docker
environment installed.

126 / 137

https://git.inter-iot.eu/Inter-IoT/layer_apis/src/master/middleware/intermw-swagger.json
https://git.inter-iot.eu/Inter-IoT/layer_apis/src/master/middleware/intermw-swagger.json

D3.2: Methods for Interoperability and Integration v.2

• Multi-tenancy: this attribute allows having different solution from different layers accessible
to several clients or tenants. These tenants, however, does not realize they are sharing the
resources and it seems they have the system for themselves, in a specific configured context.

• Isolation: a good secure practice is the creation of different context for different applications.
So that, if something fails in one of them does not spread to the other making the whole system
crash. With docker and the isolation mechanism this is possible and useful for the applications
to have its own data space and resources to work secured and properly.

• Multiple Instances of a service: having one service properly configured and running, this
property allows the nimbly deployment of multiple instances of the same service as a replica
becoming the solution more scalable and resilience (in case of failure of one of the instances the
request can be redirected to another), also, if needed, the different replicas can be configured
with diverse characteristics associated with each user owner.

In the Layers is done specifically in this way:

In D2D only the virtual gateway is dockerised, since the physical part would not make sense for
obvious reasons. Both the physical and the virtual part of the gateway have the possibility to add
more functionalities adding extension modules, for this reason, to dockerise the virtual part we have
three approaches:

• Create an image containing all the existing module extensions for each release.

• Create multiple images with different extensions for each release.

• Create an image without extensions and give the user the possibility of adding them in a shared
folder between the host and the container.

Of the three possibilities the first one is the basic one and the image is automatically compiled in
each release. The second option is not going to be considered, but documentation will be given to
the user in order to instruct how to compile custom images with the desired extensions. Finally, the
last option is still under development, so the user has complete control of the extensions that will be
used or not in each deployment.

In N2N the use of Open vSwitch (OVS) bridge for Docker container has been studied. However, it
provides more difficulties than advantages. It is possible to use the ovs-docker utility so that, you can
manage the network and routing between containers with the technology of OVS but it is more com-
plex the configuration of the whole network following specific requirements and the connection with
the controller. Even though, we will inquire into in the possibilities of interconnecting the containers
with our software defined network. There are two main modes of configuration of OVS with Docker:

• The NAT mode: the OVS bridge is a virtual interface so the docker containers added to the
bridge will have an internal IP address, iptables NAT rules will be needed to communicate with
outside.

• The Bridge mode: the OVS bridge is associated with a real network adapter, the docker con-
tainers added to the ovs bridge will be bridged to the external network. You have to add the
physical network adapter into the OVS bridge, and configure an external IP address onto the
OVS bridge.

This technology will be analysed tested and compared with the other option deployment with Open-
Stack and we will determine which one fits better our needs.

127 / 137

D3.2: Methods for Interoperability and Integration v.2

In MW2MW currently, it is used to test the Middleware IoT Platforms like Fiware Orion Context Bro-
ker, deploy middleware brokers like Kafka, RabbitMQ and ActiveMQ and running an instance of the
Parliament Database. Additionally, we are deciding which components of MW2MW solution will be
definitely dockerised.

In AS2AS it is used to deploy IoT services (for example, the services of the AS2AS Demo) and
create multiple custom instances of Node-RED tool. We have exposed this need of use containers
in the Section of AS2AS solution. The Figure 31 explains the configuration of a container with the
interoperability solution. The Figure 32 is the current deployment of the solution and shows the
multiple instances of the solution in the same host. Finally, the Figure 33 exposes the need to use
Docker Swarm to handle hosts and container with different instances of Node-RED in a centralized
way.

In DS2DS there is no need for using Docker so far.

The Docker Swarm tool provides unitary administration of a docker cluster providing also features of
scheduling and management. Docker swarm provides the clustering features desired for the INTER-
IoT layered solutions. We arrange several servers with Docker tool installed and with several con-
tainers running inside each one of them. Each container allocate instances of a particular Inter-Layer
solution. We need Docker Swarm for allowing a centralized management property from a unique
access point to our entire Docker environment. In the Figure 49 we observe an example of Docker
deployment managed by Docker Swarm software. Concretely, it is observe an example with three
servers where a diverse number of instances of Inter-layer solutions are running in Docker contain-
ers. These servers possess it own management console but as all of them belongs to the same
swarmed deployment they are centrally managed by the console of Docker Swarm that agglutinates
the characteristics of each Docker container making them a unique software element.

Docker Portainer is a lightweight management UI and consists in a single container that can run on
any Docker engine. It allows an easy manage of our Docker environments (Docker hosts and Swarm
clusters). In our project, its purpose is to be a management tool that offers us a more comfortable
way to work with the Docker Environment. We are considering to integrate Portainer in Inter-FW.

128 / 137

D3.2: Methods for Interoperability and Integration v.2

Figure 49: Example of deployment of Inter-Layer solutions with Docker swarm

4.8 INTER-Layer relation with INTER-Framework

The IoT Interoperability Framework (INTER-FW) aims at providing mechanisms, tools and helper
contents to make proper use of the Layer Interoperability Infrastructures (LIIs) and Interoperability
Layer Interfaces (ILI).

As described in previous sections, each LII provides generic interoperability means for different iden-
tified technology layers in IoT platforms. The INTER-FW provides a way to 1) select the appropriate
LIIs for the particular scenario (e.g. middleware and services excluding the rest); 2) abstract generic
behaviours present in the most common scenarios (e.g. security administration, device discovery)
even though these behaviours apply to different LIIs (e.g. device discovery); 3) extend the generic

129 / 137

D3.2: Methods for Interoperability and Integration v.2

Figure 50: INTER-IoT global architecture. INTER-FW services lay over the LIIs

functionalities provided to the specific cases of the scenario (e.g. extend the service interoperability
for a particular natively supported service); 4) provide a single entry point (the framework user in-
terface) to start using the different capabilities of INTER-IoT, with a common, harmonized API with
all the documentation in one place; and 5) unify when possible the development process with a ho-
mogenized approach to access libraries, develop, configure, deploy and test through the Software
Development Framework.

Thus, INTER-FW provides access to INTER-LAYER structures and mechanisms through the APIs
provided by components of the five layers, as described in the previous sections. In INTER-IoT, these
APIs are exposed only internally (i.e., the ILIs are not accessible directly by an INTER-IoT user or
third party), however, a good part of these APIs will be exposed almost identically through the INTER-
FW API. For this reason, INTER-FW design and ILIs are processes that depend between them.
INTER-FW specifications (especially those coming from the Reference Architecture and the Meta-
Data Model tasks have an influence in the ILIs design, and, at the same time, the LIIs capabilities
affect the framework definition and the global relation among ILIs.

The latest version of INTER-FW GUI is available in the http://vmplsp04.westeurope.cloudapp.a
zure.com/interiot_wfk/#. The current version of INTER-FW provides interfaces to every layer:

• D2D: The management interface of the D2D layer is under the Gateway tab. It contains a
summary view and access to virtual gateway configurations, physical gateway configurations
and a shortcut to the API operations (for testing.)

• N2N: It is managed under the section Network, and it contains the network topology, virtual
network statistics and the QoS control interface.

• MW2MW: This interface is available in the Platforms tab. It shows a summary view of the

130 / 137

http://vmplsp04.westeurope.cloudapp.azure.com/interiot_wfk/#
http://vmplsp04.westeurope.cloudapp.azure.com/interiot_wfk/#

D3.2: Methods for Interoperability and Integration v.2

Figure 51: INTER-FW high-level architecture

platforms connected through INTER-IoT. The list of platforms is navigable, so it contains a
detailed view for each platform and a list of devices connected to that platform. The list of
devices allows basic operations (creation, update, removal).

• AS2AS: It lays under the Services tab, allowing to manage multiple service orchestration flows.
Each flow give access to the service composition tool.

• DS2DS: It allows operations with the IPSM, accessed through the Semantics tab. It allows
monitoring of the tool allowing start and stop translation channels, the configuration of channels
and alignments and, finally a tool to test the current alignment with sample messages.

• Cross Layer: The cross layer is also represented through the Users tab. This tab allows to
manage the INTER-IoT Users tab, which interacts with the Identity Server and allows a fine-
grained authorization of the user in all the layers entities.

Apart from this direct contributions, all individual Layers APIs are indirectly exposed through INTER-
API, which, at the same time, has a Swagger-based interface available in INTER-FW UI. This can be
found under the API Management tab.

As the INTER-FW UI is a multi-user interface and the layers are interoperability tools that generally
does not manage the concept of User, a containerization solution has been developed, to support
different users to access independent instances of layer solutions. This has been achieved by using
Docker containers and Docker-swarm to clusterise the access to these containers. This way, each
user will be able to access a different container containing the layer solution and, at the same time,
the group of container will be managed as a single entity. Docker-swarm also provides security and
authorization mechanisms enabling a full control on the access of the different users.

131 / 137

D3.2: Methods for Interoperability and Integration v.2

5 Ethics

5.1 Introduction

Ethics is a central consideration to all INTER-IoT planning and development. As requested at the
interim review, an ethical advisory board has been established. This board, within INTER-IoT, contin-
uously reviews ethical issues. The aim of the committee is to ensure that ethical considerations and
issues are addressed in the conduct of the research and development work undertaken within the
project. The committee seeks to support and encourage the process of ethically conducted research
to maintain the safety and well-being of participants and researchers to promote ethical values.

5.2 Ethics and INTER-LAYER

INTER-LAYER is designed to enable the interoperability of existing IoT systems at different levels.
Ethical considerations must be taken into account from two different perspectives: From the sys-
tems being connected, and from the inner workings of each layer that provide said interoperability.
INTER-LAYER cannot be responsible for the proper ethical handling of data and security within each
connected IoT system, but it can and must assure that such handling in each system will not be
worsened by connecting to INTER-LAYER. In addition, the inner logic of the components in each
layer must comply with the proper ethical handling of data and security, as per the requirements and
principles enumerated in the following sections.

5.2.1 Data types

Primary focus of the ethical review of data management focuses on personal data and sensitive
personal data. Personal data means data which relate to a living individual who can be identified –

(a) from those data

(b) from those data and other information which is in the possession of, or is likely to come into the
possession of, the data controller, and includes any expression of opinion about the individual
and any indication of the intentions of the data controller or any other person in respect of the
individual.

Sensitive personal data means personal data consisting of information as to -

(a) the racial or ethnic origin of the data subject,

D3.2: Methods for Interoperability and Integration v.2

(b) his political opinions,

(c) his religious beliefs or other beliefs of a similar nature,

(d) whether he is a member of a trade union,

(e) his physical or mental health or condition,

(f) his sexual life,

(g) the commission or alleged commission by him of any offence, or

(h) any proceedings for any offence committed or alleged to have been committed by him, the
disposal of such proceedings or the sentence of any court in such proceedings.

It is possible that INTER-IoT and INTER-LAYER will be used during processing of these types of
data, so appropriate controls have to be built into the layer components to enable systems to do this
ethically by conforming to the data protection act. This is achieved by assuring the proper security
of the communications and data handling within the components of each layer and across layers, as
per the security considerations described in previous sections, encompassing the common aspects
of integrity, privacy, authentication, authorization of information systems, and the other, more "IoT-
specific" ones of pseudonimity, autonomous communication, and semantic querying.

5.2.2 Requirements for ethical data processing

The data protection act requires adherence to 8 principles:

1. Personal data shall be fairly and lawfully processed as defined in the data protection act.

2. Personal data shall be obtained only for one or more specified and lawful purposes, and shall
not be further processed in any manner incompatible with that purpose or those purposes.

3. Personal data shall be adequate, relevant and not excessive in relation to the purpose or pur-
poses for which they are processed.

4. Personal data shall be accurate and, where necessary, kept up to date.

5. Personal data processed for any purpose or purposes shall not be kept for longer than is nec-
essary for that purpose or those purposes.

6. Personal data shall be processed in accordance with the rights of data subjects under the data
protection act.

7. Appropriate technical and organisational measures shall be taken against unauthorised or un-
lawful processing of personal data and against accidental loss or destruction of, or damage to,
personal data.

8. Personal data shall not be transferred to a country or territory outside the European Economic
Area unless that country or territory ensures an adequate level of protection for the rights and
freedoms of data subjects in relation to the processing of personal data.

Because the components of each layer do not interpret the payload data being transferred, handled
and/or stored within them, they do not hinder the above principles per se. It is however necessary that
during the process of implementation of each component the developers are aware of the principles
themselves, so as to not introduce unwanted features, workarounds, hot fixes or "hacks" that interfere

133 / 137

D3.2: Methods for Interoperability and Integration v.2

with them, even if in a temporary fashion, as long as there is the chance that these are utilized in the
pilots real-life deployments. It therefore becomes an official recommendation for developers to read
the above principles and take them into consideration during the development process.

134 / 137

D3.2: Methods for Interoperability and Integration v.2

6 Conclusions

This document is the intermediate report (out of three) on the status of design and development
of INTER-IoT interoperability mechanisms. It describes the status of development of the different
components, entities and interfaces of the layered approach proposed by the project. In this report,
we provide an updated state of the art section, but the real emphasis is on the technological choices
made in the development of interoperability layers.

INTER-LAYER components have reached a level of maturity when they can be deployed in INTER-
IoT pilots and validated in a real-world scenario. All relevant aspects of interoperability have been
addressed, including syntactic, semantic and layered interoperability. Examples of functional demon-
strators for each layer are provided, together with exposed APIs for each layer, thus providing the
fundamentals for the implementation of Cross-Layer and INTER-FW solutions. As it can be seen
from the development status, the priority in this phase of the project was on providing a MVP (Mini-
mum Viable Product) for pilot deployment and APIs to allow further developments of INTER FW.

When layered components reached a satisfactory level of maturity, activities have started in the identi-
fication of common Cross-Layer issues and interaction among layers. Two main cross-cutting issues
have been identified, and existing solutions examined in the SotA section: Security and virtualisa-
tion/clustering. Cross-Layer proposes solutions for security and virtualisation while also describing
the interaction between layers.

Overall, this document reports significant advancements in the development of INTER-Layer com-
ponents. It also proposes some cross-layer solutions and describes the initial implementation steps
undertaken.

D3.2: Methods for Interoperability and Integration v.2

Bibliography

[1] G. Fortino, D. Parisi, V. Pirrone, and G. D. Fatta, “Bodycloud: A saas approach for community
body sensor networks,” Future Generation Computer Systems, vol. 35, no. 6, pp. 62–79, 2014.

[2] “Bodycloud website.” http://bodycloud.dimes.unical.it.

[3] “The javascript object notation (json) data interchange format.” https://tools.ietf.org/html/
rfc7159.

[4] “Linked data.” https://www.w3.org/DesignIssues/LinkedData.html.

[5] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data – the story so far,” Int. J. Semantic Web Inf.
Syst., vol. 5, no. 3, pp. 1–22, 2009.

[6] “JSON-LD 1.0 – a JSON-based serialization for Linked Data.” https://www.w3.org/TR/json-ld/.

[7] “Resource description framework (RDF).” https://www.w3.org/RDF/.

[8] “Semantic Sensor Network XG final report,” 2011.

[9] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, O. Corcho, S. Cox, J. Graybeal,
M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz, W. D. Kelsey, D. L. Phuoc, L. Lefort,
M. Leggieri, H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, and K. Taylor, “The SSN
ontology of the W3C semantic sensor network incubator group,” Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, vol. 17, pp. 25–32, 2012.

[10] “Semantic Sensor Network Ontology.” https://www.w3.org/TR/vocab-ssn/.

[11] P. Szmeja, M. Ganzha, M. Paprzycki, W. Pawłowski, K. Wasielewska, B. Solarz-Niesłuchowski,
and J. Suárez de Puga García, “Towards high throughput semantic translation,” in 3rd EAI Inter-
national Conference on Interoperability in IoT (InterIoT), in press.

[12] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, and K. Wasielewska, “Streaming seman-
tic translations,” in 21st International Conference on System Theory, Control and Computing
ICSTCC, Proceedings, in press.

[13] J. David, J. Euzenat, F. Scharffe, and C. Trojahn dos Santos, “The alignment API 4.0,” Semantic
Web, vol. 2, no. 1, pp. 3–10, 2011.

[14] “EDOAL: Expressive and declarative ontology alignment language.” http://alignapi.gforge.
inria.fr/edoal.html.

http://bodycloud.dimes.unical.it
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/RDF/
https://www.w3.org/TR/vocab-ssn/
http://alignapi.gforge.inria.fr/edoal.html
http://alignapi.gforge.inria.fr/edoal.html

D3.2: Methods for Interoperability and Integration v.2

[15] P. Szmeja, M. Ganzha, M. Paprzycki, W. Pawłowski, and K. Wasielewska, “Declarative ontology
alignment format for semantic translation,” in 6th EAI International Conference on Context-Aware
Systems and Applications (ICCASA), Proceedings, in press.

137 / 137

	Executive Summary
	List of Authors
	Change control datasheet
	List of Figures
	List of tables
	Acronyms
	1 Introduction
	1.1 Progress since D3.1
	1.2 Constraints based on Requirements

	2 Update to the State of the Art
	2.1 Device Interoperability (D2D)
	2.1.1 Current D2D gateway setup and classifications
	2.1.2 Gateway implementations

	2.2 Network Interoperability (N2N)
	2.2.1 SDN technologies
	2.2.2 QoS in SDN
	2.2.3 Software Defined Radio

	2.3 Middleware Interoperability (MW2MW)
	2.3.1 VITAL-OS
	2.3.2 UniversAAL
	2.3.3 WSO2
	2.3.4 BodyCloud
	2.3.5 Data representation and processing

	2.4 Application & Services Interoperability (AS2AS)
	2.4.1 Node-RED
	2.4.2 Relation of Docker with Node-RED
	2.4.3 Relation of Swagger with Node-RED

	2.5 Data & Semantics Interoperability (DS2DS)
	2.6 Cross-Layer Interoperability
	2.6.1 Security in IoT
	2.6.2 Virtualization and Clusterization of Layers

	3 INTER-LAYER Design
	3.1 Development and Demonstration Environments Setup
	3.2 INTER-IoT RA Instantiation
	3.2.1 INTER-IoT RA instantiation for INTER-LAYER
	3.2.2 INTER-LAYER Functional Components
	3.2.3 Functional Components traceability

	4 INTER-LAYER Components
	4.1 Development and Demonstration Environments Setup
	4.2 D2D solution
	4.2.1 Refined Architecture
	4.2.2 Components
	4.2.3 Implementation Status
	4.2.4 API (and Extensibility)
	4.2.5 Code and Documentation
	4.2.6 Demo

	4.3 N2N solution
	4.3.1 Refined Architecture
	4.3.2 Implementation Status
	4.3.3 API (and Extensibility)
	4.3.4 Code and Documentation
	4.3.5 Demo

	4.4 MW2MW solution
	4.4.1 Refined Architecture
	4.4.2 Components
	4.4.3 Use Cases
	4.4.4 Implementation Status
	4.4.5 API (and Extensibility)
	4.4.6 Code and Documentation
	4.4.7 Demo

	4.5 AS2AS solution
	4.5.1 Refined Architecture
	4.5.2 Components
	4.5.3 Use Cases
	4.5.4 Implementation Status
	4.5.5 API (and Extensibility)
	4.5.6 Code and Documentation
	4.5.7 Demo

	4.6 DS2DS solution
	4.6.1 Implementation Status
	4.6.2 API (and Extensibility)
	4.6.3 Code and Documentation
	4.6.4 Demo

	4.7 Cross-Layer solution
	4.7.1 Layer security integration
	4.7.2 Layer Interactions
	4.7.3 Virtualization and Clusterization of layers with Docker

	4.8 INTER-Layer relation with INTER-Framework

	5 Ethics
	5.1 Introduction
	5.2 Ethics and INTER-LAYER
	5.2.1 Data types
	5.2.2 Requirements for ethical data processing

	6 Conclusions

