
D3.3

Methods for Interoperability and Integration - Final

June 2018

Ref. Ares(2018)3523338 - 03/07/2018

D3.3: Methods for Interoperability and Integration - Final

INTER-IoT

INTER-IoT aim is to design, implement and test a framework that will allow interoperability
among different Internet of Things (IoT) platforms.
Most current existing IoT developments are based on ”closed-loop” concepts, focusing on a
specific purpose and being isolated from the rest of the world. Integration between hetero-
geneous elements is usually done at device or network level, and is just limited to data gath-
ering. Our belief is that a multi-layered approach integrating different IoT devices, networks,
platforms, services and applications will allow a global continuum of data, infrastructures and
services that can enable different IoT scenarios. As well, reuse and integration of existing
and future IoT systems will be facilitated, creating a de-facto global ecosystem of interoper-
able IoT platforms.
In the absence of global IoT standards, the INTER-IoT results will allow any company to
design and develop new IoT devices or services, leveraging on the existing ecosystem, and
bring get them to market quickly.
INTER-IoT has been financed by the Horizon 2020 initiative of the European Commission,
contract 687283.

D3.3: Methods for Interoperability and Integration - Final

INTER-IoT

Methods for Interoperability and Integration - Final

Version: 2.2
Security: Public

June 30, 2018

The INTER-IoT project has been financed by the Horizon 2020 initiative of the European Commission, contract 687283

3 / 49

D3.3: Methods for Interoperability and Integration - Final

Disclaimer

This document contains material, which is the copyright of certain INTER-IoT consortium parties, and may not
be reproduced or copied without permission.
The information contained in this document is the proprietary confidential information of the INTER-IoT consor-
tium (including the Commission Services) and may not be disclosed except in accordance with the consortium
agreement.
The commercial use of any information contained in this document may require a license from the proprietor
of that information.
Neither the project consortium as a whole nor a certain party of the consortium warrant that the information
contained in this document is capable of use, nor that use of the information is free from risk, and accepts no
liability for loss or damage suffered by any person using this information.
The information in this document is subject to change without notice.

4 / 49

D3.3: Methods for Interoperability and Integration - Final

5 / 49

D3.3: Methods for Interoperability and Integration - Final

Executive Summary

The aim of Deliverable 3.3, entitled “Methods for Interoperability and Integration - Final”, is to provide
accurate documentation of the work done in the last implementation phase of INTER-Layer interop-
erability mechanisms. This deliverable is the third version of a series of three (i.e. preceded by D3.1
and D3.2). From now on, all the improvements made to the components developed in WP3 will be
tracked through the official INTER-IoT web documentation. Thus, the current deliverable provides
information about the final component developments, release features, documentation elaborated,
software distribution plan and extensibility of the solutions. It reports the technical work performed
in all WP3 tasks, T3.1 (Definition and Analysis of Methods for Device Layer Interoperability and In-
tegration, M5-M30); T3.2 (Definition and Analysis of Methods for Networking Layer Interoperability
and Integration, M5- M30); T3.3 (Definition and Analysis of Methods for Middleware Layer Interop-
erability and Integration, M5-M30); T3.4 (Definition and Analysis of Methods for Application Service
Layer Interoperability and Integration, M5-M30), T3.5 (Definition and Analysis of Methods for Data
and Semantics Layer Interoperability and Integration, M5-M30) and T3.6 (Definition and Analysis of
Methods for Cross-Layer Interoperability and Integration, M13-M30).

D3.1 and D3.2 provide a literature review, describe the architecture, components and use cases,
the progress of implementation, the API provided and the demonstration of methods of interoper-
ability. In D3.3, focus has been expanded to report about implemented features, documentation,
source code and releases. Firstly, offering a complete overview of progress since D3.2 and relation
with other WPs. Secondly, explaining the general details of Inter-Layer software distribution and doc-
umentation. Thirdly, providing for each INTER-Layer component, an introduction with mentions to
progress since the release described in D3.2, the list of component features, approaches to exten-
sibility and a release and distribution plan. Finally, the document explains the ethical considerations
across all INTER-Layer components.

As already reported in the aforementioned previous versions of this deliverable, the developments
have been based on the layered architecture description provided in the Description of the Action,
requirements described in D2.3 and subsequent updates (INTER-IoT Requirements and Business
Analysis, M9). The work has been further based on use cases and scenarios described in D2.4 (Use
cases and scenarios, M12) in order to be in line with the proposed pilots.

INTER-Layer is an instantiation (reference implementation) of the INTER-IoT Reference Archi-
tecture, which is explained in D4.2 (Final Reference IoT Platform Meta-Architecture and Meta Data
Model). The exposed API and extensibility mechanisms of INTER-Layer are integrated in INER-FW
and INTER-API, as described in D4.3 (Interoperable IoT Framework Model and Engine v1) and D4.5
(Interoperable IoT Framework API and Tools v1). As INTER-API is a result of the REST-like design of
the INTER-IoT layered interoperability stack, providing a unique approach and experience to call the
different interoperability APIs developed in WP3. The relation of WP3 with these tasks is reported
in deliverables D4.3 and D4.6 (deliverable that merged D4.4 and D4.5). Finally, through interaction
with WP4 tasks related to implementation of INTER-FW and INTER-API, extensibility and provision
of APIs has been defined and implemented. The relation between the other work packages (WP4,
WP5, WP6, WP7 and WP8) is provided in section 1.2.

This document is the last report about the activities of WP3, even if new software releases are
provided, these will be improvement iterations over original developments carried out during INTER-
IoT WP3 and formally will be assumed by WP6 in INTER-IoT and by the community in further projects.

6 / 49

D3.3: Methods for Interoperability and Integration - Final

List of Authors

Organisation Authors Main contributions

UPV Eneko Olivares, Andreu
Belsa, Jara Suárez de Puga,
Carlos Enrique Palau

Overall coordination, Sections: 2.1, 2.2,

2.3, 2.4 3.1, 3.2, 3.4, 3.6, 5

RINICOM Eric Carlson Internal review. Sections: 1.2, 3.2, 4

XLAB Flavio Fuart, Damjan Murn,
Gašper Vrhovšek

Sections: 1, 1.1, 2.1, 2.4, 3.3, 3.5

SRIPAS Katarzyna Wasielewska-
Michniewska

Sections: 2.2, 2.3, 2.4, 3.3, 3.4, 3.5

TU/e Tim van der Lee Sections: 3.2, 5

SABIEN Gema Ibáñez Sections: 4

NEWAYS Dennis Engbers, Johan Sch-
abink

Internal review. Sections: 1.2, 3.1

PRODEVELOP Miguel Ángel Llorente Sections: 1.2, 3.3, 3.5, 3.6

UNICAL Pasquale Pace, Giuseppe
Caliciuri

Sections: 1.2, 2.3, 3.4

7 / 49

D3.3: Methods for Interoperability and Integration - Final

Change control datasheet

Version Changes Pages

0.0 Formatting, Inter-IoT template 6

0.1 Table of contents and assignments 12

0.2 Introduction section 15

0.3 Distribution section, first draft 19

0.4 Layer sections, first draft 25

1.0 Ethics section 29

1.1 Distribution section 32

1.2 Layer sections 37

1.3 Executive summary 39

2.0 Ready for internal review 44

2.1 Review comments addressed 48

2.2 Final version 49

8 / 49

D3.3: Methods for Interoperability and Integration - Final

Contents

Executive Summary . 6
List of Authors . 7
Change control datasheet . 8
List of Figures . 11
List of tables . 13
Acronyms . 15

1 Introduction 17
1.1 Progress since D3.2 . 17
1.2 Relation with other Work Packages . 18

1.2.1 Relation with WP4 . 18
1.2.2 Relation with WP5 . 19
1.2.3 Relation with WP6 . 19
1.2.4 Relation with WP7 . 19
1.2.5 Relation with WP8 . 19

2 Software Distribution and Documentation 21
2.1 Source code . 21
2.2 Documentation . 22
2.3 Binary distribution . 25
2.4 Release Summary . 26

3 INTER-Layer Components 30
3.1 D2D solution . 30

3.1.1 Release features . 30
3.1.2 Extensibility . 31
3.1.3 Release and distribution plan . 31

3.2 N2N solution . 32
3.2.1 Release features . 33
3.2.2 Extensibility . 33
3.2.3 Release and distribution plan . 34

3.3 MW2MW solution . 34
3.3.1 Release features . 35
3.3.2 Extensibility . 37
3.3.3 Release and distribution plan . 37

3.4 AS2AS solution . 37
3.4.1 Release features . 38

D3.3: Methods for Interoperability and Integration - Final

3.4.2 Extensibility . 39
3.4.3 Release and distribution plan . 40

3.5 DS2DS solution . 41
3.5.1 Release features . 41
3.5.2 Extensibility . 42
3.5.3 Release and distribution plan . 42

3.6 Cross-Layer solution . 42
3.6.1 Layer security integration . 43
3.6.2 Layer Interactions . 43
3.6.3 Virtualization and Clusterization of layers . 43
3.6.4 Cross-Layer as a transversal component . 44

4 Ethics 45
4.1 Introduction . 45
4.2 Ethics and INTER-Layer . 45

4.2.1 Data types . 45
4.2.2 Requirements for ethical data processing . 46

5 Conclusions 48

10 / 49

D3.3: Methods for Interoperability and Integration - Final

List of Figures

Figure 1: Private source code repository based on Gogs 22
Figure 2: INTER-IoT documentation site example . 23
Figure 3: Continuous development infrastructure . 24
Figure 4: INTER-IoT private binary repository based on Sonatype Nexus 25
Figure 5: INTER-IoT private docker registry . 26

D3.3: Methods for Interoperability and Integration - Final

12 / 49

D3.3: Methods for Interoperability and Integration - Final

List of Tables

Table 1: Current documentation sites summary . 23
Table 2: Documentation version scheme example . 24
Table 3: Summary table of INTER-Layer D2D component distribution 27
Table 4: Summary table of INTER-Layer N2N component distribution 27
Table 5: Summary table of INTER-Layer MW2MW component distribution 28
Table 6: Summary table of INTER-Layer AS2AS component distribution 28
Table 7: Summary table of INTER-Layer DS2DS component distribution 29

D3.3: Methods for Interoperability and Integration - Final

14 / 49

D3.3: Methods for Interoperability and Integration - Final

Acronyms

AAL Active-Assisted Living

ACP Access Control Policy

ACR Access Control Rule

API Application Programming Interface

AS2AS Application & Services Interoperability

CLI Command-line Interface

CASE Computer Aided Software Engineering

D#.# Deliverable number #.# (D2.1 deliverable 1 of work package 2)

DS2DS Data & Semantics Interoperability

D2D Device Interoperability

EC European Commission

EU European Union

GA Grant Agreement

GNU GNU’s Not Unix

GUI Graphical User Interface

HTML Hyper Text Markup Language

H2020 Horizon 2020 Programme for Research and Innovation

INTER-FW INTER-IoT Interoperable IoT Framework

INTER-IoT Interoperability of Heterogeneous IoT Platform

INTER-Layer INTER-IoT Layer integration tools

INTERMW INTER-IoT Middleware

IoT Internet of Things

IoT-EPI IoT-European Platforms Initiative

JSON-LD JavaScript Object Notation used for serialization of Linked Data

JVM Java Virtual Machine

M# #th month of the project (M1=January 2016)

MDM Meta-Data Model

MW2MW Middleware Interoperability

D3.3: Methods for Interoperability and Integration - Final

N2N Network Interoperability

OF OpenFlow

OFDM Orthogonal Frequency Division Multiplexing

OS Operating System

OSGi Open Services Gateway initiative

OVSDB Open vSwitch Database Protocol

OWL Web Ontology Language

PC Project Coordinator

PCC Project Coordination Committee

RA Reference Architecture

RDF Resource description Framework

REST Representational State Transfer

RM Reference Model

QoS Quality of Service

SDN Software Defined Networks

SDR Software defined Radio

SQL Structured Query Language

TLS Transport Layer Security

UDP User Datagram Protocol

UI User Interface

URI Uniform Resource Identifier

XACML eXtensible Access Control Markup Language

WP Work Package

16 / 49

D3.3: Methods for Interoperability and Integration - Final

1 Introduction

This deliverable is an evolution of D3.1, Methods for Interoperability and Integration v.1 and D3.2,
Methods for Interoperability and Integration v.2. It reports about final outcomes of research and de-
velopment efforts elaborated in the previous documents. The fact that this, third, deliverable reports
about implemented features, documentation, source code and releases makes it a self-standing doc-
ument.

A reader interested in using the software developed in WP3 can find all the needed information in
this document and will not need to refer to the previous versions. The authors also made extensive
effort to publish the information needed for usage and further development in standard approaches
of publishing documentation and source code. This means, that the main entry for future users will
be the selected open source code repository and document repository, GitHub and Read the Docs,
explained in chapter 2.

On the other hand, a more curious reader, interested in the theoretical background and reasons for
specific technological choices, will reach for D3.1 and D3.2.

In order to position this report in the project’s perspective, an overview of progress since D3.2 (Section
1.1) and relation with other WPs (Section 1.2) is provided below. The details of Software Distribution
and documentation are provided in Section 2. In Section 3 for each INTER-Layer component we
provide: an introduction with the progress made since the release described in D3.2, the list of
component features, approaches to extensibility and finally, a release and distribution plan. Ethical
considerations are elaborated in a separate section across all INTER-Layer components. In the
conclusion we summarise the main points of the work performed in this WP.

1.1 Progress since D3.2

In this final phase of technical developments, most of the effort across all INTER-Layer components
was devoted to further development of test procedures, refinement of API calls, integration within
Cross-Layer and WP4, provision of documentation and development of deployment procedures. The
source code of all layers is kept in the project’s Gogs repository, until all components are equipped
with the correct license texts, at which point they will be moved to Github. In order to support the
documentation efforts, all the necessary infrastructure to streamline the creation of comprehensive
documentation has been put in place (Section 2.2). A process to release binary distributions is in
place (Section 2.3), together with a first set of software releases (Section 2.4).

At the time of submission of D3.2, the main architectural choices were made and most of the core

D3.3: Methods for Interoperability and Integration - Final

INTER-Layer functionalities were already developed. In this final phase of technical developments,
some components have seen further extension of their features and services they offer. The specifics
are further elaborated in INTER-Layer Component introductory sections for each layer separately.

1.2 Relation with other Work Packages

The development activities performed in WP3 are devoted to the layer infrastructure of the INTER-
IoT interoperability approach. This means that the core of the full interoperability stack provided
in INTER-IoT is technically designed and developed within WP3. Thus, the activities have multiple
links with other work packages. Although the technical work has been managed to keep it as much
independent as possible. In order to make the most of the research activities planned in the tasks,
the tight relation between each layer and the rest of the work packages has been a constant in the
technical, management and dissemination activities across the project.

1.2.1 Relation with WP4

One of the most related work package in technical terms to WP3 is WP4. Within this set of tasks,
two important branches can be differentiated: 1) the abstraction and theoretical description activities
carried out in tasks 4.1 and 4.2; and 2) the homogenization and user experience enhancement activ-
ities represented by the design and implementation of a transversal framework and API performed in
4.3, 4.4 and 4.5.

For the first family of activities, the development of layers has bidirectional feedback. The first design
of the INTER-IoT Reference Model (RM), Reference Architecture (RA) and Meta-Data Model (MDM),
delivered in Month 13 under the deliverable 4.1, was an initial theoretical background and architec-
tural approach for the development of each layer interoperability mechanism, serving as a general
reference to ensure the compatibility, de-coupling, complementariness and completeness of the so-
lutions proposed. In the refined version of the RA, RM and MDM, delivered in M24 in the document
D4.2 the development of the layer infrastructure played a role, influencing in the final version of these
abstractions, similarly, this work provided a theoretical background for the last developments of WP3.

For the second part of activities of WP4, the layers have a key influence, since the purpose of the
framework and INTER-API is to ease the independent use of the layers, to homogenize the user
and developer experience and provide a seamless process to build a complete IoT interoperability
solution based on the use of the interoperability layers. More specifically, INTERFW has developed
a graphical web based framework (called configuration and management framework) with a server-
side application that supports key activities for the layers such as user management, identification
and authorization management, orchestration of API calls and layers management. The INTER-API
is a result of the REST-like design of the INTER-IoT layered interoperability stack, providing a unique
approach and experience to call the different interoperability APIs developed in WP3. The relation of
WP3 with these tasks is reported in deliverables D4.3 and D4.6 (merged D4.4 and D4.5).

18 / 49

D3.3: Methods for Interoperability and Integration - Final

1.2.2 Relation with WP5

WP5 is mainly related to WP3 on the implemented layered approach. In particular, T5.2 defines a set
of pre-instantiated interoperability-oriented patterns which are tailored on and eventually implemented
via the APIs at the various layers (i.e. D2D, N2N, MW2MW, AS2AS, DS2DS) of INTER-Layer and
through INTER-FW.

T5.3 is mainly devoted to the implementation of the INTER-CASE Tool consisting of different phases.
In the Analysis phase, the concept of integration point is exactly mapped to one of the WP3 layers at
which a given integration requirement is located. Also, the final output of the Analysis phase (i.e. the
Goal Oriented Model) includes a list of identified categories of integration (i.e. layers).

The Design phase is focused on the definition and instantiation of patterns which are, as aforemen-
tioned, tailored to INTER-Layer. Finally, the relation with WP3 emerges at the Maintenance phase,
where a list of known bugs and future evolution points of the integrated platform are identified accord-
ing to given affected layers.

1.2.3 Relation with WP6

Work Package 6 is, basically, the prove that WP3 is done according to requirements and use cases
which are specified in WP2. In WP3, all the components developed form the INTER-Layer solution
and they cover the set of requirements and use cases. WP6 entails the integration of all the separate
modules and components into working systems in the form of pilots. The pilots will prove during
WP6 that the implementation in WP3 was successful and according to specification. This will be
done in the form of unit testing, integration testing, Factory Acceptance Testing (FAT) and finally Site
Acceptance Testing (SAT). The modules which form the components are unit tested during build. The
component will be integration tested on functionality, performance, interfaces, etc. Next, the system
will undergo the FAT to prove that the system is ready for deployment at the installation site. Finally,
the system will undergo the SAT test which will prove that the system operates as specified at the
installation location of the pilots. The unit tests and integration testing are part of the WP3 package,
the FAT and SAT are part of the WP6 package, all tests combined will prove the INTER-IoT solution
as defined in WP2.

1.2.4 Relation with WP7

Work Package 7 is the formal evaluation of all aspects of the project. This includes the exploita-
tion, pilots, impact, interoperability and ethical, societal, gender and legal evaluation. In relation to
WP3, the technical evaluation will focus on KPIs related to specific pieces of technology developed
in INTER-layer. Additionally, the process evaluation will review the system and tools used to control
and manage all aspects of WP3 with the outcome being D7.3 where KPIs are reported.

1.2.5 Relation with WP8

Work Package 8 is focused on Impact Creation. In relation to WP3, many of the pieces of technology
developed in INTER-Layer are whole or parts of products which feature in the INTER-IoT business

19 / 49

D3.3: Methods for Interoperability and Integration - Final

and exploitation plans. Understanding their capabilities and unique selling points allows for the de-
velopment of convincing business cases and value propositions. Additionally, the INTER-layer code
base will be Open source and as such will be central to the Freemium business model developed as
part of INTER-IoT.

20 / 49

D3.3: Methods for Interoperability and Integration - Final

2 Software Distribution and Documenta-
tion

2.1 Source code

Since the beginning of the project, source code has been stored in our own private Git repository
server1 (Figure 1). Although this repository server infrastructure was deployed and maintained as
part of WP3, it is used by all other Work Packages within the project. For that reason, even that WP3,
WP4 and WP5 end in M30, our private Git repository will be maintained until the end of WP6 and
WP7. Once we have a positive evaluation of our first release, we will start the process of migration to
the selected public repository (Github2).

Before moving any code repository to Github, and as part of WP8 work, every piece of code and soft-
ware component has to be fully covered by the chosen license (Apache 2.03) and all dependencies
need to be double checked for their compliancy with the selected license.

Once a code repository is moved from our private repository to Github, it will be deactivated from our
private repository server in order to avoid conflicts with multiple remote repositories. When a code
repository is migrated to Github it may change the name to something more suitable, but all of them
will be added to the Inter-IoT project in Github4 and all original commits will be kept.

1https://git.inter-iot.eu
2https://github.com
3https://www.apache.org/licenses/LICENSE-2.0
4https://github.com/interiot

https://git.inter-iot.eu
https://github.com
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/interiot

D3.3: Methods for Interoperability and Integration - Final

Figure 1: Private source code repository based on Gogs

2.2 Documentation

As part of WP3 technical work, the infrastructure that supports all INTER-IoT documentation gen-
eration and publishing has been created and deployed. Since the majority of the tasks performed
during the technical stages of INTER-IoT project have been mostly condensed in this Work Package,
this infrastructure has been originally deployed to support INTER-Layer documentation but has been
extended to support INTER-FW from WP4 and INTER-CASE from WP5, and can be extended to
cover any INTER-IoT component that needs a separate documentation site.

This documentation site is self-hosted for the moment in the projects documentation, site5 but once
all INTER-IoT source code has been migrated to Github (as explained in the previous section), all
documentation will be also migrated to the selected documentation hosting site (Readthedocs6).

Currently, self-hosted documentation follows this scheme:

https://docs.inter-iot.eu/docs/<component>/<version>/

Where <component> points to the correspondent INTER-IoT component, currently:

A special case is the hub documentation site. It acts as the main documentation portal, with general
information about the INTER-IoT project, explaining how and why it’s separated in different compo-
nents and linking to each of the software component specific documentation sites.

In the documentation site address scheme explained above, <version> refers to the related software
component release version, with two special cases: stable will always point to the current release

5https://docs.inter-iot.eu
6https://readthedocs.org/

22 / 49

https://docs.inter-iot.eu
https://readthedocs.org/

D3.3: Methods for Interoperability and Integration - Final

<component> WP Description
gateway WP3 D2D Layer: Gateway documentation
n2n WP3 N2N Layer: SDN and SDR documentation
intermw WP3 MW2MW Layer: INTERMW documentation
as2as WP3 AS2AS Layer: Node-RED based AS2AS tool documentation
ipsm WP3 DS2DS Layer: IPSM documentation
framework WP4 INTER-FW documentation
intermeth WP5 INTER-METH and INTER-CASE documentation
hub WP8 INTER-IoT (global) documentation site

Table 1: Current documentation sites summary

Figure 2: INTER-IoT documentation site example

of the component and latest will always point to the current development version of the software
component. An example documentation site can be seen in Figure 2

The selected tool to create the documentation sites has been Mkdocs7 due to it’s simplicity to use,
open-source nature and because it uses Markdown as the format to write documentation. Up to this
point, a lot of documentation was already written in Markdown format (our private code repository,
Gogs, as well as Github use this format for the README documents, Wiki, Issues and Pull Request
descriptions) it was straightforward to reuse the already written documentation.

This tool (Mkdocs) takes all the markdown files (interlinked), images and other resources to create a
documentation website. For this reason, we can consider the markdown files as the "source code" of
the documentation and the website as the "compiled" result of this documentation source. Thus, this
documentation source is also tracked in our code repository server in a separate repository for each

7https://www.mkdocs.org/

23 / 49

https://www.mkdocs.org/

D3.3: Methods for Interoperability and Integration - Final

documentation site.

In order to track correctly the different documentation versions that refers to the software component
specific version, git branches and commit tags are used. In the following table can be seen an
example of this documentation versioning schema and how it relates to the specific git branch and
tag:

<version> Component Version Description Branch Tag
1.0.0 1.0.0 old release master 1.0.0
2.1.0 2.1.0 current release master 2.1.0
stable 2.1.0 current release master HEAD
latest 2.5.2 current development dev HEAD

Table 2: Documentation version scheme example

In order to have a comfortable working environment to write documentation, the CI (Continuous In-
tegration) setup that was deployed as part of WP3 development environment has been used (see
Figure 3).In this case, every time a commit is made to the dev or master branch (HEAD pointer
changes the commit hash) of any of the documentation source repositories, Jenkins starts the com-
pilation process and publishes the result to the documentation hosting server in the corresponding
version site. The result of the compilation is published in the INTER-IoT #builds slack channel and
any failure is notified to the committer by mail with the compilation log file.

When a tagged commit in the master branch is made, the compiled result is also published to the
documentation hosting server but with the tag as the version key, in order to keep the structure that
has been previously explained.

Figure 3: Continuous development infrastructure

24 / 49

D3.3: Methods for Interoperability and Integration - Final

2.3 Binary distribution

The main result of INTER-Layer will be the compiled binary software components developed in the
different layers. Each software component could have different distribution packages but the following
rules are applied:

• Each software component must have a portable zip package with the released binaries, at-
tached to the specific commit tag in the code repository as a release. This zip package should
be OS independent or else multiple versions of the portable zip package for the most important
OS must be released.

• Each zip file will also be pushed to any release repository available in our private binary repos-
itory server, Nexus8 (Figure 4).

• Each release must have a specific version of the documentation, and that documentation must
contain links to download those binary packages. The documentation has to be clear enough
for a successful installation of each distribution release package.

• If, in any case, additional distribution packages are deployed in each release (most of them will
have a Docker image available in our private Docker repository server9, Figure 5), they must be
documented and referenced.

Figure 4: INTER-IoT private binary repository based on Sonatype Nexus

8http://nexus.inter-iot.eu
9https://docker-registry.inter-iot.eu

25 / 49

http://nexus.inter-iot.eu
https://docker-registry.inter-iot.eu

D3.3: Methods for Interoperability and Integration - Final

Figure 5: INTER-IoT private docker registry

2.4 Release Summary

In this section the release information summary table for each INTER-Layer component is given,
including component name, version, source code, binaries, documentation, Docker image and de-
pendencies.

26 / 49

D
3.3:

M
ethods

for
Interoperability

and
Integration

-Final

D2D

Physical Gateway

Version 1.0.0

Source Code https://git.inter-iot.eu/Inter-IoT/gateway

Binaries http://nexus.inter-iot.eu/repository/maven-releases/eu/interiot/gateway/distribution/physical-gateway/1.0.0/
physical-gateway-1.0.0-dist.zip

Documentation https://docs.inter-iot.eu/docs/gateway/1.0.0/

Docker Image —

Dependencies —

Virtual Gateway

Version 1.0.0

Source Code https://git.inter-iot.eu/Inter-IoT/gateway

Binaries http://nexus.inter-iot.eu/repository/maven-releases/eu/interiot/gateway/distribution/virtual-gateway/1.0.0/
virtual-gateway-1.0.0-dist.zip

Documentation https://docs.inter-iot.eu/docs/gateway/1.0.0/

Docker Image docker.inter-iot.eu/vgateway:1.0.0

Dependencies —

Table 3: Summary table of INTER-Layer D2D component distribution

N2N

OpenFlow switch

Version 2.9.2

Source Code https://git.inter-iot.eu/Inter-IoT/sdn

Binaries —

Documentation https://docs.inter-iot.eu/docs/n2n/latest/

Docker Image —

Dependencies The virtual switch can be exchanged with other virtual switch, but taking into account the following dependencies/issues:
(a) controller and switch communicate with v1.3 of Openflow protocol, (b) switch must have OVSDB protocol implemented
to configure queues and meters, (c) mechanism of queues and metering has to be implemented within the switch.

Controller

Version 1.0.0

Source Code https://git.inter-iot.eu/Inter-IoT/sdn

Binaries http://nexus.inter-iot.eu/repository/raw-releases/eu/interiot/n2n/sdn_controller/1.0.0/sdn_controller-1.0.0.zip

Documentation https://docs.inter-iot.eu/docs/n2n/latest/

Docker Image —

Dependencies Applications: topology, qos, Inter IoT switch.

Table 4: Summary table of INTER-Layer N2N component distribution

27
/49

https://git.inter-iot.eu/Inter-IoT/gateway
http://nexus.inter-iot.eu/repository/maven-releases/eu/interiot/gateway/distribution/physical-gateway/1.0.0/physical-gateway-1.0.0-dist.zip
http://nexus.inter-iot.eu/repository/maven-releases/eu/interiot/gateway/distribution/physical-gateway/1.0.0/physical-gateway-1.0.0-dist.zip
https://docs.inter-iot.eu/docs/gateway/1.0.0/
https://git.inter-iot.eu/Inter-IoT/gateway
http://nexus.inter-iot.eu/repository/maven-releases/eu/interiot/gateway/distribution/virtual-gateway/1.0.0/virtual-gateway-1.0.0-dist.zip
http://nexus.inter-iot.eu/repository/maven-releases/eu/interiot/gateway/distribution/virtual-gateway/1.0.0/virtual-gateway-1.0.0-dist.zip
https://docs.inter-iot.eu/docs/gateway/1.0.0/
https://git.inter-iot.eu/Inter-IoT/sdn
https://docs.inter-iot.eu/docs/n2n/latest/
https://git.inter-iot.eu/Inter-IoT/sdn
http://nexus.inter-iot.eu/repository/raw-releases/eu/interiot/n2n/sdn_controller/1.0.0/sdn_controller-1.0.0.zip
https://docs.inter-iot.eu/docs/n2n/latest/

D
3.3:

M
ethods

for
Interoperability

and
Integration

-Final

MW2MW

Core Engine

Version 2.1.0

Source Code https://git.inter-iot.eu/Inter-IoT/intermw

Binaries http://nexus.inter-iot.eu/repository/maven-public/eu/interiot/intermw/mw.api.rest/2.1.0-SNAPSHOT/mw.api.rest-2.1.
0-20180620.152417-27.war

Documentation https://docs.inter-iot.eu/docs/intermw/latest/

Docker Image Docker Compose with containers: docker.inter-iot.eu/intermw, rabbitmq:3.7-management-alpine, daxid/parliament-
triplestore

Dependencies Internally dependent on RabbitMQ and Parliament triple store. Optional dependency on IPSM (if semantic translation is
needed).

INTERMW Bridges

Version —

Source Code Each bridge developer manages their own GIT repository. Currently hosted on the InterIoT Git repo.

Binaries —

Documentation https://docs.inter-iot.eu/docs/intermw/latest/

Docker Image —

Dependencies INTERMW Core Engine

Table 5: Summary table of INTER-Layer MW2MW component distribution

AS2AS
Application and
service solution

Version 1.0.0

Source Code https://git.inter-iot.eu/Inter-IoT/interas

Binaries http://nexus.inter-iot.eu/repository/raw-releases/eu/interiot/as2as/as2as-dist/1.0.0/as2as-dist-1.0.0.zip

Documentation https://docs.inter-iot.eu/docs/as2as/latest/

Docker Image docker.inter-iot.eu/inter-as-node-red:latest

Dependencies Flow repository and nodes repositories are integrated in INTER-FW. In principle, separate deployment of this components
is not needed. To achieve the multiuser, multiple instances, scalability, several instances of Node-RED should be deployed.
These instances are going to be managed by INTER-FW. For details about the deployment of different instances (running
flows) of Node-RED on the same host, see Deliverable 3.2.

Table 6: Summary table of INTER-Layer AS2AS component distribution

28
/49

https://git.inter-iot.eu/Inter-IoT/intermw
http://nexus.inter-iot.eu/repository/maven-public/eu/interiot/intermw/mw.api.rest/2.1.0-SNAPSHOT/mw.api.rest-2.1.0-20180620.152417-27.war
http://nexus.inter-iot.eu/repository/maven-public/eu/interiot/intermw/mw.api.rest/2.1.0-SNAPSHOT/mw.api.rest-2.1.0-20180620.152417-27.war
https://docs.inter-iot.eu/docs/intermw/latest/
https://docs.inter-iot.eu/docs/intermw/latest/
https://git.inter-iot.eu/Inter-IoT/interas
http://nexus.inter-iot.eu/repository/raw-releases/eu/interiot/as2as/as2as-dist/1.0.0/as2as-dist-1.0.0.zip
https://docs.inter-iot.eu/docs/as2as/latest/

D
3.3:

M
ethods

for
Interoperability

and
Integration

-Final

DS2DS

IPSM

Version 1.0.0

Source Code https://git.inter-iot.eu/Inter-IoT/ipsm-core

Binaries http://nexus.inter-iot.eu/repository/raw-releases/eu/interiot/ds2ds/ds2ds-dist/0.5.4/ds2ds-dist-0.5.4.zip

Documentation https://docs.inter-iot.eu/docs/ipsm/latest/

Docker Image Docker Compose with containers: wurstmeister/zookeeper, wurstmeister/kafka, docker-registry.inter-iot.eu/ipsm-core

Dependencies Internally dependent on: Apache Kafka, SQLite DB.

IPSM Dashboard

Version 1.0.0

Source Code https://git.inter-iot.eu/Inter-IoT/ipsm-dashboard-deployment

Binaries http://nexus.inter-iot.eu/repository/raw-releases/eu/interiot/ds2ds/ds2ds-dashboard-dist/1.1.3/ds2ds-dashboard-dist-1.1.
3.zip

Documentation https://docs.inter-iot.eu/docs/ipsm/latest/

Docker Image docker-registry.inter-iot.eu/ipsm-dashboard

Dependencies IPSM

Table 7: Summary table of INTER-Layer DS2DS component distribution

29
/49

https://git.inter-iot.eu/Inter-IoT/ipsm-core
http://nexus.inter-iot.eu/repository/raw-releases/eu/interiot/ds2ds/ds2ds-dist/0.5.4/ds2ds-dist-0.5.4.zip
https://docs.inter-iot.eu/docs/ipsm/latest/
https://git.inter-iot.eu/Inter-IoT/ipsm-dashboard-deployment
http://nexus.inter-iot.eu/repository/raw-releases/eu/interiot/ds2ds/ds2ds-dashboard-dist/1.1.3/ds2ds-dashboard-dist-1.1.3.zip
http://nexus.inter-iot.eu/repository/raw-releases/eu/interiot/ds2ds/ds2ds-dashboard-dist/1.1.3/ds2ds-dashboard-dist-1.1.3.zip
https://docs.inter-iot.eu/docs/ipsm/latest/

D3.3: Methods for Interoperability and Integration - Final

3 INTER-Layer Components

The content of this section provide a specific delta from the previous version of this deliverable (D3.2)
and has been done in concordance with the solutions provided there. Also, this delta has followed the
guidelines provided by architectural work packages and requirements (D2.3 and D4.3). This section
will present the improvement of the interoperability solutions presented at the beginning of WP3 and
the implementation status, as well as the steps to follow in the next stages of implementation.

3.1 D2D solution

In previous versions of this deliverable (D3.1 and D3.2) the architecture, components and function-
alities where described. Progress from the last deliverable has been focused on refining the exist-
ing Gateway components, adding new features (such as automatic reconnection, new management
commands, etc.), as well as adding more extensions to the physical and virtual parts of the gateway.
Some refactoring was also done in order to prepare for the packaging and installation of the gateway
distribution.

The most important progress has been achieved in the following areas: new device controller exten-
sions (Modbus, UDP), rules engine extension, discovery extension, storage and cache extensions
and the decoupling of all module interfaces. Decoupling all the module interfaces helped, for exam-
ple, in the creation of another connector implementation based on simple http request and MQTT
messages instead of a permanent WebSocket connection (relevant for a future physical gateway
implementation on mobile devices, where a permanent connection is difficult to maintain).

Work also focused on improving the UI integration with INTER-FW and creating an automatic com-
mand line gateway installer with extension for browsing support.

Development versions started from 0.0.1 up until 0.4.X, 0.5.X is the current development version
tagged as pre-release since this minor version is devoted only to clean-up, add license headers, etc.
First release candidate version is 1.0.0, next version, 1.1.0, will contain minor fixes and all licensing
information.

3.1.1 Release features

The first release of the D2D Gateway will include the following features:

• Decoupled Physical and Virtual Gateway

D3.3: Methods for Interoperability and Integration - Final

• Runs in any OS with a JVM

• Both are modular, consisting in core (mandatory) and extension (plugin) modules

• Core modules can also have different implementations (interface is decoupled)

• Physical features:

– Support of multiple simultaneous physical device controllers, access networks and proto-
cols

– Easily extendable with custom device controllers

– Support for sensors (passive and active) and actuators

– Managed remotely (through the virtual gateway) or with a CLI (Console extension)

– Support of multiple connector modules (Websocket, HTTP/REST, UDP Datagrams)

• Virtual features:

– Support of multiple IoT middleware platforms (only one active)

– Database extension for device data collection

– API extension for remote management and query

– Rules Engine extension for simple rules defined in SQL-like expressions and Javascript
instructions

– CLI for management (Console extension)

– Support of multiple connector modules (Websocket, HTTP/REST, UDP Datagrams)

3.1.2 Extensibility

The D2D Gateway was built from the beginning with a clear approach towards extensibility. This
approach followed OSGI recommendations for a clear decoupled and modular system. These exten-
sions can be developed to work in virtual and/or physical parts of the Gateway. Depending on the
case, the Gateway exports all available interfaces in the following packages: "commons", "commons-
virtual" and "commons-physical".

Typically, physical extensions are centered in providing support for other device access network and
protocols creating new device controllers while virtual extensions are centered in creating new mid-
dleware controllers to provide support for more IoT platforms. Common extensions provide utility for
the gateway management, configuration, etc.

3.1.3 Release and distribution plan

The following releases are planned for the D2D Gateway:

• Closing of WP3 activities. This is the main release of the Gateway and will include all the
features stated previously. This release will have version 1.0.0 but will not be ready for public
distribution, but for internal usage.

31 / 49

D3.3: Methods for Interoperability and Integration - Final

• License-ready release. This release will have version 1.1.0 and will contain all licensing modifi-
cations and files in order to be ready for public distribution. Any minor fix will also be included.

• Improved Release 1. Will include all fixes, features and improvements that come from the
feedback on the usage during the pilots deployment (WP6).

• Improved Release 2. This release will include any modifications and improvements from the
results of the technical evaluation (WP7).

3.2 N2N solution

As explained in previous versions of this deliverable (D3.1 and D3.2), the network interoperability
solution is based in two approaches. Firstly, the more physical approach based in Software Defined
Radio is being developed to allow bespoke integration in this developing area. And secondly, a more
data link and network oriented solution created using Software Defined Network architecture and
components.

Regarding SDN, in the first phase, at the time of D3.2 submission, the installation, configuration and
modification of modules for the SDN network solution where already implemented. The second phase
of the work has focused on security and testing. Moreover, the design of the UI for communication
with the controller has been improved to show the data and information of the network in a more
desirable format. Additionally, the interaction between virtual gateway and SDN has been further
refined in order to be applied to different use cases based on virtualization.

The improvements and testing performed over the Network solution include:

• Security analysis to implement solutions to preserve the privacy through the channel (imple-
menting TLS)

• Inclusion of monitor modules to secure the operations within the controller (analysis tools as
Snort)

• Design of scenario to test the performance and the KPIs designed for the last phases of the
project

Finally, different scenarios have been defined in order to obtain the results of the KPIs defined at the
beginning of the evaluation process.

We must keep in mind that the first stage of the development process has been concluded but, future
iterations for review and improvement of the solution will be performed, here we present the first
release features that network solution provide to solve the interoperability problem.

Regarding SDR, initial work addressed development of a bi-directional packet based OFDM sys-
tem. Interfaces were developed for GNU radio modules to pipe Ethernet traffic in and out. The
second phase focused on increased data throughput, changing transmit and receive frequencies and
reducing dependence on GNU radio modules so the full solution can be deployed on Zync FPGA
processor. This process is designed to increase modularization, data throughput and size, weight
and power (SWaP). A key part of the COFDM system is the forward error correction code FEC. We
have reviewed and are in the selection process of forward error correction (FEC) codes. The primary
candidates under review are Polar, Turbo, and LDPC. Development of a full SDR is beyond the scope

32 / 49

D3.3: Methods for Interoperability and Integration - Final

of the INTER-IoT project. As such, documentation will reflect the work done. However, should future
users of INTER-IoT wish to utilize their own SDR solutions, entry into the gateway will be feasible.

3.2.1 Release features

List of feature of the SDR network solution:

• Bi-directional packet based OFDM link

• Customizable frequency setting

The SDR component of INTER-IoT will offer an additional access point to the INTER-IoT gateway.

List of features of the SDN network solution:

• Network management

• Topology discovery

• QoS application

• Network status monitoring

When deploying an INTER-IoT solution, components such as devices, middlewares and/or INTER-
IoT gateways can be inter-connected with SDN. SDN offers a centralized point to control and adapt
the network. The network component of INTER-IoT provides a set of tools to configure and adapt the
SDN network layer according to the requirements of any deployment.

• Virtual INTER-IoT customized switches can be monitored and configured. The interface pro-
vides the ability to add/delete/modify each flow entry. Statistics can be gathered for the switches,
providing information and statistics about the flows, ports, or table of flows.

• The N2N layer also provides a visualization tool in order to visualize the entire deployment.
Combined with the previous point, these two features ensure a full control over the virtual net-
work.

• The network layer provides a QoS API in order to satisfy the potential QoS requirements of
the deployment. When using the QoS API of INTER-IoT, the developer can add/delete/monitor
rules, queues and meters. Rules determine whether the specified traffic is assigned to a certain
queue or meter. Queues are designed to provide a guarantee on the rate of flow of packets
placed in the queue. Different queues at different rates can be used to prioritize specific traffic.
Meters complement the queue framework already in place by allowing for the rate-monitoring
of traffic prior to output.

3.2.2 Extensibility

Network extensibility typically refers to the ability to include new components such as new hard-
ware appliances such as hubs, switches, routers, etc. or services such as routing, firewalling, load
balancing and so on, into the network, allocating these new elements easily, without affecting the
performance and good operation of the network. In case of software defined network this approach
is closer to the introduction of new services as the virtualization of the functions typically done in
specialized hardware is performed together with the programmability of the network. Extensibility

33 / 49

D3.3: Methods for Interoperability and Integration - Final

normally involves multiple vendors and deployment architectures. So the ability to integrate the so-
lution with these vendors provide advantages in comparison with traditional networks. Moreover,
it provides a single point to manage multiple network heterogeneous devices, creating the desired
interoperability. To have in consideration this growth of the network; for one side to include new
services, enlarging its features and, for the other side, to extend the network cover of new different
nodes, several approaches have been studied.

Implementing extensibility in the INTER-IoT network solution is something that was included already
with the deployment of the SDN architecture, as this architecture allows and facilitates the inclusion
of new network services and or nodes.

• Custom creation of network up to many bridges thanks to OVS.

• Extensibility based in the insertion of new types of switches.

• Extensibility based in the interconnection with other controllers.

• Extensibility based in the possibility of develop more network application using, controller as a
base.

3.2.3 Release and distribution plan

As opposed to the developed modules belonging to the other layers, the network solution is not
dockerized as must create the infrastructure where the other modules can run and communicate.
The SDN controller can be isolated in a container, but in this case, due to scalability, extensibility and
customization requirements we decided to not use containers. For that reason, the virtual switch and
the controller must be installed independently (also they are independent in case you want to choose
another switch for the data plane), and run both switch and controller with its respective applications.
To facilitate this, a script for downloading, run and configuration of the solution as been implemented.

Finally, the network solution is going to be released open source under Apache 2.0 license. The
following releases are planned:

• Closing WP3 activities - full implementation of core functionalities as planned for the execution
of T3.2. Internal release, available to project partners and open call projects.

• License-ready release - containing all licensing information and ready for public distribution.

3.3 MW2MW solution

The MW2MW solution is described in D3.1 and D3.2. While the basic functionality to support the
INTER-Health pilot and kick-start of the open call projects was provided at the time of D3.2 submis-
sion, the full release is provided at the time of submitting of D3.3. In addition to those features, some
further refinements have been performed as result of feedback from pilots ant evaluation tasks. We
refer to this M30 release as MW2MW V2 in the text that follows. The release is tagged as V2 as it
contains substantial advancement from the previous version as well as some changes that are not
backward-compatible.

34 / 49

D3.3: Methods for Interoperability and Integration - Final

In the Services section the device registry has been extended in order to store all relevant device
types and meta-data. This component also orchestrates and executes the new Discovery mechanism
that populates and maintains the device registry by obtaining devices information through Bridges.

Device Actuation has been implemented. It allows performance of actuation actions on IoT Devices.

As a result of feedback from the implementation of pilots and additional internal evaluation, we con-
cluded that for most usage scenarios, the full exposure of JSON-LD structures in the REST API is too
demanding for most developers. Therefore, INTERMW now offers two REST API interfaces. The ba-
sic interface that supports most of the usage scenarios abstracts the usage of JSON-LD and allows
interaction with the INTERMW through simple REST API calls. On the other hand, in order to exploit
the full potential of the system, a separate REST API endpoint that supports JSON-LD is provided.

A REST API callback has been provided. In the first phase of the project the results had to be
obtained through a HTTP pull call, while now both approaches are implemented: HTTP pull and
push. This allows adaptation to specific customer needs (performance, network topology).

Bridges for the following platforms have been either newly implemented or further developed: FI-
WARE, WSO2, Seams2. They are mostly related to use-case scenarios in the INTER-LogP Pilot.
Some fixes to UniversAAL and BodyCloud bridges used in the INTER-Health scenario have been
delivered also.

As what regards bridge development in Open Calls, they will be reported in relevant WP6 reports.
Support has been provided to the following projects: INTER-OM2M, SensiNact, and Semantic Mid-
dleware (ITIA-CNR).

The provision of documentation, examples and testing procedures for the development of Bridges
have been identified as a critical task in order to achieve a wide coverage of connected platforms.
For this reason, through continuous support to Open Calls and Pilots developers, the documentation
and code has been optimized in order to help bridge developers as much as possible.

INTERMW is provided as Docker image, in-line with cross-layer efforts to unify the deployment archi-
tecture.

3.3.1 Release features

The V2 release provides core functionalities related to facilitation of interoperability among IoT Middle-
ware platforms, as well as the provision of a common abstraction layer to provide access to platform
features and information.

The MW2MW V2 release provides the flowing features:

• Common ontology. INTERMW uses the common INTER-IoT ontology (GOIoTP) to represent
all messages routed through the system.

• Middleware abstraction. Common abstraction layer unifies the view on all interconnected plat-
forms, devices and services.

– Device registry. The MW2MW solution maintains a registry of all devices maintained by
platforms attached to it. The registry contains meta-information about devices. This al-
lows the implementation of an efficient querying mechanism and seamless operations and
implementation of additional services across platforms.

35 / 49

D3.3: Methods for Interoperability and Integration - Final

– Discovery mechanism. Maintenance of the Device registry is not a trivial task, as there
are several approaches utilized by IoT platforms to provide meta-data about attached de-
vices. MW2MW implements several discovery strategies that can be used to populate the
registry: full-query at regular time intervals, difference query at regular time intervals or,
with more advances IoT platform implementations registry updates with callbacks.

– Actuation and Observations. MW2MW supports actuation and subscription to observa-
tions as core IoT platform functionalities.

– Virtual devices management. Virtual devices management (create, update, delete) is im-
plemented for platforms that support this functionality.

• MW2MW REST API. Implementation of a REST API interface further extends the usability of
this abstraction layer by exposing this functionality through a widely used technology.

– Results delivery. Clients can use either a pull or push (URL callback) strategy to get results
from the MW2MW layer. The set of functionality provided is same, the choice may depend
on client’s technical and organisational constraints, like the network topology, availability
of REST servers or security policy.

– Data format. Requests and results may be provided in either a simple JSON format, that
fulfils the most of the basic user requirements, or in the more complex JSON-LD format
that also offers a richer set of functions and full semantic interoperability.

• MW2MW open architecture for the development of IoT platform bridges.

– Common Java interface. MW2MW provides a bridge interface that defines common bridge
features that have to be implemented: subscriptions, actuations, virtual devices manage-
ment and discovery. Java annotations are used in combination Java reflection mechanisms
in order to dynamically load bridges at runtime.

– Syntactic conversion. One important step in bridges development is the implementation of
a syntactic translator to/from platform-specific format and RDF. Generic syntactic transla-
tors with examples and some common formats are provided, but in principle a new trans-
lator should be provided for each IoT platform type.

– Semantic translation. Semantic translation is performed by the IPSM (described in Sec-
tion 3.5) module that is bundled with MW2MW deployments.

– Unit and integration tests. A series of unit and integration tests has been provided in order
to facilitate the development of bridges. A series of test API calls can be generated in
order to test bridge implementations.

– Examples and documentation. As described in Section 2.2 documentation and examples
are provided for INTERMW deployments, REST API usage and further developments.

• Security. Security has been implemented at two levels:

– Integration with API/identity managers. Authentication and authorization features are pro-
vided through integration with the REST API Manager and Identity Manager.

– Platform security. Platform security is a responsibility of bridge developers. In principle,
authentication information can be passed through platform registration messages.

36 / 49

D3.3: Methods for Interoperability and Integration - Final

• Dockerized deployment. The MW2MW core, ParliamentTM Triple Store and RabbitMQ can be
deployed through a single Compose script. This facilitates the deployment and takes care about
correct dependencies among components. An additional compose script for the deployment
of both IPSM and MW2MW is provided as well to support simultaneous deployment of both
INTER-Layer components.

3.3.2 Extensibility

The main extensibility feature of MW2MW is the development of bridges for new IoT platform types.
For this purpose, particular attention has been provided to the definition of unit and integration tests,
testing datasets and other validation tools. Detailed development documentation is provided as well.

MW2MW has a build-in abstraction of message broker functionalities, so that a message broker can
be replaced in case of customer-specific requirements. However, testing and evaluation has been
performed only with RabbitMQ.

The system also supports the addition of new service implementations. For example, functionalities
like roaming of devices or updating virtual devices among different IoT platforms could be developed.

3.3.3 Release and distribution plan

The MW2MW component is going to be released open source under the Apache 2.0 license. This
however, does not prevent bridge and service developers from releasing their modules under different
licensing schemas to accommodate their particular business models.

The following MW2MW releases have been planned:

• Closing of WP3 activities. As stated previously, we refer to the release in M30 as V2 of MW2MW.
This is the main feature release and provides a full implementation of MW2MW core functional-
ities as planned for the execution of task T3.3. This release is internal, thus available to project
partners and Open Call projects.

• License-ready release. This release will contain all licensing information and will be ready for
public distribution.

• Integration-improved release. This release will take into account lessons learned during the
Integration and pilot deployment tasks (WP6).

• Evaluation-improved release. This release will take into account the results of the technical
evaluation results (D7.2) and related improvements to meet the required technical standards.

3.4 AS2AS solution

The architecture, components, technologies and procedures that establish the interoperability solu-
tion were described in deliverables D3.1 and D3.2. The interoperability between services and appli-
cations is based on the Flow Based Programming paradigm. An special effort was made to define
the steps needed by developers to adapt their IoT platform services in order to be used by the core

37 / 49

D3.3: Methods for Interoperability and Integration - Final

solution. In addition, examples of accessible services and interoperability flows between services of
IoT platforms were explained.

The progress since the last deliverable implies a final version of Flow Repository and Node Reposi-
tory. The aim is to provide new functionalities to store, register, describe and access to the developed
nodes and designed flows. Offering users the access to a catalogue of IoT Platform services and
composed services. New internal functional nodes have been created to provide facilities for in-
teroperability between services. Furthermore, an improvement in the catalog of services available
including new nodes and flows that involve new platforms in order to achieve the KPI defined at the
beginning of the evaluation process.

The other relevant improvement since D3.2 is the integration of the interoperability solution with
INTER-FW. For that reason, to achieve success in the integration process, several elements have
been developed. Firstly, layer management mechanisms to allow the management of running in-
stances, including interaction with APIs, Docker and Node-RED. Secondly, the integration of the node
repository and the flow repository to facilitate the functionalities of registry, cataloging and discovery.
Thirdly, offer to users the elements in a graphical way, to develop, compose and reuse their own ser-
vices and the created composed services inside the Framework. Finally, develop a full documentation
about this interoperability solution.

3.4.1 Release features

The current AS2AS release provides the following features in order to provide a layer of abstraction to
perform the interoperability between IoT platform services. As indicated in previous deliverables the
main elements of the interoperability solution are the nodes and the flows. The internal components
are focused on the access, design and interaction with these key elements.

Components:

• Modeller: An available graphical environment to design the service composition. There is an
instance of the GUI available for each instance of the core interoperability solution. It is a web
environment that allows the graphical creation of flows through the nodes that are available for
the instance. Once the design process is complete, the flow is stored in a JSON file.

• Orchestrator: The element in charge of validating and executing the JSON file designed by
the modeller. It is responsible to make the calls to services and send messages between the
nodes. It is the component in charge of keep running the flow and it will send an error message
in case there is a problem.

• Node Registry: Component to store in a registry the description, configuration and files that
define and implement the access to an IoT Platform Services.

• Flow Registry: Component to store in a registry the description, configuration and the JSON
file that define and implement an interoperability flow.

• Node Repository: It provides access to a catalogue of available services of the IoT platforms in
order to provide the access to a determinate service through a running instance of the interop-
erability solution.

• Flow repository: It provides access to an available catalog of the flows created, in order to
deploy new instances and reuse it.

38 / 49

D3.3: Methods for Interoperability and Integration - Final

• Instance Manager: Manage the available instances of the solution of each user. It can start,
stop and interact with each running instance of the solution. It manage the relation with the API
of the core solution and the Docker containers.

Nodes:

• IoT Platforms Nodes: They are composed by several HTML and JS files that include the code
to access to functionalities of the IoT platform service and provide a graphical interface to
configure the access to the service.

• Translation nodes: These nodes offer functionalities to perform the translation the messages
that are going to go through the IoT Platform services of different platforms. Examples of tasks
that perform the node are like syntactic translation, summarize the information or readapt the
information to a determinate format. It can be generic, for example a function to parse JSON
elements, or specific, for example, adapt a JSON element in Orion format to a plain text format.

• Functional Nodes: These nodes execute internally a set of functionalities to facilitate the inter-
operability between nodes. For example, split information, counter, call to a process, provide
order in the execution, listen in a determinate URL waiting for information, create API calls with
a determinate body, show information in a dashboard, show information in a map, etc.

Flows:

• Predefined Flows: Flows created by users and developers that are stored and can be re-used
in another context or domain, with minimal changes.

• API Flows: Flow that starts using an HTTP request and ends with an HTTP response. In order
to be able to make calls to the flow using the API and receive the response in the body. Using
this flow means it is not necessary to use the graphical UI to work with the flow, because you
can introduce parameters in the call.

Support functions:

• Semantic Translation: A set of nodes dedicated for interaction with IPSM is offered. They allow
the user to send messages to any instance of IPSM for translation, and receive translated
messages from IPSM. The assumption is that input and output messages have to be in RDF,
specifically in JSON-LD message format.

• Swagger adaptation: Swagger nodes allow the user to manage an API description, save and
use it, without knowing the code to create it. These nodes allow the user to create an API def-
inition, by defining methods and related parameters, responses and supported MIME through
a specific node GUI. In the same time, it is possible to test the created API definition. Further-
more, it allows the user to download an API definition and use it. The node classifies the API in
different resources and for each resource it is possible to select one of the available methods
and test it. The parameters are provided to the specific method through the support of other
nodes.

3.4.2 Extensibility

The main elements that facilitate the extension of this solution are the creation of new nodes and
flows. Because, the nodes facilitate the use of new services and IoT applications belonging to differ-

39 / 49

D3.3: Methods for Interoperability and Integration - Final

ent platforms and the flows allow the creation of new composite services between IoT services and
applications.

A service is represented by one or several nodes that access its functionalities. The creation of new
nodes is done following the steps indicated in the documentation of this layer, which also appears
in deliverables 3.1 and 3.2. These documents indicate how to analyze the services and create the
wrapping that facilitates access to the services by the interoperability environment. Using this pro-
cess, developers can create pairs of HTML and JavaScript files. The HTML files define the graphical
interface to access to the service, properties and help information. The JavaScript files implement the
functionalities. These files represent the service and must be stored somewhere. For that reason,
services must be registered in the Node Repository to access to their properties and be available
to interact with other services. In addition, the integration of this component in INTER-FW is impor-
tant from the point of view of extensibility, because it facilitate the registration of new platforms and
services in the interoperability solution.

A flow is a JSON file that represent the interaction of several services and functions to create a new
IoT composite service. The creation of flows, is done using the designer component, a browser-based
editor that facilitates the creation of new composite services. The execution of flow by the orchestrator
generates the JSON file. The documentation explain the steps to generate new composed services,
providing examples and recommendations. These flows can be reused and adapted to be used in
other domains or locations. The flows are stored and described in the Flow repository. In addition,
the integration of this component in INTER-FW facilitate the access to the new services created and
its information, the easy execution and the possibility of reuse.

The offered nodes to facilitate the composition offer advantages from the point of view of the exten-
sion of the solution. For example, nodes that convert formats or adapt the information offered by a
determinate service. These nodes are available to users and programmers to facilitate the interaction
between the services in order to create new flows in an easy way. Swagger nodes can help to support
the extensibility of the solution speeding-up the porting of services and applications within the core
solution thanks to the knowledge of the already created API definition.

Finally, the integration of the Instance Manager with INTER-FW facilitates the deployment of new
running instances and the management of the available instances. This facilitate the extensibility,
because it is an easy way to start to create new composed services.

3.4.3 Release and distribution plan

The AS2AS open source product is going to be released under the Apache 2.0 license. It is a per-
missive license whose main conditions require preservation of copyright and license notices. Con-
tributors provide an express grant of patent rights. Licensed works, modifications, and larger works
may be distributed under different terms and without source code.

The following releases are planned:

• Closing of WP3 activities. Full implementation of core functionalities as planned for the execu-
tion of tasks T3.4 and it has been integrated in INTER-FW. It offers an internal release, available
to project partners and open call projects.

• License-ready release. It contains all licensing information and it is ready for public distribution.

40 / 49

D3.3: Methods for Interoperability and Integration - Final

3.5 DS2DS solution

In previous versions of this deliverable (D3.1 and D3.2) the architecture, components, functionalities
and APIs were described. This description is up-to-date. Since D3.2 the work has been focused on
further testing and fixing bugs / adding extensions in the semantic translation functionality. This has
been done in line with creation of new alignments for pilot applications and for open call projects. As
a result, the set of prepared alignments is available as sample data for evaluating and testing IPSM.

Besides previously supported channels-based interface for semantic translation (Apache Kafka com-
munication infrastructure using publish-subscribe mode), additional REST-based interface has been
added to perform translations in synchronous mode. Request message contains RDF graph to be
translated as a sequence of alignment identifiers that should be applied to the graph. Moreover,
administrative interfaces for logging configuration have been added.

Integration with external functions called from a transformation included in an alignment cell has
been further tested. Work was also been devoted to extending and updating complimentary IPSM
Dashboard web application that provides a user-friendly interface for IPSM configuration and testing.
The application supports semantic translation with custom sequence of alignments.

A set of installation instructions has been published for IPSM Docker deployment. Additional Docker
deployment for IPSM Dashboard application has been prepared.

3.5.1 Release features

List of features for the first IPSM release:

• Semantic translation engine with alignments compiler

• REST API for configuration – alignments and channel management

• Semantic translation in publish-subscribe mode – translation channels defined in communica-
tion infrastructure that have topics for consuming and publishing messages with RDF graph;
input messages in JSON-LD format with payload graph that will be translated, output message
in JSON-LD

• REST API for synchronous semantic translation based on a request with RDF graph and se-
quence of alignment identifiers

• Compatibility with IPSM Alignment Format - alignments need to be expressed in the proposed
format (compatible with Alignment API Format) to be consumed by IPSM

• Support for external functions execution from transformations defined in the alignment

• Documentation and a set of sample alignments

• Dockerized deployment with single Docker Compose script for IPSM

• Docker deployment of IPSM Dashboard application

41 / 49

D3.3: Methods for Interoperability and Integration - Final

3.5.2 Extensibility

IPSM is an independent component for performing semantic translation based on alignments. The
alignment compiling and application functionalities are independent from the deployment environment
and can be configured with any alignments in IPSM Alignment Format. Therefore, extending of IPSM
applicability can be done by preparing new alignments. As a result, more translation scenarios can
be supported. Note that, alignments consist of cells that can be included/excluded from alignment
cells execution sequence in a specific order. As a result, one can define alignments that are reusable.

IPSM supports calling of custom functions as part of a transformation defined in an alignment cell.
Consequently, another method to extend IPSM is to implement own libraries with functions that should
be added to IPSM execution classpath to be visible to alignments applicator.

Finally, the IPSM exposes a REST API so it can be easily used as a component by other applications.

3.5.3 Release and distribution plan

IPSM is going to be released open source under Apache 2.0 license. The following releases are
planned:

• Closing WP3 activities - full implementation of core functionalities as planned for the execution
of T3.5. Internal release, available to project partners and open call projects.

• License-ready release - containing all licensing information and ready for public distribution.

• Integration-improved release - taking into account lessons learned during the Integration and
pilot deployment tasks (WP6).

• Evaluation-improved release - taking into account the results of the technical evaluation results
(D7.2) and related improvements to meet the required technical standards.

3.6 Cross-Layer solution

Once layered components reached a satisfactory level of maturity, the next step was the identification
of common Cross-Layer issues and interaction among layers. Cross-Layer is focused in the aspects
that are left out of the scope of a specific layer. These aspects can be defined as transverse elements
that affects more than one layer and can be divided in three main areas:

• Layer security integration

• Layer Interactions

• Virtualization and Clusterization of layers

Deliverable 3.2 had the purpose of showing the analysis, design and documentation of the work
planned for each area. For that reason, the progress since D3.2 consists in the implementation and
integration of the work described in that deliverable.

The following summary list of features correspond to the elements described in Deliverable 3.2, that
currently are implemented:

42 / 49

D3.3: Methods for Interoperability and Integration - Final

3.6.1 Layer security integration

The main objective was to develop a single security entity for user authentication, access control
and identity management as well as securing the access to each layer API under this authentication
system plus data encryption. This work has been done together with WP4 efforts since this process
covers the whole INTER-API, where each layer exposes its own API.

This solution has been achieved using WSO2’s Identity Server and WSO2 API Manager through
XACML to define the policies. These policies can cover a variety of different security use cases, for
example, filtering an API call by parameters and granting access to specific roles.

3.6.2 Layer Interactions

After the study and definition of the interesting interactions existent between the layers, these are the
features developed:

• D2D <> N2N: SDN module for the gateway has been developed. Although it won’t be included
under the first release.

• D2D <> MW2MW: Through AS2AS nodes (see below). No dedicated component has been
developed.

• MW2MW <> DS2DS: IPSM is the component that provides semantic translation in MW2MW.

• D2D <> AS2AS: Creation of a set of nodes compatible with the AS2AS environment to perform
control and management of IoT Devices. The functions supported are: Device Status, Device
Start, Device Stop, Read device, Write device.

• MW2MW <> AS2AS: Implementation of a MW2MW subscription node. It provides a series of
observations from a set of sensors. It can provide information to consumer nodes, mainly, the
IoT platform services.

• AS2AS <> DS2DS: It offer a set of nodes dedicated to interaction with IPSM. They allow to
send messages to any instance of IPSM for translation, and receive translated messages from
IPSM.

3.6.3 Virtualization and Clusterization of layers

Virtualization of the components of each layer simplifies a lot their deployment. Furthermore, clusteri-
zation offers an access point to facilitate a centralized management of the virtualized components.The
technology selected to perform this virtualization is Docker, through the use of its containers. The
layers using this tool involve: D2D, MW2MW, AS2AS and DS2DS since network restrictions of Docker
limits the functionalities of an SDN controller for N2N. Those Docker deployments can be consulted
in Tables 3 to 7. The main features offered are:

• Dockerization of D2D, MW2MW, AS2AS and DS2DS components.

• Creation of Docker compose files to define and run multi-container Docker applications that in-
cludes all the dockerized components that belong to a layer. The purpose is to offer a complete
and functional deployment of all the elements of a layer.

43 / 49

D3.3: Methods for Interoperability and Integration - Final

• Private Docker registry to store the INTER-IoT Docker images.

• Integration of Docker tools to manage the containers: Docker Swarm and Portainer.

3.6.4 Cross-Layer as a transversal component

Cross-Layer is a transversal component supportive of the other layers, therefore, the main objective
is not to provide mechanisms to facilitate the extensibility of the solution, the purpose is to take care
of those needs that are not contemplated within the focus of action of the other layers.

Moreover, as Cross-Layer is not a component itself, the release and distribution plan is given by the
release specification of each layer, tightly coupled to its characteristic. Then, when a new version
of any of the aforementioned layer is delivered, means that, additionally, a previous update of it’s
cross-layer features has been performed.

44 / 49

D3.3: Methods for Interoperability and Integration - Final

4 Ethics

4.1 Introduction

Ethics is a central consideration to all INTER-IoT planning and development. As requested at the
interim review, an ethical advisory board has been established. This board, within INTER-IoT, contin-
uously reviews ethical issues. The aim of the committee is to ensure that ethical considerations and
issues are addressed in the conduct of the research and development work undertaken within the
project. The committee seeks to support and encourage the process of ethically conducted research
to maintain the safety and well-being of participants and researchers to promote ethical values.

4.2 Ethics and INTER-Layer

INTER-Layer is designed to enable the interoperability of existing IoT systems at different levels.
Ethical considerations must be taken into account from two different perspectives: From the systems
being connected, and from the inner workings of each layer that provides interoperability. INTER-
Layer cannot be responsible for the proper ethical handling of data and security within each connected
IoT system, but it can and must assure that such handling in each system will not diminish their ethical
considerations by connecting to INTER-Layer. In addition, the inner logic of the components in each
layer must comply with the proper ethical handling of data and security, as per the requirements and
principles enumerated in the following sections.

4.2.1 Data types

Primary focus of the ethical review of data management focuses on personal data and sensitive
personal data. Personal data means data which relate to a living individual who can be identified –

(a) from those data

(b) from those data and other information which is in the possession of, or is likely to come into the
possession of, the data controller, and includes any expression of opinion about the individual
and any indication of the intentions of the data controller or any other person in respect of the
individual.

Sensitive personal data means personal data consisting of information as to -

(a) the racial or ethnic origin of the data subject,

D3.3: Methods for Interoperability and Integration - Final

(b) his political opinions,

(c) his religious beliefs or other beliefs of a similar nature,

(d) whether he is a member of a trade union,

(e) his physical or mental health or condition,

(f) his sexual life,

(g) the commission or alleged commission by him of any offense, or

(h) any proceedings for any offence committed or alleged to have been committed by him, the
disposal of such proceedings or the sentence of any court in such proceedings.

It is possible that INTER-IoT and INTER-Layer will be used during processing of these types of data,
so appropriate controls have to be built into the layer components to enable systems to do this eth-
ically by conforming to the General Data Protection Regulation. This is achieved by assuring the
proper security of the communications and data handling within the components of each layer and
across layers, as per the security considerations described in previous sections, encompassing the
common aspects of integrity, privacy, authentication, authorization of information systems, and the
other, more "IoT-specific" ones of pseudonymity, autonomous communication, and semantic query-
ing.

4.2.2 Requirements for ethical data processing

The GDPR requires adherence to 8 principles:

1. Personal data shall be fairly and lawfully processed as defined in the data protection act.

2. Personal data shall be obtained only for one or more specified and lawful purposes, and shall
not be further processed in any manner incompatible with that purpose or those purposes.

3. Personal data shall be adequate, relevant and not excessive in relation to the purpose or pur-
poses for which they are processed.

4. Personal data shall be accurate and, where necessary, kept up to date.

5. Personal data processed for any purpose or purposes shall not be kept for longer than is nec-
essary for that purpose or those purposes.

6. Personal data shall be processed in accordance with the rights of data subjects under the data
protection act.

7. Appropriate technical and organisational measures shall be taken against unauthorised or un-
lawful processing of personal data and against accidental loss or destruction of, or damage to,
personal data.

8. Personal data shall not be transferred to a country or territory outside the European Economic
Area unless that country or territory ensures an adequate level of protection for the rights and
freedoms of data subjects in relation to the processing of personal data.

During the process of implementation of each component the developers have been made aware
of the above principles, to not introduce unwanted features, workarounds, hot fixes or "hacks" that
interfere with them, even if in a temporary fashion, as long as there is the chance that these are

46 / 49

D3.3: Methods for Interoperability and Integration - Final

utilized in the pilots real-life deployments. Developers of each module, component and feature of
the layers have committed to develop the software so that it does not interpret, handle and/or store
the data payload being transferred within the system, so they do not hinder the above principles.
Whenever data is indeed interpreted, handled or stored, it only refers, represents or deals with entities
that are not individuals (e.g. Sensor devices) and that this data cannot be used to extract or infer
personal data about individuals.

47 / 49

D3.3: Methods for Interoperability and Integration - Final

5 Conclusions

INTER-IoT envisions a true Internet-of-Things without silos and barriers at any level. From a sci-
entific and engineering perspective, INTER-IoT aims at solutions that allow any device, platform,
middleware and application to interact with any other counterpart regardless of their design, architec-
ture or implementation differences. WP3 gathers these integrated mechanisms in a coherent generic
and viable solution for interoperability of IoT.

At the core of this solution, there are two concepts that make the solution viable:

• Interoperability in the virtual world is easier than in its physical counterpart: the physical com-
ponents should be minimized to a minimum required moving much of functionality to the virtual
one.

• Extensibility is the only way to ensure compatibility of future IoT systems with legacy and older
version systems: physical and virtual components should be able to be added/removed even if
their design, architecture and implementation is not yet known.

Based on these fundamental principles, WP3 delivers the following achievements:

• Devices with different network interfaces or other physical functionalities can interact via exten-
sible managed gateways. Each gateway has a minimal physical part and a managed virtual
remote counterpart.

• Global scalability of IoT is ensured with software-defined radio and software-defined networks.
Though zero configuration is supported, QoS tuning is possible to allow differentiated services.

• Facilitation of interoperability among IoT Middleware platforms, as well as the provision of a
common abstraction layer to provide access to platform’s features and information.

• Similar features are ported to application and services to ensure interoperability among hetero-
geneous IoT Platform applications and services.

• A common interpretation of data and information among different IoT systems and heteroge-
neous data sources, achieving semantic interoperability.

Finally, the above mentioned achievements are linked together thanks to the cross-layer solution pro-
vided by WP3. This solution enables interaction between layers, but also security and virtualization
through docker to simplify deployments and re-usability. Among all layers, ethics is also considered.
INTER-IoT addresses ethical issues in this deliverable and aligns with the EU General Data Protec-
tion Regulation (GDPR).

Overall, this document reports the final advancements leading to the release of INTER-Layer com-
ponents. This document demonstrates that the WP3 is ready for open-source release and that all

D3.3: Methods for Interoperability and Integration - Final

INTER-Layer components have reached a state where they can be separately or jointly tested, re-
leased, and used. All different aspects of interoperability are addressed, as each layer supports
interoperability of its components, and all layers inter-operate smoothly with help of the the cross-
layer solution and been accessed and managed from a single point that INTER-FW offers. From a
technical point of view, WP3 adopted an iterative approach together with all other work packages,
leading to seamless integration with all other INTER-IoT aspects of the project, such as the RA
implementation carried out in tasks 4.1 and 4.2, the unification of the API for easy accessibility and
integration with other solutions, the INTER-IoT framework, the elaboration of a methodology to create
interoperability between IoT solutions and the use case testing performed in WP6.

This deliverable is the third version of a series of three (i.e. preceded by D3.1 and D3.2). For that
reason, from now on, all the improvements perform over the components developed in WP3 will be
tracked through the official INTER-IoT web documentation.

49 / 49

	Executive Summary
	List of Authors
	Change control datasheet
	List of Figures
	List of tables
	Acronyms
	1 Introduction
	1.1 Progress since D3.2
	1.2 Relation with other Work Packages
	1.2.1 Relation with WP4
	1.2.2 Relation with WP5
	1.2.3 Relation with WP6
	1.2.4 Relation with WP7
	1.2.5 Relation with WP8

	2 Software Distribution and Documentation
	2.1 Source code
	2.2 Documentation
	2.3 Binary distribution
	2.4 Release Summary

	3 INTER-Layer Components
	3.1 D2D solution
	3.1.1 Release features
	3.1.2 Extensibility
	3.1.3 Release and distribution plan

	3.2 N2N solution
	3.2.1 Release features
	3.2.2 Extensibility
	3.2.3 Release and distribution plan

	3.3 MW2MW solution
	3.3.1 Release features
	3.3.2 Extensibility
	3.3.3 Release and distribution plan

	3.4 AS2AS solution
	3.4.1 Release features
	3.4.2 Extensibility
	3.4.3 Release and distribution plan

	3.5 DS2DS solution
	3.5.1 Release features
	3.5.2 Extensibility
	3.5.3 Release and distribution plan

	3.6 Cross-Layer solution
	3.6.1 Layer security integration
	3.6.2 Layer Interactions
	3.6.3 Virtualization and Clusterization of layers
	3.6.4 Cross-Layer as a transversal component

	4 Ethics
	4.1 Introduction
	4.2 Ethics and INTER-Layer
	4.2.1 Data types
	4.2.2 Requirements for ethical data processing

	5 Conclusions

