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INTER-IoT 

  

INTER-IoT aim is to design, implement and test a framework that will allow 

interoperability among different Internet of Things (IoT) platforms. 

Most current existing IoT developments are based on “closed-loop” concepts, focusing 

on a specific purpose and being isolated from the rest of the world. Integration between 

heterogeneous elements is usually done at device or network level, and is just limited to 

data gathering. Our belief is that a multi-layered approach integrating different IoT 

devices, networks, platforms, services and applications will allow a global continuum of 

data, infrastructures and services that can will enable different IoT scenarios. As well, 

reuse and integration of existing and future IoT systems will be facilitated, creating a 

defacto global ecosystem of interoperable IoT platforms. 

In the absence of global IoT standards, the INTER-IoT results will allow any company to 

design and develop new IoT devices or services, leveraging on the existing ecosystem, 

and bring get them to market quickly. 

INTER-IoT has been financed by the Horizon 2020 initiative of the European 

Commission, contract 687283. 
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This document contains material, which is the copyright of certain INTER-IoT consortium parties, and may not 

be reproduced or copied without permission.  
The information contained in this document is the proprietary confidential information of the INTER-IoT 

consortium (including the Commission Services) and may not be disclosed except in accordance with the 

consortium agreement.  
The commercial use of any information contained in this document may require a license from the proprietor 

of that information.  
Neither the project consortium as a whole nor a certain party of the consortium warrant that the information 

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no 

liability for loss or damage suffered by any person using this information.  
The information in this document is subject to change without notice. 
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Executive Summary 

The following document is the deliverable D4.1 Initial Reference IoT Platform Meta-Architecture and 

Meta Data Model of the INTER-IoT Project. It officially reports on the activity of the first six months 

in the Work Package 4 (Interoperability Framework) of the project. However, in practise, this 

document contains also knowledge and outcomes generated in Work Package 3 (Layer 

Interoperability) activities, due to the technical software engineering nature of the document. 

D4.1 is the formal output of the WP4 tasks T4.1 Design of a Reference Meta-Architecture for 

Interoperable IoT Platforms and T4.2 Design of a Reference Meta-Data Model for Interoperable IoT 

Platforms. It also coincides with project milestone MS4 Initial Architecture Release, which is 

completely specified between documents D3.1 and D4.1. 

This document is divided in 7 sections. Section 1 presents an initial introduction with the project 

purpose and background.  

Section 2 describes the approach followed in the works related to this report, mainly, but not 

exclusively, based on the IOT-A proposed approach for creating reference architectures and 

following a similar approach to describe the reference model and other perspectives and views 

relevant in this stage of the project.  

Section 3 defines the INTER-IoT Reference Model, which constitutes a novel proposal for the IoT 

Platforms Interoperability, reflecting not only architectural elements of the different kind of systems 

that can be found in the IoT domain but also canonical interoperability means frequently used to 

make heterogeneous systems work together. Thus, a model for the architectural components 

specified in the next sections is previously defined.  

Section 4 contains the INTER-IoT Reference Architecture which, based on the previously proposed 

Reference Model, defines the different relevant architectural views for the INTER-IoT project and 

concerning the cases under study. This chapter is divided in 3 subsections: the functional view 

specification, which reviews the IOT-A definition of this view, analyses this perspective in 15 selected 

existing platforms and finally proposes a functional view for INTER-IoT, which is a base for the 

INTER-LAYER and INTER-FW specifications. Relation with solutions proposed in D3.1 is also 

discussed in this subsection. Additionally, it contains a subsection for other relevant view such as 

the information view. A third subsection is devoted for the different architectural perspectives, which 

will be better defined during the second year of the project and consequently reported in D4.2, the 

final version planned for this document. 

The section 5 analyses and relates the resulting reference architecture with the INTER-LAYER 

solution, specified in D3.1. It shows the relation with the model and the actual mapping of the 

components with the functional components identified in previous sections.  

Finally, sections 6 and 7 contains references and bibliography of the whole document and annexes 

to improve the understanding and to give further information in some specific areas. 

The contents of this document set up a baseline for the works of tasks T4.3, T4,4 and T4.5 related 

to the design and implementation of the INTER-FW and its API.  

The D4.1 has revision planned for month 24 (D4.2) which will revise and expand the contents of this 

document as well as report about the works performed in the second year particularly in the tasks 

mentioned in the previous paragraph. 
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1 Introduction 

Interoperability is a big challenge identified recurrently by stakeholders concerning the IoT 

ecosystems and the future internet trends. The value of making software systems compatible and 

future proof is undeniable. However, the actual market shows that the number of solutions grows 

quickly, and none standard and/or generic platform seems to be dominant, stimulating the 

development of new systems in an, at least for now, unstoppable process. The reasons of the 

increasing number of IoT oriented solutions are not exclusively limited to the lack of predominance 

of standards or products, there are also other likeable reasons, such as the relative novelty of the 

IoT systems, especially for the consumer market and in some industrial environments; or simply the 

distributed and multi-domain nature of these systems, which allows a plethora of use cases and 

scenarios difficult to harmonize under a single specification. 

On the other hand, the open IoT platforms are emerging slowly and most of those which are publicly 

available and usable, are close to the prototyping phases. This prevents to show a clear prevalence 

of solutions in the open segment and also discourages the massive adoption of open solutions in 

the IoT ecosystems. 

INTER-IoT is initially intended to close the gap between open IoT platforms and make them fully 

interoperable at different levels. However, given the huge fragmentation in the existing market and 

being a project with real applications planned in a short term, the inclusion of commercial platforms 

was recommended since the very beginning, allowing to cover the theoretical and academic aspects 

of the solutions and, on the other hand, work with production systems, tying the results of the project 

to commercial solutions and to real scenarios with clear and tangible economic value. INTER-IoT, in 

other words, brings to the open IoT platforms scene the benefits of working with proven business 

models, and to the commercial/legacy systems the possibility of being flexible or leveraging the open 

source communities to innovate and improve the current applications. 

In such as fragmented ecosystem, modelling is a valuable mechanism to abstract commonalities of 

existing platforms, to extract the main features that define the IoT domain and to build general 

approaches to face the interoperability in a universal way. 

For this reason, INTER-IoT has defined a Reference Model (or “meta-model”) for IoT Platforms 

Interoperability, a Reference Architecture defined based on this model and a complete 

interoperability system.  

A reference model is, according to OASIS1 definition:  

 

                                                
1 http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf  

A reference model is an abstract framework for understanding significant relationships among 

the entities of some environment. It enables the development of specific reference or concrete 

architectures using consistent standards or specifications supporting that environment. A 

reference model consists of a minimal set of unifying concepts, axioms and relationships within 

a particular problem domain, and is independent of specific standards, technologies, 

implementations, or other concrete details. A reference model may be used as a basis for 

education and explaining standards to non-specialists. 

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
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While, an architectural reference model is a term extensively used in IOT-A and defined in this 

document as an architectural pattern in [2]: 

Finally, the definition of reference architecture used in this document is the following (also taken from 

[2]): 

In this document, a full description of the Reference Model (RM) and the Reference Architecture 

(RA) is given, in its initial model2. In addition, several relevant concepts for the architectural definition, 

such as the domain model or the information model, are also specified.  

 

 

 

 

                                                
2 Please note that a final versión of this deliverable is planned for the end of 2017. 

Architectural reference model is a description of elements and relation types together with a set 

of constraints on how they may be used. 

A reference architecture is a reference model mapped onto software elements (that 

cooperatively implement the functionality defined in the reference model) and the data flows 

between them. 
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Other relevant perspectives and views are slightly defined or even omitted due to the initial phase of 

execution of the project. This is the case, for example, of the deployment view which will be defined 

near to the pilots’ deployment, by the end of the second year of the project execution. 

The use of a RM and an ARM to create a RA to instantiate a software architecture in the domain of 

IoT is described in IOT-A [30] and appears previously in [2]. Section 5 (See Figure 95) describes 

how this process has been put into practice in INTER-IoT. 

The interoperability system (INTER-Layer) is thoroughly described in INTER-IoT Deliverable D3.1 

and its specification is, therefore, out of the scope of this document. The design and specification of 

the INTER-Framework will be started after the submission of this deliverable, and is also out of the 

scope of this document. 

This document has a strong basis on the works done in IOT-A EU Project and a deep analysis of 16 

heterogeneous IoT platforms carried out in the INTER-IoT project. The results of the latter are also 

reported in this document under the Functional View section and the actual data gathered is available 

in Annexes. 
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Figure 2 Relation with other documents and artefacts 
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2 Approach 

2.1 Introduction 

There is currently a plethora of 

organizations trying to develop 

the ultimate reference models 

for IoT systems. It's possible to 

enumerate several efforts such 

as IoT-A3, IEEE P24134, ITU-T5, 

IIC6, oneM2M7, just to name a 

few.  

It must be noticed, though, that 

despite a very diverse 

vocabulary, most concepts are 

more or less the same. For 

instance, in figure 1 it is 

possible to notice the fact that 

IoT-A functional model, ITU-T 

reference architecture and 

oneM2M functional architecture 

are quite equivalent. 

The IoT-A Architectural 

Reference Model has been 

chosen as a reference for the 

work performed in INTER-IoT. 

Reasons for this choice are: 

1) IoT-A is a complete and 

mature solution that 

allows to go from a use 

case and a number of 

requirements to a 

concrete architecture, 

taking into 

considerations different 

factors such as 

communication between devices, security, information flow, ... 

2) As all architectural approaches are somehow similar, it's not time-consuming or complex to 

map different efforts into the IoT-A concepts. 

3) As IoT-A is used as a base by most EU projects, it provides a common ground with other 

results in the EPI cluster. 

                                                
3 http://www.iot-a.eu/public  
4 https://standards.ieee.org/develop/project/2413.html  
5 http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx  
6 http://www.iiconsortium.org/  
7 http://www.onem2m.org/  

Figure 3 Relation between different IoT Architectures 

http://www.iot-a.eu/public
https://standards.ieee.org/develop/project/2413.html
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
http://www.iiconsortium.org/
http://www.onem2m.org/
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The IoT-A provides a complete methodology for creating IoT platforms based on a reference 

architecture and using the characteristics of the use cases and requirements of a determined 

application. INTER-IoT, however, is intended to provide tools and mechanisms to achieve 

interoperability among existing IoT platforms. This INTER-IoT interoperability must be built as much 

generic as possible to provide global solutions regardless the technologies or instances (platform 

independency) or the field of application (domain independency). Then, while the problem domain 

(IoT) and a lot of concepts of IoT-A are valid and applicable to INTER-IoT, the approach is different 

and new meta-models must be developed. Accordingly, this document follows the terminology and 

the general methodology approach described in IoT-A, to define an architecture reference model 

and a reference architecture to create interoperability mechanisms among IoT platforms. INTER-IoT 

will use this framework to instantiate several mechanisms (so-called Layer Interoperability 

Infrastructures, LIIs) and thus validate the RA developed. However, as for its generic approach, the 

RA and/or the ARM could be used to generate new solutions for different interoperability problems 

in the future. 

In the subsequent sections, the approach used to generate each of the models and views that 

eventually define the INTER-IoT ARM and RA is detailed. 

2.2 The IoT-A8 Architectural Reference Model 

2.2.1 IoT-A Background 

IoT-A [25][30] was a lighthouse EU-funded project that established an Architectural Reference Model 

for the Internet of Things domain. The project ran from 2010 until 2013, and can be considered the 

foundation for all the EU efforts done in this area since then. 

IoT-A main goal was to promote a high level of interoperability between different IoT systems. This 

interoperability had to be developed from the communication level as well as at the service and 

knowledge levels across different platforms established on a common grounding. The IoT-A project 

developed common tools and methodologies to achieve this. While existing literature like [3] provide 

methodologies for dealing with system architectures (hereafter called concrete architectures) based 

on Views and Perspectives for instance, establishing a reference architecture is a quite different 

business, at least as far as describing Views and Perspectives is concerned. 

An Architectural Reference Model (ARM) can be visualised therefore as the matrix that eventually 

derives into a large set of concrete IoT architectures. For establishing such a matrix, based on a 

strong and exhaustive analysis of the state of the art (SOTA), a super-set of all possible 

functionalities, mechanisms and protocols that can be used for building concrete architectures must 

be identified. Providing such a technical foundation along with a set of design choices, based on the 

characteristics of the targeted system based on different dimensions like distribution, security, or 

response time, we can then select the baseline technologies, such as protocols, functional 

components, or architectural options, that we need to build our INTER-LAYER / INTER-FW 

solutions. A usual representation of IoT-A is the "famous" IoT-A tree. 

                                                
8 http://www.iot-a.eu/public  

http://www.iot-a.eu/public
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Figure 4 The IOT-A tree 

The basic concept of the picture is that IoT-A connects several baseline technologies, such as 

communication protocols (6lowpan, ZigBee, IPv6…) and device technologies (sensors, actuators, 

tags…) with an almost infinite number of application and services. The trunk of the tree represents 

the Architectural Reference Model, composed by the Reference Model and the Reference 

Architectures: the set of models, guidelines, views, perspectives, and design choices that can be 

used for building fully interoperable concrete domain-specific IoT architectures (and therefore 

systems). 

2.2.2 Basic Usage of the IoT-A ARM 

The ARM can be used for several purposes, from more abstract ones to more concrete 

developments. 

2.2.2.1 Cognitive aid 

At a more abstract level, such as product conception and development, an ARM can be used for 

different purposes. 

First, it provides a roadmap for discussions, since it defines a clear language and grammar that 

everyone involved in the creative process can use, and which is intimately linked to the architecture, 

the system, the usage domain. As well, the high-level view provided in such a model is of high 
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educational value, since it provides a comprehensive and at the same time abstract view of the 

domain, helping non-technical people (or simply, people new to the IoT field) in understanding the 

particularities and intricacies of IoT. 

Furthermore, the ARM can assist IoT project leaders in planning the work  and organizing the teams 

needed. For instance, the Functionality Groups identified in the Functional View of the IoT system 

can also be a list of independent teams working on an IoT system implementation. 

The ARM provides a clear guidance as well in identifying independent building blocks for IoT 

systems. This constitutes very valuable information when dealing with questions like system 

modularity, processor architectures, third-vendor options, or re-use of already developed 

components. 

All these points show that establishing a common ground for any field is not an easy task. In this 

field, a common ground would encompass the definition of IoT entities and the description of their 

basic interactions and relationships with each other, which is the main objective of the IoT-A effort. 

2.2.2.2 Generation of architectures 

A major benefit of the IoT-A ARM is the capability of generating architectures for specific systems. 

This architecture generation is done by providing best practices and guidance for helping translating 

the ARM into concrete architectures. The benefit of such a generation scheme for IoT architectures 

is not only a certain degree of automatism of this process, and thus the saved R&D efforts, but also 

that the decisions made follow a clear, documented pattern. 

2.2.2.3 Identifying differences in derived architectures 

When using the IoT ARM-guided architecture process any differences in the derived architectures 

can be attributed to the particularities of the pertinent use case and the thereto related design choices 

[4]. When applying the IoT ARM, a list of system function blocks and data models, together with 

predictions of system complexity, can be derived for the generated architecture. Furthermore, the 

IoT ARM defines a set of tactics and design choices for meeting qualitative system requirements. All 

these facts can be used to predict whether two derived architectures will differ and where. 

The IoT ARM can also be used in a ''reverse mapping'' fashion. System architectures can be cast in 

the IoT-A ARM language; this is what we will do in this document, analysing the different platforms 

and translating the different system architectures into a common language and mapping. 

2.2.2.4 Achieving interoperability 

While developing a concrete architecture, fulfilling a set of qualitative requirements inevitably leads 

to design challenges. Since there is usually more than one solution for each of the design challenges 

(we refer to these solutions as design choices), the IoT-A ARM cannot guarantee interoperability 

between any two concrete architectures a priori, even if they have been derived from the same 

requirement set. Nevertheless, the IoT-A ARM is an important tool in helping to achieve 

interoperability between IoT systems. This is facilitated by the ''design choice'' process itself. During 

this process, it's possible to identify the design choices made; comparing two different architectures, 

it should be clear what architecture measures must be taken to achieve interoperability and at which 

point in the respective systems this can best be done. Interoperability might be achieved a posteriori 

by integrating one IoT system as subsystem in the other system, or by building a bridge through 

which key functionalities of the respective other IoT system can be used. Notice though that these 

workarounds often fall short of achieving full interoperability. Nevertheless, building bridges between 



 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

23 / 191  

such systems is typically much more straightforward than completely re-designing either system; 

usually doing so, a fair level of interoperability can be achieved. 

2.2.3 Architecture concepts 

Architectural views provide a standardized way for structuring architectural descriptions [3]. As 

demonstrated by [4], views can also be used for structuring reference architecture descriptions. 

Choosing architectural views for the development of a coherent IoT Reference Architecture showed 

to be instrumental for the success of the IoT ARM, as they provide an intuitive delineation of each 

addressed aspect. 

There is not a single, commonly accepted list of architectural views; the chosen ones for this work 

are: 

● Context view; 

● Functional view; 

● Information view; 

● Deployment view; 

As discussed in detail in [3], views do address technical aspects, while stakeholder requirements are 

often formulated as qualitative requirements. Their solution to this issue, which we adopt in this 

document, is to introduce architectural perspectives. These perspectives cut across the views. In 

other words, they do not replace views but provide an abstraction layer above the views.  

The table summarises how the models in the IoT Reference Model relate to the views and 

perspectives featured in the IoT Reference Architecture. 

  



 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

24  / 191 

 

    

IoT Reference Model 

  

IoT Reference Architecture 

 

    
IoT Domain Model 
   

 

    
IoT Information Model 
   

    
Information view 
   

    
IoT Functional Model   
  
   

    
Functional View 
   

    
IoT Communication Model 
   

    
Communication Functionality 
Group (part of the functional 
view) 
   

Table 1 Relation between the IoT-A Reference Model and Reference Architecture 

2.3 Domain Model 

The Domain Model(DM) is the first step in the creation of the reference model. In the IoT realm, the 

creation of a Domain Model is carried out starting from the analysis of the concepts used in the 

Internet of Things, like devices, things, services and so on. IoT-A’s DM is a good example of this. 

INTER-IoT, aims at building a reference model on the foundations defined by IoT-A, leveraging 

terminology and representation methodology to solve the problem of interoperability in existing IoT 

platforms. The reason is that traditional IoT models focus on designing a system around the Internet 

of Things concept, whereas in INTER-IoT we deal with making a set of IoT Platforms interoperable. 

This means that, although all the IoT concepts and models are valid, we need to extend them to 

consider the existence of different platforms. 

As a matter of fact, this could be seen as a system of systems approach, with multiple platforms and 

an upper actor configuring an overall system, but also as a mesh of platforms that need to 

interchange content through a multilayer mediator. INTER-IoT allows both approaches. 

Taking all that into account, we have analysed the IoT-A’s Domain Model, and have checked it 

against the most common sensor ontologies (W3C SSN9, IETF SAREF10, One M2M11, OGC Sensor 

Things12…) to check its validity. 

                                                
9 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn  
10 https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology  
11 http://www.onem2m.org/  
12 http://ogc-iot.github.io/ogc-iot-api/  

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
http://www.onem2m.org/
http://ogc-iot.github.io/ogc-iot-api/
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Once we have ensured that the IoT-A’s Domain Model is valid for the INTER-IoT objectives, we have 

extended it to include new concepts necessary for the INTER-IoT, mainly related to its multi-platform 

approach. 

For achieving this, we have performed several steps. First, we have reviewed the requirements of 

the project. Next, we have made an analysis of various IoT platforms. We have been collaborating 

in parallel with several IoT platform analysis tasks that have been conducted in the project. The result 

is a Domain Model aimed at the interoperability of IoT Platforms, suited to INTER-IoT goals. 

2.4 Information Model and Meta Data Model 

2.4.1 Introduction 

IoT-A defines a generic model of information that passes through any IoT system. The central 

element of this model is a VirtualEntity (see Figure 5 IoT Domain Model) that has some Attributes 

with MetaData attached. An IoT-A VirtualEntity needs to have two special data elements that 

describe it: an identifier, and a type (entityType). Additionally, Virtual Entities may have multiple 

attributes, each with a name, type, and annotated values. The description of an entity, in this model, 

allows for multiple values of attributes, each of which may be annotated with meta-data. The 

annotations may go deeper, with meta-data about meta-data and so on. This description is realized 

in the IoT-A information model through a ValueContainer, an instance of which combines an attribute 

value and its meta-data annotations. Additionally, IoT-A defines generic classes for Service, 

Resource and Device descriptions. 
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Figure 5 IoT Domain Model 

This generic model can be used to model a wide variety of information. In particular, in the 

implementations of IoT systems there is a need to have a specific definition of what meta-data items, 

attributes and virtual entities, a given system operates on. In fact, the IoT-A methodology itself 

suggests that the definition of, for instance, what entity types are available, is left to the implementer. 

Following the IoT-A suggestion, of using specific schemas and models to describe available types 

of virtual entities, attributes and meta-data, INTER-IoT uses ontologies and semantic vocabularies 

to augment the information model. 

The INTER-IoT reference meta-data model is a set of ontologies and documentation that is used to 

define specific implementations of IoT-A information model. The INTER-IoT model, in particular, 

describes the types of VirtualEntities, Attributes and MetaData for INTER-IoT understanding, and 

includes descriptions of Services, Resources and Devices, which are included, but not expanded 

upon in the IoT-A model. The process of creation of the INTER-IoT reference meta-data model is 

described in the following subsections. 

2.4.2 The INTER-IoT reference meta-data model creation process 

A reference meta-data model describes concepts, structures and relationships between meta-data 

items (i.e. data that provides information about other data). In the context of INTER-IoT the reference 

meta-data model describes meta-data about any entities that appear in the context of interoperable 

IoT platforms. 
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Features of meta-data include: 

● Enabling data identification  

● Enabling data search and retrieval 

● Description of links (relationships) between objects 

●  managing and organizing data 

Note that it is not the role of the reference meta-data model to implement any of the described 

mechanisms. For instance, if the model contains information about authentication mechanisms, it 

may inform a reader about types of authentication mechanisms and data required for authentication 

in each of them (e.g. user ID, email, password, checksum, or encrypted key file). It does not 

implement any mechanism of processing this data, or the actual authentication mechanism. 

The process of defining the meta-data reference model is described in Figure 6: 

 

Figure 6 Creation of initial reference meta-data mode 

2.4.2.1  Meta-data language 

As a preliminary step, we have chosen Web Ontology Language13 (OWL) [31] as the language for 

definition of meta-data items. Thus, the final model will consist of a set of OWL ontologies with 

supporting documentation. 

OWL is a formal ontology language rooted in description logic. It is currently the de facto standard 

ontology language for all kinds of resources, including Linked Data14. OWL supports definitions of 

                                                
13 https://www.w3.org/TR/owl-features/  
14 https://www.w3.org/standards/semanticweb/data  

https://www.w3.org/TR/owl-features/
https://www.w3.org/standards/semanticweb/data
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rich taxonomies and complicated properties and relationships between entities. It is an extension of 

RDF15 (Resource Description Framework) and is directly compatible with RDF processing tools and 

technologies. 

Since OWL ontologies are machine-processable, they enable understanding in communication 

between both people and machines. OWL is an ontology specification language that supports 

multiple file formats (i.e. its semantics are independent of file format). It does not define any canonical 

way of implementation of models in software solutions, thus being technology agnostic and 

implementation-independent. Using OWL one can describe concepts and their properties, as well 

as concrete entities (instances). OWL ontologies are directly extendable and may be combined to 

form new ontologies to capture knowledge from many different domains and perspectives. In short, 

OWL meets the requirements of a language for the reference meta-data model specification. 

OWL can be used in a technology-agnostic way. OWL files can also be used with OWL or RDF 

specific technologies, such as semantic reasoners, triple-stores, ontology editors, ontology 

alignment tools, ontology viewers, semantic IoT middleware (e.g. OpenIoT16, UniversAAL17 and 

others). 

Summary of OWL features: 

● Structured data description 

● Easy Linked Data integration 

● RDF compatibility 

● Rich semantics 

● Most popular ontology language  

● Format and technology independent 

OWL ontologies vary in size, scope, and level of detail. Some ontologies contain specialized domain-

specific knowledge and, because they describe one specific issue in great detail, they are useful is 

specialized applications. Other ontologies are very general and inform about very basic concepts 

that refer to a wide range of domains. This variety is summarized in a general model of ontology 

modularity, and expanded upon in the specific model of ontology modularity. 

 

Figure 7 Model of ontology 

The general model of ontology modularity (see Figure 7), proposed in [5] defines four types of 

ontologies and a partial ordering defined by inheritance. The most general type of ontologies, the 

                                                
15 https://www.w3.org/RDF/  
16 http://www.openiot.eu/  
17 http://www.universaal.info/  

https://www.w3.org/RDF/
http://www.openiot.eu/
http://www.universaal.info/


 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

29 / 191  

Core ontology (also called Upper) contains very general terms without specific details. It is meant to 

have a high level of abstraction and, thus, be reusable and widely applicable. Domain and Task 

ontologies inherit from the Upper ontologies and describe domain-specific knowledge (e.g. in 

medical domain) and specific actions (e.g. assembly of parts), respectively. These two types of 

ontologies combine to form description of domain specific tasks (e.g. assembly of a medical 

equipment). Finally, an Application ontology inherits from all the other types of ontologies to provide 

knowledge that stems from applying higher-level ontologies to a particular application (e.g. a 

deployment of a medical system). INTER-IoT reference meta-data model focuses on upper 

ontologies and domain ontologies specific to internet of things. 

The specific model of ontology modularity expands upon the simple ordering of four types of 

ontologies and proposes that any ontology may be divided into either vertical or horizontal modules. 

In general, modules are parts of ontologies that are clearly identifiable and separable. Vertical 

modules form a hierarchy of inheritance. In simple terms, we may say that an upper ontology that is 

extended by an upper ontology, is its vertical module. A horizontal module is a part of ontology 

independent from other parts, except possibly by sharing a common base of inheritance. If and 

ontology is made by a combination of task and domain ontologies, then we may say that those are 

horizontal modules. Some ontologies explicitly define their modules, while others are monolithic by 

design. Modular ontologies encourage using only the modules that are needed. For instance, if a 

supply chain ontology defines multiple modules, we may use only the transportation module and 

disregard others e.g. one that describes push-pull supply chain characteristics. INTER-IoT reference 

meta-data model focuses on analysis and choice of only those modules that are relevant to avoid a 

bloated and unmanageable model. 

2.4.2.2 Meta-data requirements 

The creation of the reference meta-data model for INTER-IoT starts with defining the scope of the 

model. This is done in the process of extraction of meta-data requirements from other work done in 

INTER-IoT. Meta-data requirements are, essentially, items that together form a loosely-defined 

vocabulary of terms. Each item identifies a small part of the scope of the full model. The items are 

gathered from the following sources: 

● Grant agreement document 

● Relevant INTER-IoT requirements (identified in other INTER-IoT work packages) 

● Explicit semantic models of IoT platforms 

● IoT-EPI Task force 

● Partners’ expertise 

The details of each source of meta-data requirements as well as its relevance to INTER-IoT is 

described in later sections of this document. 

2.4.2.3 Available Ontologies 

The second preliminary action done is the identification of state of the art when it comes to available 

OWL ontologies. Only ontologies relevant to IoT are considered, including those implemented in 

working IoT systems (e.g. OpenIoT18), but also ontologies that are not IoT specific, such as units of 

measurement ontologies. The list of identified ontologies can be found in Appendix 2. 

                                                
18 http://www.openiot.eu/  

http://www.openiot.eu/
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2.4.2.4 Requirements filtering 

The construction of the initial INTER-IoT reference meta-data model is performed in a process called 

“requirements filtering” (See Figure 8). This process takes as input, previously identified meta-data 

requirements, and selects existing ontologies (from IoT ontologies SOTA analysis) that fulfil those 

requirements. The initial choice of ontologies is supported by in-depth analysis of ontologies (see 

section 3.3) and contains ontologies most relevant to the IoT space. The relevance was decided 

through analysis of requirements. Because a smart device is the central entity in IoT, ontologies that 

describe devices were deemed as the most important and relevant. 

 

Figure 8 Merging modules (Adding an ontology, or an ontological module, to the reference meta-data model) 

The final INTER-IoT reference meta-data model will be constructed in an iterative process (see 

Figure 9) that builds upon the initial model. Identified ontologies will be analysed and added to the 

model (possibly replacing ontologies already in the model) if they cover entities identified in meta-

data requirements. The requirements may be modified as other INTER-IoT tasks progress and the 
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changes will be propagated to meta-data requirements, which in turn will prompt an augmentation 

of the model. 

 

Figure 9 Creation of final reference meta-data model 

2.5 Functional Model 

The Functional Model, according to MacKenzie et al.[1], is defined as “an abstract framework for 

understanding the main Functional Groups (FG) and their interactions”. This framework defines the 

common semantics of the main functionalities, and will be used for the development of Functional 

Views. 

The Functional Model is designed upon the results of the Domain Model and the Information Model. 

Nevertheless, we are not designing the Reference Model from scratch. It is based on the previous 

work done in IoT-A. The functional decomposition, made in IoT-A, generated the Functional Model 

and the Functional View. This means that we have reviewed the Functional Model of IoT-A. Next, 

we have performed an analysis of a set of IoT Platforms, from the Functional Model point of view. 

For doing this, we have matched the functional features of each platform against the IoT-A’s 

Functional Model, using the Functional Model diagram as an enabler, and we have generated a 

diagram for each platform. Once we collected all the diagrams, we have analysed them, detecting 

very different compliances that are due to the different nature of te existing platforms. 

The set of IoT Platforms to be analysed was gathered from the output of the stakeholder’s analysis 

and the partner’s expertise. Based on this input, it was decided that a set of 16 IoT platforms was to 

be analysed. 

Within these 16 IoT Platforms, 5 of them have been selected as the 5 IoT Platform that INTER-IoT 

will give support to, keeping in mind that platform support must be easily extensible. The reasons to 

have this initial choice are a combination of market presence, open / commercial balance, suitability 

for the pilot cases (considering especially the feedback of the pilot owners), completeness of the 
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platforms (coverage of all functional groups expected in IoT stacks) and partners’ expertise. As it 

was previously stated, the initial support does not mean exclusive support, given the fact that the 

results of INTER-LAYER, INTER-FW and INTER-METH are domain agnostic by definition and 

intended to be extensible and scalable. 

The list of IoT Platforms analysed is as follows: 

IoT Platform 

 

FIWARE 

Open IoT 

UniversAAL 

OneM2M 

Microsoft Azure 

Amazon AWS IoT 

All-Joyn 

Butler 

i-Core 

Sofia 2 

ThingSpeak 

GE Predix 

IBM Watson IoT 

Contiki 

eCare 

WSO2 

Figure 10 List of platforms analysed 

Initially supported platforms are highlighted in the figure above. 

Once we know the functional model capabilities of the selected set of IoT Platforms, we have been 

able to design a brand new Functional Model with INTER-IoT’s vision for making IoT Platforms 

interoperable. This Functional Model has been based on some of the concepts defined by the IoT-

A, but has been designed with the aim of dealing with the problem of interoperability among 

heterogeneous platforms. 

2.6 Communication Model 

The Communication Model aims at defining the communication paradigms for connecting the 

elements that compose the IoT system, previously defined by the Domain Model(DM). Also, this 

model is certainly less critical in some application scenarios than in others, and thus, not strictly 

mandatory. 
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Being an IoT system sustained on a network, this model leverages on the ISO OSI 7-layer model, 

but it highlights those peculiar aspects inherent to the interoperation among different stacks, which 

we will call, in what follows, interoperability features. 

To create this model, it is important to identify the communication system elements and/or the 

communication Users (Human Users, Services or Digital Artefacts) among those defined in the DM. 

The communication among these Users, needs to support different paradigms: 

● Unicast: as mandatory solution for one-to-one communication. 

● Multicast and anycast: for fulfilling many other IoT-application requirements (data collection, 

information dissemination, etc.) 

Normally, most of communication between Users and Services can be established using standard 

Internet Protocols but, there are two main exceptions to this approach when two services 

communicate with each other and: 

● One belongs to a constrained network: a gateway and/or proxy must be deployed for ensuring 

successful communication 

● Both belong to a constrained network: then a constrained communication protocol has to be 

used (e.g., 6LoWPAN, UDP, CoAP, etc.). 

Instead of focusing on a specific realization of the communication stack, the Communication Model 

(CM) provides a transversal approach, from which one or more communication stacks can be 

derived. As a matter of fact, a single interoperability aspect can be used to describe the interactions 

of stacks belonging to different communicating systems. Once a system is modelled according to 

the CM it is easy to derive a set of ISO/OSI interoperable stacks in order to provide the needed 

interoperability features (see Figure 11). 

 

Figure 11 Interoperability aspects of the IoT Communication model compared to the ISO/OSI communication stack 

Below, the different interoperability aspects are described: 
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● Physical aspect: similar to OSI PHY layer, it does not enforce the adoption of any specific 

technology but it uses the adopted technologies as a base to model the remaining aspects 

of the system. 

● Link aspect: most networks implement similar, but customized communication solutions. This 

layer must support solution diversity to achieve full interoperability and support heterogeneity. 

Additionally, it needs to provide upper layers standardized capabilities and interfaces. As this 

layer needs to abstract a large variety of functionalities, enabling direct communication, IoT 

systems do not have to restrict the selection among data link layers but must enable 

coexistence. 

● Network and ID aspect: this section combines two aspects; networking, same capabilities as 

the OSI layer, and identifiers, resolution functionalities between locators and IDs. The 

difference between identifiers (unique descriptors of the Digital Artefact; either active or 

passive), and locators (descriptors of the position of a given IoT element in the network), is 

the first convergence point in the CM. The interoperability aspect oversees making any two 

systems addressable independently of the technology adopted. 

● End-to-End aspect: this involves reliability, transport, translation, proxies/gateways support 

and parameter configuration between different networking environments. It provides 

interoperability aspects on top of Network and ID ones to obtain the final component for 

achieving a global ThingsToThings (T2T) Communication Model. Connections are also part 

of this scope. Also, Application Layer aspects are addressed here. Moreover, Application 

Protocols, in the trend to embed confirmation messages and congestion control techniques, 

require being more complex than what is achievable in the OSI Transport Layer. 

● Data aspect: related with data definition and transfer. Its purpose is to model data exchange 

between any two actors in the IoT system. This exchange can adopt many different 

representations, ranging from raw data to complex structures where meta-data information 

is added to provide context specific links. Additionally, the data aspect needs to model the 

following characteristics: 

1.- Capability of providing structured attributes for data description; 

2.- Capability of being translated (possibly by compression/decompression) the one 

to each other (e.g. CoAP to HTTP by decompression or XML to EXI by compression 

or IPv4 to IPv6 by mapping, etc). 

3.- Constrained device support. 

In the Communication model, we define the connection between two or more elements in the model, 

maybe using a single communication stack. For that reason, there are two options to model a 

composed communication according to the IoT Communication Model. These options are the 

configuration with a Gateway that involves the composition of two or more protocol stacks located 

across different network or a Virtual configuration that implies the composition of two or more protocol 

stacks, one on top of the other. 

Within the composed modelling option, it is known: 

 

● Gateway configuration as the composition of two or more protocol stacks that are placed side 

by side across different media so that they can be seen seamlessly connected. 
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Figure 12 Gateway configuration for multiple protocol stacks 

In Figure 12, we can observe the communication between two application layers through two 

gateways. The first one (left) bridges between Ethernet and WiFi networks, and the second 

one (right) additionally includes a translation functionality between WiFi and ZigBee, and also 

the translation between IP to 6LoWPAN, TCP to UDP, HTTP to CoAP and vice versa. 

● Virtual configuration as the composition of two or more protocol stacks, one on top of the 

other, where the actual communication path is virtualized by tunnelling the communication 

using a second protocol stack. 

In Figure 13, we can observe an inner communication path composed of an Ethernet network 

and a WiFi network using a bridging block and an outer communication path that is 

independent of the inner path and which allows for the two application layers to communicate. 

Such a scheme is usually achieved using virtual private network solutions. 

 

Figure 13 Virtual configuration for multiple protocol stacks 

Additionally, we can find a channel model. This describes the content of the channel in the Shannon-

Weaver model19, but in context of the IoT domain. The main objective is not capturing every possible 

                                                
19 http://communicationtheory.org/shannon-and-weaver-model-of-communication/  
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characteristic of IoT technologies, but to provide a common ground to be used to compute overall 

system performance and benchmarking. To understand this channel modelling we must define: 

 

● Unconstrained networks as a high-speed communication link (as wired Internet). Here, link-

level transfer latencies are also small and mainly impacted by congestion events in the 

network, rather than by the physical transmission technology. 

● Constrained networks as communications with relatively low transfer rates (typically smaller 

than 1Mbit/s) and large latencies. These are due to several factors; the involved low-bitrate 

physical layer technology and the power-saving policy of the nodes (with periodic radio 

power-offs). 

According to this, heterogeneous networks can be seen as the combination of constrained and 

unconstrained networks linked together via gateways and/or proxies. In the IoT case, it could be a 

single constrained network, several constrained networks over different technologies, or even two 

constrained networks joint by an unconstrained one (as two WSN communicating by Internet). 

Additionally, the nature of the constrained networks relies on constrained devices. The 

communication between these can: 

1. Be based on different protocols; 

2. Require additional processing in the gateways. 

It is important to point out that the characteristics of each network can have a noticeable impact on 

the overall end-to-end communication [25]. 

As we can notice following the IoT ARM Reference Manual [33], there are some steps for modelling 

our systems. These steps involve four usages; the usage of the IoT Domain Model, IoT Information 

Model, IoT Communication Model and Perspectives. 

Within the first Usage, the instantiation of the Domain Model to a particular case is discussed. The 

main identified concept instances are: Physical Entities and related with Virtual Entities, Resources, 

Device, Services and User. (As is explained in Section 3.2) 

Once this instance has been identified, we can proceed with the first steps of modelling, that includes, 

for the Domain Model, the first three rules as: 

These are applied when we model the IoT Domain Model of our specific use case, and later one the 

rest of the rules are used for each one of the other usages. 

In this case, for the usage of Communication Model that define the architectural process as: 

1. Identify homogeneous sub-systems and their capabilities and constraints. 

Rule 1 Model as precisely as possible based on the domain model concepts at the time 

of modelling. Use the more concrete, more fine-granular concepts and instances 

whenever possible, but only to the granularity that appears reasonable for the given 

purpose. 

Rule 2 When modelling an autonomous object, an Augmented Entity is used, consisting 

of a device (Physical Entity) and its software controller (Virtual Entity). 

Rule 3 Only model something as a Physical Entity if it is relevant in the IoT system so 

that the representing Virtual Entity is also modelled. 
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2. Identify suitable protocol stacks and network topologies to be merged in a common system 

view. 

3.   Define gateways and other bridging solutions 

With this picture in mind, the IoT-A ARM provides different guidelines for using the CM to provide an 

overall framework for communication within the IoT systems, previously defined the domain and 

information models. This is carried out following these rules: 

Following, we can analyse the communication requirements coming from services in the domain 

model, and interaction patterns from the information model. So, we obtain a set of interoperable 

protocol stacks and topologies with the following characteristics: 

1. Each stack must grow from a specific communication technology. 

2. Interoperability shall be enforced in the lowest possible layer of stack. 

3. The combination of identified stacks and topologies must satisfy all the requirements. 

This Rule is applied for technological optimizations. This Rule enhance the communications and 

ensures feasibility in all sub-systems by the re-use of the same protocols between as many 

components as possible. 

Enforcing simplicity, and avoiding stack duplication and also reusing protocols horizontally in the 

system. Usually, the most effective interoperability point is the Network & ID aspect of CM as is the 

lowest common point not technology specific, so could be the same across different sub-systems. 

Finally, the Data Interoperability aspect of the CM considers the remaining aspects of data exchange, 

compression and representation. Most often, adopting a compressed format which fits constrained 

network capabilities, provides simpler network interactions, and lower traffic [25].  

Rule 4: Identify homogeneous sub-systems (as a set of elements with the same 

communication technology and similar hardware capabilities) from the complete domain 

model and determine their capabilities and constraints. Analysing these capabilities and 

constraints to understand the communication specific parameters (data rate, delays, 

reliability) and technology specific parameters (memory, computational power and 

supported functionalities). 

 

Rule 5: Use existing standard communication mechanisms and related protocols 

whenever possible. If this is not possible then each of the sub-systems is the starting 

point for building a protocol stack which is botch technology specific and interoperability 

prone. 

 

Rule 6: Interoperability shall be enforced in the lowest possible layer. 

 

Rule 7: In order to allow seamless interaction between sub-systems, gateway and 

proxies shall be designed for the whole system. 
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2.7 Functional View 

For the creation of the INTER-IOT functional view, the following steps have been followed:  

1) Analysis of the functional aspects of the existing platforms according to the IoT-A Functional 

Model 

2) Review of the Functional Model.  

3) Analysis of the project requirements and use cases. 

4) Generation of a new functional view with the conclusions of the previous steps. 

For the analysis (also referred in this document as platform study), a set of 16 platforms was 

selected, based on the following criteria: partners’ expertise, market relevance and current adoption 

and support (in industry or in open source communities). Some constraints were added to prioritize 

promising platforms and to ensure a proper balance between private and open software. The 

methodology to gather this information was to let all the partners report about a set of question 

related to these platforms. Finally, a list was made and prioritized, resulting in a list of 16 platforms 

that is extensively used in this document.  

Each platform in the list was carefully analysed with the scope of the IoT-A ARM, with particular 

attention to the functional view. Data and statistics about the functional components of each platform 

offer important conclusions about the degree of coverage of the components, and where the 

interoperability mechanism can be more effective. 

Next, the Functional Model was reviewed taking into account the previous analysis of the selected 

IoT Platforms. 

The project requirements and the use cases were analysed to identify the features that the 

Functional View should accomplish. 

Finally, with the knowledge gained in the platform study and the conclusions obtained in the previous 

steps, a novel Functional View for platform interoperability was developed, accordingly with the 

functional model (see section 2.4). It is firstly proposed in this document. 
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3 INTER-IoT Reference Model and Meta 

Data Model 

3.1 Introduction 

The IoT-A project used the OASIS definition for describing the reference model. OASIS 

(Organization for the Advancement of Structured Information Standards) gives the following 

definition of a reference model: 

Central features that a reference model needs to exhibit are: 

● Clearly defined concepts 

● Clearly defined concept relationships 

● Clearly defined concept properties 

● Does not describe concrete entities (instances) 

● Restricted to a specific problem space  

● Promotes understanding of the problem space 

● Technology agnostic and implementation independent  

● Used as reference for implementation  

● Enables understanding (i.e. common semantics) in communication 

The Reference Model is composed by 5 different models that fully encompass the IoT modelling and 

are the base for the development of the architectural view and perspectives. The first model is the 

IoT Domain Model, which describes all the concepts that are relevant in an Internet of Things 

scenario. All other models and the IoT Reference Architecture are based on the concepts introduced 

in the IoT Domain Model. The Communication Model is very relevant as describes the different 

communication that happens in the IoT domain, namely, between constrained and unconstrained 

networks. The Information model shows how the information flows between entities. The IoT Trust, 

Security, and Privacy Model shows the importance of dealing with Privacy and Security issues from 

the very modelling part. Finally, the Functional Model introduces the concepts and the modularity 

between functional parts that will be key in building a concrete architecture. 

Following IoT-A methodology, in INTER-IoT we have developed the following models for the initial 

Reference Model described in this document: 

[Reference model is] an abstract framework for understanding significant relationships 

among the entities of some environment, and for the development of consistent 

standards or specifications supporting that environment. A reference model is based on 

a small number of unifying concepts and may be used as a basis for education and 

explaining standards to a non-specialist. A reference model is not directly tied to any 

standards, technologies or other concrete implementation details, but it does seek to 

provide a common semantics that can be used unambiguously across and between 

different implementations. 
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 Domain Model. 

 Communication Model. 

 Information Model. 

 Functional Model. 

 

3.2 Domain Model 

3.2.1 Introduction 

In general, a Domain model20 is a class diagram that is used to describe specific aspects of a set of 

knowledge or activities. The main use for it is to represent use cases and real-world concepts in a 

way that can then be used by the technical people to develop a service, application or a product. 

The main purpose of a generic domain model is to generate a common understanding of the target 

domain in question. Such a common understanding is important, not only within a specific project, 

but also to be able to discuss with stakeholders and external parties. Only with a common 

understanding of the main concepts it is possible to choose between different architectural solutions 

and to evaluate them. 

3.2.2 IoT-A Domain Model 

The IoT-A project defines a domain model as a description of concepts belonging to a specific area 

of interest. The domain model also defines basic attributes of these concepts, such as name and 

identifier, and relationships between concepts, for instance “Services expose Resources”. The IoT-

A domain model also provides a common lexicon and taxonomy that can be used in the IoT domain. 

[6]. The IoT-A Domain Model extends two previous models in this specific domain, namely [7]. 

In a IoT domain, the most generic scenario is that of a generic User who needs to interact with a 

Physical Entity (PE) in the physical world. Here we can already see two of the main entities in IoT: 

● a User which can be a human person or a Digital Artefact (e.g., a Service, an application, or 

a software agent) that needs to interact with 

● a Physical Entity, which is an object that is  under observation and can be modified by 

automatic means. Physical Entities can be almost any object or environment; from humans 

or animals to cars; from store or logistics chain items to computers; from electronic 

appliances to jewellery or clothes. 

While in a physical environment, interactions can only happen directly (for instance, by moving a 

pallet from location X to Y manually), within the IoT world it’s possible to interact indirectly or 

mediated, by calling a Service that will either provide information about the Physical Entity or act on 

it. When a Human User is accessing a service, he does so through a service client, a User Interface 

for instance. For the scope of the IoT Domain Model, the interaction is usually characterised by a 

goal that the User pursues. 

Physical Entities are represented in the digital world by a Virtual Entity, which can be seen as a 

“virtual counterpart “. There are many kinds of digital representations of Physical Entities: 3D models, 

avatars, database entries, objects (or instances of a class in an object-oriented programming 

language). Virtual Entities are associated to a single Physical Entity and the Virtual Entity represents 

this very Physical Entity. While there is generally only one Physical Entity for each Virtual Entity, it is 

possible that the same Physical Entity can be associated to several Virtual Entities. Each Virtual 

                                                
20 https://msdn.microsoft.com/en-us/library/bb126581(v=vs.90).aspx  

https://msdn.microsoft.com/en-us/library/bb126581(v=vs.90).aspx
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Entity must have one and only one ID that identifies it univocally. Virtual Entities are Digital Artefacts 

that can be classified as either active or passive. Active Digital Artefacts (ADA) are running software 

applications, agents or Services that may access other Services or Resources. Passive Digital 

Artefacts (PDA) are passive software elements such as database entries that can be digital 

representations of the Physical Entity. Please note that all Digital Artefacts can be classified as either 

Active or Passive Digital Artefacts. 

 

As well, Virtual Entities are synchronised representations of a given set of aspects (or properties) of 

the Physical Entity. This means that relevant digital parameters representing the characteristics of 

the Physical Entity are updated upon any change of the former. In the same way, changes that affect 

the Virtual Entity could manifest themselves in the Physical Entity. For instance, manually locking a 

door might result in changing the state of the door in home automation software, and 

correspondingly, setting the door to “locked” in the software might result in triggering an electric lock 

in the physical world. 

The Augmented Entity is what enables everyday objects to become part of digital processes. In 

technical terms, the Augmented Entity is a composition of Physical and Virtual Entities. 

The relation between Virtual Entity and Physical Entity is usually achieved by embedding into, by 

attaching to, or by simply placing in close vicinity of the Physical Entity, one or more ICT Devices 

that provide the technological interface for interacting with, or gaining information about the Physical 

Entity. A Device thus mediates the interactions between Physical Entities (that have no projections 

in the digital world) and Virtual Entities (which have no projections in the physical world), generating 

a paired couple that can be seen as an extension of either one; in other words, the Augmented Entity. 

Devices are thus bridging the real world of Physical Entities with the digital world of the Internet. This 

is done by providing monitoring, sensing, actuation, computation, storage and processing 

capabilities. A Device can also be a Physical Entity: an example for such an application is Device 

management, whose main concern is the Devices themselves and not the entities or environments 

that these Devices monitor. 

Resources are software components that provide data from or are used in the actuation on Physical 

Entities. Resources may be On-Device and Network. As the name suggests, On-Device Resources 

are hosted on Devices, while Network Resources are Resources available somewhere in the 

network, such as back-end or cloud-based databases. A Virtual Entity can also be associated with 

Resources that enable interaction with the Physical Entity that the Virtual Entity represents. 

In contrast to heterogeneous Resources implementations of which can be highly dependent on the 

underlying hardware of the Device, a Service provides an open and standardised interface, offering 

all necessary functionalities for interacting with the Resources / Devices associated with Physical 

Entities. Interaction with the Service is done via the network. On the lowest level the one interfacing 

with the Resource and closer to the actual Device hardware, Services expose the functionality of a 

Device through its hosted Resources. Other Services may invoke such low-level Services for 

providing higher-level functionalities, for instance executing an activity of a business process. 

Since it is the Service that makes a Resource accessible, the above-mentioned relations between 

Resources and Virtual Entities are modelled as associations between Virtual Entities and Services. 

For each Virtual Entity there can be associations with different Services that may provide different 

functionalities, like retrieving information or enabling the execution of actuation tasks. Services can 

also be redundant, i.e., the same type of Service may be provided by different instances (e.g. 

redundant temperature Services provided by different Devices). In this case, there could be multiple 

associations of the same kind for the same Virtual Entity. 
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Figure 14: IOT-A’s Domain Model with entity classification 

3.2.3 INTER-IoT Domain Model 

We have extended IoT-A Domain Model to include new entities inherent to IoT platform 

interoperability. 

The clearest entity is an IoT Platform itself. In any IoT Domain Model, the platform is intrinsically 

implicit, as it is really “the whole model”. When dealing with platform interoperability, different IoT 

Platforms appear, thus need arises to model them independently. 

Any IoT Platform relates with the underlying entities, like Services, Things or Physical Entities, and 

so on. Therefore, an IoT Platform can be modelled as a set of composed entities, the entities the 

platform manages. 
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Figure 15: INTER-IoT generic domain model 

An IoT Platform is comprised of several collections of entities: 

● IoT Service: An IoT Service is what was called a Service in the IoT-A. It provides an open 

and standardised interface, offering all necessary functionalities for interacting with the 

Resources / Devices associated with Physical Entities. We understand an IoT Service as a 

mechanism to interact with specific Resources related to Virtual Entities. They are Active 

Digital Artefacts that usually are available in IoT Platforms exposing capabilities like query, 

update, subscribe. 

● Platform Service. A Platform Service is also an Active Digital Artefact that exposes 

functionality about Resources related to Virtual Entities. However, rather than being attached 

to specific Physical Entities (and its related Virtual Entities), they offer more elaborated 

services that internally make use of IoT Services. They are usually placed in an upper layer 

of IoT architectures, allowing more complex processing, like CEP (Complex Event 

Processing), Stream Processing, Historical Data Management, Monitoring, etc. They are like 

the IoT processes of IoT-A, but we think of them not as placed close to enterprise systems, 

but as derived services that can be used as building blocks for creating more complex 

interoperability services among different IoT platforms. 

● Virtual Entity. A Virtual Entity is a representation of a Physical Entity in the digital world. IoT 

platforms tend to use this digital representation, especially those based on cloud platforms. 
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An IoT Platform utilizes a set of Virtual Entities for managing a thing status regardless of 

whether the thing is connected to the Internet or not. 

● Physical Entity. A Physical Entity is an object or environment that is of interest to an external 

user, application, or service. It’s something that can be observed and connected to one or 

more IoT Platforms to interact with it.  

● Augmented Entity. As of IoT-A definition, an Augmented Entity is “the composition of one 

Virtual Entity and the Physical Entity it is associated to, in order to highlight the fact that these 

two concepts belong together. The Augmented Entity is what actually enables everyday 

objects to become part of digital processes, thus, the Augmented Entity can be regarded as 

constituting the “thing” in the Internet of Things.”. So, we can refer to it as a Thing, and later 

we will see the ontology modelling for things (meta-data model). 

A new concept we introduce for the Domain Model is the Platform Ontology. The Platform Ontology 

is conceived to store the definition concerning the ontology used by the platform to define its inner 

structure and components (devices, sensors…). The Platform Ontology defines also the ontology 

used for modelling the observations made by each sensor, in our case available from the Virtual 

Entities. These ontologies will usually be different for each Physical Entity type (and its related Virtual 

Entity). This entity is thus, the one that is responsible for handling the corresponding semantics. 

Once we have modelled the different entities of the platforms and the platform itself, we have added 

two entities related, specifically, to defining the interoperability services that can be created at 

different layers. 

The Platform Interoperability Service handles the definition of new compound services that appear 

as a consequence of using, and mixing in any way, Platform Services from one or more IoT 

platforms. An example of this would be the creation of an alert service that may throw an event when 

weather sensors from platform A exceed predefined thresholds using a rule engine service at 

platform A, or when weather sensors from platform B send an alert using a CEP (Complex Event 

Processing) within platform B. 

So, the Platform Interoperability Service is linked with the different Platform Services it uses. Used 

Platform Services are just part of IoT Platforms. From the interoperability point of view, they are the 

building blocks of more complex interoperability services among different IoT platforms: Platform 

Interoperability Services. 

The VE Interoperability Service has a similar role as the Platform Interoperability Service, but it 

defines interoperability services among devices rather than platform services. It is responsible for 

defining the interoperability at the device layer, what we call D2D (Device to Device) interoperability 

at INTER-IoT. 

The VE Interoperability Service can handle the rules for performing the D2D interoperability. For 

instance, it could have the definition of a rule triggered when a proximity sensor detects presence, 

switching a light on. 

3.3 Information Model 

3.3.1 Introduction 

The Information Model is one of the 5 Models composing the IoT-A Reference Model. The main 
aspects are represented by the elements VirtualEntity, ServiceDescription and Association. As a 
Virtual Entity models a Physical Entity, a ServiceDescription describes a Service that provides 
information about the Physical Entity itself or the environment. Through an Association, the 
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connection between an Attribute of a Virtual Entity and the ServiceDescription is modelled; in other 
words, the Service acts as a “get” function for an Attribute value. 
 
Every Virtual Entity needs to have a unique identifier (identifier) or entity type (entityType), defining 
the type of the Virtual Entity representation, for instance, a human, a car or a temperature sensor. 
Furthermore, a Virtual Entity can have any number of different attributes (Attribute class). The 
entityType of the VirtualEntity class may refer to concepts in an ontology that defines what attributes 
a Virtual Entity of this type has. Each Attribute has a name (attributeName), a type (attributeType), 
and one to many values (ValueContainer). The attributeType specifies the semantic type of an 
attribute, for example, that the value represents temperature. It can reference an ontology-concepts. 
This way, it is possible to model an attribute or a list of values, which itself has several values. Each 
ValueContainer groups one Value and zero to many metadata information units belonging to the 
given Value. The metadata can, for instance, be used to save the timestamp of the Value, or other 
quality parameters, such as accuracy or the unit of measurement. The Virtual Entity (Virtual Entity) 
is also connected to the ServiceDescription via the <Service Description / Virtual Entity> Association. 
 
A ServiceDescription describes the relevant aspects of a Service, including its interface. Additionally, 
it may contain one (or more) ResourceDescription(s) describing a Resource whose functionality is 
exposed by the Service. The ResourceDescription in turn may contain information about the Device 
on which the Resource is hosted. 
 
According to the IoT-A [25] the IoT Information Model defines the structure of all the information for 
Virtual Entities on a conceptual level (cf. Section 2.3). This description utilizes meta-data coming 
from appropriate ontologies. The INTER-IoT project uses semantic technologies to deal with meta-
level interoperability. Specifically, the semantic interoperability will be established through the use of 
a modular ontology, ontology alignments, and semantic transformations. 
 
The Inter-IoT reference meta-data model is a set of ontologies, that can also be viewed as one 
modular ontology, with both horizontal and vertical modules. Following the process described in 
Section 2.4 this ontology needs to cover fundamental concepts in IoT, such as thing, device, 
observation and deployment. 
 

The meta-data model needs to conform to OASIS guidelines enumerated in section 3.1. OWL 

ontologies naturally exhibit some of those, such as: clear (and formal) descriptions of concepts and 

relationships between them; independence of implementation technology; and enabling common 

semantics. Other than that, the reference meta-data model does not contain references to any 

specific instances, and is limited to the scope defined by meta-data requirements, described in 

following sections[17]. 

3.3.2 Scope of Meta-Data model 

The scope of the Inter-IoT reference meta-data model is defined in a process outlined in section 2.4 

The process relies on defining meta-data items (entities) that need to be included in the model. 

Simple examples of meta-data entities are Service, Device (with sub-types Actuator, Tag and 

Sensor) that are declared in the IoT-A domain model. The meta-data reference model expands those 

declarations into definitions by defining properties, class attributes, taxonomy and other elements 

structuring the meta-data entities. Once the scope (defined by the entities) is prepared, the reference 

model is constructed by choosing and adjusting (expanding or reducing) modular ontologies. 

Subsections that follow contain analysis of sources of meta-data items defined in section 2.4. 
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3.3.2.1 INTER-IoT Grant Agreement 

The grant agreement document, along with its amendments, contains broad descriptions of Inter-

IoT tasks and work packages. Semantic entities can be identified and extracted from task and work 

package descriptions. The description of task 4.2 - creation of reference meta-data model - gives 

the following summary (meta-data entities are underlined): 

 

 

 

3.3.2.2 Inter-IoT project requirements 

In the first few months of Inter-IoT, requirements for the whole project (and for each part of it 

separately) were identified and stored and numbered in a project management software. Some of 

them contain (explicit or implicit) references to data entities. Each project requirement was analysed 

with respect to meta-data requirements. The results of this analysis are contained in the table in 

Appendix 1. Some project requirements were redacted from the appendix, if the information relevant 

to meta-data they provided was overlapping with information from other requirements already on the 

list. This was done for the sake of clarity. Note that the reference meta-data model itself should not 

contain domain-specific entities for the pilot implementations of Inter-IoT. Because of that 

requirements that relate to domain knowledge (eHealth, transportation & logistics; e.g. INTERIOT-

641 to 645) were redacted or interpreted with disregard for the domain-specific metadata. 

3.3.2.3 IoT Platforms 

Some IoT platforms, like OpenIoT or UniversAAL provide explicit ontologies that model the meta-

data used within those platforms. The knowledge contained within those models is an indirect source 

of meta-data entities. Since INTER-IoT is a set of tools for interoperability between platforms, rather 

than a platform itself, the models of platforms should not simply be copied. That being said, the 

analysis of existing platform ontologies provides valuable insight that augments explicit meta-data 

requirements from other sources, and puts them in context. Section 3.3.3 contains an in-depth 

analysis of selected ontologies, that, apart from being standards for IoT, are actually used in existing 

platforms. 

3.3.2.4 IoT EPI Task Force on Interoperability 

The IoT-EPI task force on semantic interoperability can provide useful considerations when it comes 

to use of ontologies in all participating projects. If any ontology is going to be used in multiple projects, 

it should be given special importance when considering our reference meta-data model. Projects 

involved in IoT-EPI may also have a different perspective on IoT landscape, which partially stems 

 IoT Device/Smart Object metadata will basically include identity, type, 

physical characteristics, location, embedded devices, and provided 

services. 

 Middleware metadata will basically contain communication service type, 

access protocol, URI, supported data / object domains. 

 Application Services metadata will basically include service identifier, type, 

access protocol, device/smart objects supported, input data and output 

data. 

 Application Data metadata will basically include time, value structure, 

security features and domain-specific characteristics. 

 User Data metadata will basically include identifier, role, personal data, 

and security/privacy/trust policy information. 
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from the fact that they each have different problems to solve. For instance, in IoT-EPI three software 

artefact levels are delimited: Cloud platforms, IoT Gateways and IoT Device, which is a slightly 

different division of IoT space than that proposed by INTER-IoT internally. Different perspectives can 

potentially bring useful conclusions about interoperability mechanisms. Documents produced by IoT-

EPI will be studied in search of meta-data requirements and ontology modules that could be 

incorporated into Inter-IoT. At this point in time, the IoT EPI participants do not have meta-data 

models defined yet. Once they are ready and available (shared), INTER-IoT will analyse them and 

communicate with the rest of the partners to make semantic interoperability between projects as 

easy as possible. The focus of the reference meta-data model, however, is and will always be on 

the INTER-IoT. 

3.3.2.5 Summary 

The table below contains a concise summary of meta-data requirements gathered from all the 

sources described in section 3.3.2. 

Category Details  

 

Device Identifier (URI, RFID tags), 

Systems and subsystems of devices, 

Type (sensor, actuator, human interface), 

Capability (actuation, sensing; active or passive), 

Supported communication protocols, 

Status  and performance information (energy consumption, battery level, 

usage mode), 

Device capabilities, stack number, 

Environmental impact (gas emission levels, heat emission, noise level 

energy requirements), 

Location of the thing/device (where the thing is located e.g. thermostat over 

a door), 

Feature of interest being measured (where the feature being measured is 

located, e.g. room being measured by a thermostat) 

Middleware Identifier (name) 

Communication and access protocols, 

Protocol type (publish-subscribe, ...), 

Supported object and data domain, 
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Authorization, accounting and authentication credentials and methods (user 

ID, email, password, checksum, encrypted key file, authentication device, 

authentication token) 

Service Identifier, 

Type, 

Access protocol, 

input and output data, 

Supported objects (e.g. devices, platforms), 

service provider 

User Identifier, 

Role, 

Privileges, 

Personal data (names, location), 

security/privacy/trust policy information 

Application Security features, 

Security policy, 

Extendable domain characteristics (out of scope for the reference model), 

Event, 

Access log, system event, event log (out of scope), 

content type (document – report; image – graph, chart, diagram), 

data access policy – when, who (user, role, device, platform), 

Communication protocol features (multicast, single cast, broadcast), 

read, write, share privileges 

Network Address (MAC, IP), 

Protocol and communication method (6LoWPAN, RoLL, ZigBee, Bluetooth, 

Wi-Fi, ethernet, DSL, PSTN, GSM, 3G, LTE, Satellite), Security method 

(SSH, SSL, TLS). 

Location and distance, network coverage 

other Message / device priority 

and importance 
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Provenance Ownership, Current  assigned entity 

(current owner, current caretaker, current 

responsible entity), 

creation, 

responsibility, 

source, 

provider, 

physical or virtual location of data storage 

  

  

 

  

  

   

Data Time (including duration), 

geolocation, 

location of the sensing device, 

feature of interest being measured (can be 

different) 

location (address), 

Data stream, 

Measures and units, 

Attribute ranges, 

energy, 

temperature, 

Quality/accuracy 

Table 2: Summary of meta-data requirements 

3.3.3 Comparing IoT-related ontologies 

The space of ontologies is fragmented, regardless of the domain of interest. The richer an ontology 

is, the larger area it spans. Hence, uniqueness and intersections with other ontologies become more 

intricate and complex. Internet of Things spans enormous number of domains, and rapidly expands 

with the growing popularity of “smart devices”. Use of ontologies in the IoT mimics this 

expansiveness. There are many ontologies that represent models relevant to the IoT, including, but 

not limited to, devices, units of measurement, data streams, data processing, geolocation, data 

provenance, computer hardware, methods of communication, etc. We assume that the centrepiece 

of the IoT is a smart device capable of communication. Therefore, the first iteration of the reference 

meta-data model is in the form of a device ontology and forms a cornerstone for other ontology 

modules (that cover other meta-data requirements). The list of identified and analysed ontologies 

(including the device ontologies) can be found in Appendix 2, along with a short description. The 

ontologies were selected for analysis based on a simple criterion that they describe some (at least 

one) of the meta-data requirements summarized in Section 3.3.2. 

From this perspective, from the identified ones, we have selected ontologies that capture the idea of 

a device, and are well established in the IoT space: SSN, SAREF, oneM2M Base Ontology, IoT-Lite, 
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and OpenIoT. Each of them takes a different approach to modelling the IoT space but, despite the 

differences in conceptualization, they cover intersecting fragments of the IoT landscape. Below, we 

discuss divergence, contrariness and similarities between these ontologies. 

SSN, or "Semantic Sensor Network'' [11,15] is an ontology cantered around sensors and 

observations. It is a de-facto extension of the SensorML language. SSN focuses on measurements 

and observations, disregarding hardware information about the device. Specifically, it describes 

sensors in terms of capabilities, performance, usage conditions, observations, measurement 

processes, and deployments. It is highly modular and extendable. In fact, it depends on other 

ontologies in key areas (e.g. time, location, units) and, for all practical purposes, needs to be 

extended before actual implementation of an SSN-based IoT system. SSN, formulated on top of 

DUL21, is an ontological basis for the IoT, as it tries to cover any application of sensors in the IoT. 

SAREF [16], or “The Smart Appliances REFerence” ontology covers the area of smart devices in 

houses, offices, public places, etc. It does not focus on any industrial or scientific implementation. 

The devices are characterized predominantly by the function(s) they perform, commands they 

accept, and states they can be in. Those three categories serve as building blocks of the semantic 

description in SAREF. Elements from each can be combined to produce complex descriptions of 

multi-functional devices. The description is complemented by device services that offer functions. A 

noteworthy module of SAREF is the energy and power profile that received considerable attention, 

shortly after its inception22. SAREF uses WGS84 for geolocation and defines its own measurement 

units. 

oneM2M Base Ontology (oneM2M BO; [10,13]) is a recently created ontology, with first non-draft 

release in August 2016. It is relatively small, prepared for the release 2.0 of oneM2M specifications, 

and designed with the intention of providing a shared ontological base, to which other ontologies 

would align. It is similar to the SSN, since any concrete system necessarily needs to extend it before 

implementation. It describes devices in a very broad scope, enabling (in a very general sense) 

specification of device functionality, networking properties, operation and services. The philosophy 

behind this approach was to enable discovery of semantically demarcated resources using a minimal 

set of concepts. It is a base ontology, as it does not extend any other base models (such as 

DOLCE+DnS Ultralite DUL or Dublin Core). However, alignments to other ontologies are known [19]. 

IoT-Lite [14] is an instantiation of the SSN, i.e. a direct extension of some of its modules. It is a 

minimal ontology, to which most of the caveats of the SSN apply. Specifically: focus on sensors and 

observations, reliance on other ontologies (e.g. time or unit ontologies), high modularity and 

extendibility. The idea behind the IoT-Lite was to create a small/light semantic model that would be 

less taxing (than other, more verbose and broader models) on devices that process it. At the same 

time, it needed to cover enough concepts to be useful. The ontology describes devices, objects, 

systems and services. The main extension of the SSN, in the IoT-Lite, lies in addition of actuators 

(to complement sensors, as a device type) and a coverage property. It explicitly uses concepts from 

a geolocation ontology [8] to demarcate device coverage and deployment location. 

OpenIoT [22, 23] ontology was developed within the OpenIoT project. However, here, we use the 

term “OpenIoT” to refer to the ontology. It is a comparatively big model that (re)uses and combines 

other ontologies. Those include all modules of the SSN (the main basis for the OpenIoT), SPITFIRE 

(including sensor networks), Event Model-F, PROV-O, LinkedGeoData, WGS84, CloudDomain, 

SIOC, Association Ontology and others, including smaller ontologies developed at the DERI 

(currently, Insight Centre). It also makes use of ontologies that provide basis for those enumerated 

                                                
21 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl 

22 https://goo.gl/1OXTJb, https://goo.gl/ZaGjCJ 

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
https://goo.gl/1OXTJb
https://goo.gl/ZaGjCJ
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earlier, e.g. DUL. Other than concepts from the SSN, OpenIoT, uses a large number of SPITFIRE 

concepts, e.g. network and sensor network descriptions. While some mentioned ontologies are not 

imported by the OpenIoT explicitly, they appear in all examples, documentation, and project 

deliverables. Therefore, one can treat OpenIoT as a combination of parts of all of those. Similar to 

the SSN, OpenIoT does not define its own location concepts and does not explicitly import 

geolocation ontologies. It relies on other ontologies for that but, in contrast to the SSN, it clearly 

indicates LinkedGeoData and WGS84 as sources of geolocation descriptions. It defines a limited set 

of units of measure (e.g. temperature, wind speed), but only when they were relevant to the OpenIoT 

project pilot implementation. 

The rich suite of used ontologies means that OpenIoT provides a very extensive description of 

devices, their functionalities, capabilities, provenance, measurements, deployments and position, 

energy, relevant events, users and many others. Interestingly enough, it does not explicitly describe 

actuators or actuating properties/functions. It can be observed that the broad scope of the ontology 

makes it rather complicated. This is also because, it is not documented well-enough, i.e. the detail 

level and ease-of-access of the documentation do not match the range of coverage of concepts in 

the model. Moreover, it is not clearly and explicitly modularized, despite being an extension of the 

SSN. 

Let us note that, while there are other IoT models of potential interest (such as OGC Sensor Things, 

UniversAAL ontologies, FAN FPAI, IoT Ontology23, M3 Vocabulary), we have decided that they are 

of less importance or relevance to INTER-IoT. This was either because they have generated much 

less “general interest”, or had scope well outside that of the project. 

3.3.3.1 In-depth analysis 

Let us now compare the selected ontologies side-by-side. To do this, we have selected key aspects, 

or categories, directly pertaining to the IoT; placed in the first column of Table 1. However, because 

of intricacies and disparate philosophies behind compared ontologies (see, above), each category 

needs to be further investigated. In other words, proposed categorization is a tentative way of 

visualizing and analysing similarities and differences between ontologies of choice. Here, we follow 

an approach proposed by Raúl García-Castro during June 2016 European Platform Initiative (IOT 

EPI24) meeting.  

Before proceeding it should be noted that there are numerous approaches to ontology evaluation, 

e.g. [24,21]. We have, however, found that applying them would not help in the context of specific, 

project-related, problem. Specifically, we were more interested in capturing and comparing details 

of each area that the selected ontologies cover, rather than their overall evaluation by some 

standard. In other words, we are primarily interested in how well the ontologies can help us solve 

the problem at hand. 

 

Category (Subdomain) SSN 
SAREF oneM2M 

BO 

IoT-

Lite† 

OpenIoT† 

 

Thing ✓ ✓ ✓ ✓ ✓ 

                                                
23 http://ai-group.ds.unipi.gr/kotis/ontologies/IoT-ontology 

24 http://iot-epi.eu/ 

http://ai-group.ds.unipi.gr/kotis/ontologies/IoT-ontology
http://iot-epi.eu/


 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

52  / 191 

Device ✓ ✓ ✓ ✓ ✓ 

Device Deployment ✓α ✓ ✓α, ∅ ✓ ✓ 

Device Properties and 

Capabilities 

✓    ✓ 

Device Energy ✓ ✓ε   ✓ 

Function and Service  ✓ ✓ ✓S  

Sensing and Sensor 

Properties 

✓ ✓β  ✓∅ ✓ 

Observation ✓α ✓ ✓  ✓ 

Actuating and Actuator 

Properties 

 ✓β  ✓∅  

Conditionals ✓     

Table 3: Ontology classification 

†
   Extends modules of SSN 

 α   No time or location 

β   Implicit, implied by device functions 

ε   Rich energy model 

S  Service only 

∅  Only small or provisional description, or a stub 

In what follows, we discuss selected categories from Table 1. While, we have selected only some 

categories, this discussion provides a valuable insight to key aspects of use of semantic technologies 

in the IoT. 

3.3.3.1.1 Thing 

This category describes the general approach and provision of properties to any class of an ontology. 

All considered ontologies are, understandably, generic in this regard. Each contains only a handful 

of relevant properties that pertain to the very generic concepts. SSN's Things can have 

FeatureOfInterest (an abstraction of a real-world phenomenon, such as person, event or, literally, 

anything) and display Properties (a specification of DUL Quality; needs to be observable and 

inseparable from the SSN thing). SAREF defines a, similarly general, Property (specifying anything 

that can be sensed, measured or controlled). IoT-Lite extends the SSN with an Object (any physical 

entity) and its Attribute (any property exhibited by the Object that can be exposed by a Service). 

OpenIoT does not provide independent extensions or departures from the approach taken by the 

SSN. Instead, it provides subclasses for the SSN Property, mostly to describe entities needed in 

pilots of the project (e.g. WindSpeed, AtmospherePressure). 

OneM2M BO is unique in its description of things, because the entire ontology is very general. It 

defines its own Thing class that captures, quite literally, any entity identifiable in a oneM2M system. 

OneM2M BO does not extend any upper ontologies, and its Thing is a direct subclass of owl:Thing. 
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Here, a Thing can have ThingProperty (which has a self-explanatory, all-encompassing definition). 

In this way, oneM2M BO displays characteristics of an upper ontology. 

3.3.3.1.2 Device 

Devices are at the core of the IoT. This is reflected in all ontologies. OneM2M BO proposes the 

simplest structure of a Device class that uses a written description, instead of rich ontological 

relations. Device has a single subclass of InterworkedDevice (one that does not directly implement 

oneM2M interfaces). A Device can consist of a number of other Devices. 

In the SSN, the central taxonomy subtree consists of Device, Sensor, and SensingDevice subsuming 

both previous classes. An SSN System can represent any part of an infrastructure of devices 

connected in some way. In particular, it can be any Device in the System. Any System is comprised 

of subsystems (also of class System). IoT-Lite expands this structure with the addition of an 

ActuatingDevice and a (passive) TagDevice. Strangely, there is no definition of an Actuator. OpenIoT 

does not expand the basic structure of the SSN. 

SAREF borrows from both, oneM2M and SSN. SAREF Device consistsOf any number of Devices, 

and has a DeviceCategory that, in turn, has its own subclass structure (which starts with 

FunctionRelated, EnergyRelated and BuildingRelated categories). It is meant to represent a given 

perspective (point of view) on a device (e.g. of user, administrator, manufacturer, etc.). On top of 

that, the ontology defines a couple of subclasses of the Device class, which range from general, 

such as a Sensor, to quite specific, like a WashingMachine (with classes, such as Switch, in 

between). Interestingly, Sensor and Actuator are not neighbours (the first being a subclass of a 

Device, and the latter of a DeviceFunction). 

3.3.3.1.3 Observation 

The second crucial element of any IoT ontology is the way that observations are modelled. They are 

fundamental data items, and their description very strongly affects possible use of a model and 

functionality of a concrete systems. In oneM2M BO, observations revolve around three general 

classes: Variable, Aspect and Metadata. Variable class encompasses input and output variables, as 

well as a ThingProperty, that pertains to any entity and can have additional Metadata. The latter 

class is a catch-all way of annotating observations (e.g. with units or precision), which lacks 

specification, i.e. any property structure is permissible under the BO Metadata. Aspects describe 

functionality as well as input or output Variables. This simplistic, high-level model of observations 

allows for great flexibility. On the other hand, there are no examples, and the intended use is very 

tersely explained. Lack of documentation, combined with elasticity of interpretation, may lead to 

systems being barely interoperable, despite using the same base ontology. 

 

SSN proceeds differently, by extending the general model proposed by DUL. It introduces the 

Observation class. Each Observation results in a SensorOutput, a class with relations with other 

relevant information, such as ObservationValue, or the Sensor that saw the Observation. 

Observations have FeatureOfInterest that describes their characteristics, e.g. precision, latency, 

range, response time, etc. In general, the SSN Observation is a record of an occurrence of 

measurement, along with structured meta-data about the observation value, its properties, as well 

as the process leading to the Observation. Since the SSN lacks explicit units or time definitions, it 

needs to be complemented with relevant ontologies. 
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IoT-Lite does not extend the SSN Observation related modules. Instead, it proposes a vast 

simplification by introducing a Metadata class, similarly to the oneM2M BO. It is a generic class, 

intended to model any entity that does not fit the Unit or QuantityKind classes (a separate ontology 

is needed to describe the actual quantities). Observed values are not stored in the structure of the 

IoT-Lite. Instead, sensors are described in terms of types/kinds of observations made by them. For 

instance, one can construct a full description of a temperature sensor with meta-data of precision, 

unit, etc. However, within IoT-Lite, a series of concrete observations cannot be described. 

OpenIoT extends the SSN Observation model by providing a Context, however, because of lack of 

documentation, the intended usage of this class is not clear. Nevertheless, it preserves the SSN 

Observation structure. 

Finally, SAREF observations are described in terms of device Functions (in particular, 

SensingFunction and MeteringFunction). While lacking an explicit observation class, Functions have 

a number of properties that pertain to concrete values of measurements. Every relevant Function 

has a time value (e.g. hasMeterReadingTime) and an “observation” value (e.g. 

hasMeterReadingValue). These values are described in terms of Properties, which have concrete 

values alongside the UnitsOfMeasure. SAREF proposes its own taxonomy of units of measurements 

(currency, power, temperature…). Other than the values of concrete measurements, Functions have 

“reading types” (e.g. gas, pressure, energy…), which are implied to be relatively constant, vis-a-vis, 

for instance, meter readings of time and value. Compared to the SSN, the observation model in 

SAREF is simpler, and more focused on devices and their functions. It does not treat observations 

as pieces of data with their own structure and place in the system, which enables advanced data 

processing, e.g. analysis of historical data (within the structure given by the ontology). Instead, the 

SAREF model presents observations as tentative “outputs” of a function. 

3.3.3.1.4 Device Deployment 

A deployment description is a very important information in any system with multiple distributed 

devices. OneM2M BO interprets this category as a basic information about a network environment 

(AreaNetwork), but only if the device is proxied (InterworkedDevice). There is no standard way to 

model deployment information for any oneM2M BO Device. 

SSN describes device deployment in terms of Platform(s) a Device is on, and System(s) it is part of. 

Even though the SSN itself does not define time or location properties, it is strongly implied that 

Devices, Systems and Platforms should be annotated with such information (no specific ontology to 

fulfill that function is suggested). SSN also defines a Deployment, a process with subprocesses 

(DeploymentRelatedProcess) that lead to the device becoming deployed. IoT-Lite extends the 

deployment aspect of the SSN by explicit use of geolocation from the WGS84 model. OpenIoT, on 

the other hand, provides a very peculiar extension of the SSN, namely it adds an OperatingProperty 

of Device, named EaseOfDeployment. No further description or explanation of its usage is provided. 

In SAREF, deployment is understood in terms of physical space, in which a device is deployed, i.e. 

BuildingSpace, annotated with geolocation data from the WGS84. This is an interesting design 

decision, as it restricts SAREF Devices to be deployed only in buildings. It seems to contradict the 

design-time assumption that SAREF devices, i.e. smart appliances, can be located also in public 

spaces. 

3.3.4 Summary 

Each of considered ontologies proposes a different approach to modelling the IoT space. The biggest 

differences are in the details. 
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a) OneM2M BO proposes a small base ontology, similar to upper ontologies that provides 

only a minimal set of highly abstract entities. This allows for a very broad set of domain ontologies 

to be easily aligned with it. It also means that the BO itself is not enough to model any concrete 

problem (or solution) in the IoT. Furthermore, it does not capture some aspects (device, sensor and 

actuator properties) that are very common in other ontologies. 

b) OpenIoT contrasts the oneM2M BO philosophy by providing a detailed model for a specific 

problem (i.e. pilot implementations from the OpenIoT project) that can be also be applied in a more 

general case, or in other solutions. Its heavy usage of external ontologies provides high semantic 

interoperability by design. 

c) SSN is a developed model of the IoT in general, but with strong focus on sensor networks. 

It is based on DUL, and is clearly modularized, which makes it a good candidate for extensions into 

concrete systems and implementations. This is evidenced by the fact that other ontologies, evaluated 

here, make good use of it. When it comes to specificity, it places itself in the middle between oneM2M 

BO and OpenIoT. 

d) IoT-Lite is an extension of selected SSN modules, mainly to include actuators. Rather than 

focusing on providing a detailed description of a delimited problem space within the IoT, it 

approaches the modelling problem from the perspective of an implementation device. It aims to 

deliver a small, but complete, model in order to simplify processing of semantic information. This is 

also its distinctive characteristics. 

e) SAREF is a model with a strong focus on its own area—of smart appliances. Even though 

mappings to other standards exist, SAREF was developed from scratch to represent a specific area 

of application of the IoT. In this area, it delivers a strong and detailed base, that is also clear and 

easy to understand. At the same time, it is general enough to be used when extended to other 

domains, or solutions. Interestingly, all these ontologies almost completely disregard hardware 

specifications. It seems that the “place” of a device in an IoT system is much more important to 

ontology engineers than its hardware specification and resulting capabilities. 

Results of our investigations show how different the existing conceptualizations of the same domain 

can be, depending on the context of the approach, and the applied ontology engineering 

methodology. Separately, we conclude that, while each considered ontology has its uses and 

caveats, two of them stand out in the context of the INTER-IoT project. These are SSN and SAREF. 

The first presents a model focused on sensors, but still robust enough, and with strong ontological 

basis. Those features make it a good choice in terms of interoperability (which is the focus of the 

project). In addition, the SSN is modular, extendable, and has been actually implemented and 

extended in other systems and ontologies (e.g. IoT-Lite and OpenIoT). SAREF, on the other hand, 

is a thoroughly modern ontology with many recommendations and relatively large scope, despite 

targeting only smart appliances. It already has alignments with other models, thus improving its 

interoperability.  

In light of the facts and analysis presented in this section, the SSN ontology will be used as the basis 

of INTER-IoT reference meta-data model. We have found that it covers many meta-data 

requirements identified in INTER-IoT and is designed to be modular and extendible. It is also a core 

ontology, with many implementations in already deployed and well-tested systems. This makes it, in 

our view, the best currently available core IoT ontology for INTER-IoT. 
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3.4 Functional Model 

The main purpose of functional decomposition25 is to break up the complexity of the systems, under 

investigation, into smaller and more manageable parts, and to understand and illustrate their 

relationships to each other. Additionally, this produces a superset of functionalities that can be used 

to build any IoT system. The functional model is not directly tied to technology, application domain, 

or implementation. It contains both the Functionality Groups and the interaction between parts as a 

list of the Functionality Groups alone would not be enough to make up the Functional Model.  

3.4.1 IoT-A Functional Model 

The IoT-A project defines a Functional Model as  

 This framework defines the common semantics of the main functionalities of a system and is used 

for the development of the Functional Views.  

The Functional Model, together with the Unified Requirements, is the base for the Functional View, 

which describes the system runtime Functional Components, including the responsibilities of 

components, their default functions, their interfaces, and their primary interactions. Various 

Functional Views could be derived from the same Functional Model. 

Another concept that is very important in the IoT-A Functional Model is the Functional Decomposition 

(FD), that refers to the process by which the different Functional Components (FC) composing a 

specific service or application are identified and related to one another. The main purpose of 

Functional Decomposition is, on the one hand, to break up the complexity of a system compliant to 

the IoT ARM in smaller and more manageable parts, and to understand and illustrate their 

relationship on the other hand. 

The IoT Functional Model diagram was derived from the main abstractions identified in the Domain 

Model, such as Virtual Entities, Devices, Resources and Users. Therefore, the “Application”, “Virtual 

Entity”, “IoT Service” and “Device” FGs are directly linked to the Domain Model parts. Considering 

the plethora of communication technologies that IoT needs to support, the need for a 

“Communication” FG is identified. 

Furthermore, requirements expressed by stakeholders regarding the possibility to build services and 

applications on top of connected objects are covered by the “IoT Process Management” and “Service 

Organisation” FGs. To address consistently the concern expressed about IoT Trust, Security and 

Privacy, the need for a “Security” transversal FG is identified. Finally, the “Management” transversal 

FG is required for the management of and/or interaction between the functionality groups. 

All in all, the IoT Functional Model contains seven longitudinal Functionality Groups complemented 

by two transversal Functionality Groups (as shown in Figure 16). These transversal groups provide 

functionalities that are required by each of the longitudinal groups. The policies governing the 

transversal groups will not only be applied to the groups themselves, but do also pertain to the 

longitudinal groups. As an example: for a security policy to be effective, it must ensure that there is 

no functionality provided by a component that would circumvent the policy and provide unauthorised 

access. 

                                                
25 http://soapatterns.org/design_patterns/functional_decomposition  

an abstract framework for understanding the main Functionality Groups (FG) and their 

interactions 

http://soapatterns.org/design_patterns/functional_decomposition
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Figure 16: Example of functional model: IOT-A’s functional model 

3.4.2 IOT-A based functional analysis of IoT Platforms 

We have performed an analysis of a set of IoT Platforms from the functional model point of view, 

matching the functional features of each platform against IoT-A’s Functional Model. The aim of this 

analysis is to better understand the reality of the IoT Platforms, and don’t make assumptions that 

could be erroneous, which could lead to disastrous results when trying to apply INTER-IoT results. 

The analysis has also been useful for assessing the way that different IoT Platforms solve similar 

problems, helping in the design of the Functional Model of INTER-IoT. 

Next, a brief description and a Functional Model analysis of each IoT Platform is shown. The list of 

IoT Platforms is depicted in Figure 10. 

3.4.2.1 FIWARE 

FIWARE26 is a middleware platform, driven by the European Union under the Future Internet Public 

Private Partnership Programme27, for the development and global deployment of Smart Applications 

for Future Internet in multiple vertical sectors. 

The FIWARE platform provides a rather simple yet powerful set of APIs (Application Programming 

Interfaces) that ease the development of Smart Applications in multiple vertical sectors. The 

specifications of these APIs are public and royalty-free. Besides, an open source reference 

implementation of each of the FIWARE components is publicly available so that multiple FIWARE 

providers can emerge faster in the market with a low-cost proposition.  

                                                
26 https://www.fiware.org/  

27 https://www.fi-ppp.eu/ 

https://www.fiware.org/
https://www.fi-ppp.eu/
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The key deliverables of FIWARE will be an open architecture and a reference implementation of a 

novel service infrastructure, building upon generic and reusable building blocks developed in earlier 

research projects. 

FIWARE is based on the following main foundations:  

● Service Delivery Framework – the infrastructure to create, publish, manage and consume FI 

services across their life cycle, addressing all technical and business aspects.  

● Cloud Hosting – the fundamental layer which provides the computation, storage and network 

resources, upon which services are provisioned and managed. 

● Support Services – the facilities for effective accessing, processing, and analyzing massive 

streams of data, and semantically classifying them into valuable knowledge. 

● IoT Enablement – the bridge whereby FI services interface and leverage the ubiquity of 

heterogeneous, resource-constrained devices in the Internet of Things.  

● Interface to Networks – open interfaces to networks and devices, providing the connectivity 

needs of services delivered across the platform.  

● Security – the mechanisms which ensure that the delivery and usage of services is 

trustworthy and meets security and privacy requirements. 

FIWARE GEs are grouped and organized in chapters. Each chapter provides a set of GEs that work 

and communicate together to give support the following areas (see FIWARE catalogue28): 

● Data/Context 

● IoT 

● Advanced UI 

● Security 

● Interface to Networks and Devices (I2ND) 

● Apps 

● Cloud 

 

FIWARE also provide Domain Specific Enablers (SE) aimed at provide functionality and APIs for 

these domains: 

● Manufacturing 

● Transport, logistics and agrifood 

● Personal mobility 

● Social connected TV, mobile city services and video games 

● Smart cities and public security 

● eHealth 

● Smart energy 

● Environment 

Usually SEs depend on other SEs and GEs to provide a specific functionality. 

                                                
28 http://catalogue.fiware.org/ 

http://catalogue.fiware.org/
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Figure 17: FIWARE architecture with the main Generic Enablers 

FIWARE IoT 

 

One of the most successful applications of the FIWARE initiative in real scenarios comprises the 

usage of its Data/Context Management enablers and infrastructure to build IoT ready scenarios with 

open source in a reliable way. As shown in the previous picture, FIWARE has a specific area devoted 

to IoT, separated from the Data Enablers. Since they both are extremely coupled in the domain of 

INTER-IoT (and IoT in general) they are treated jointly, as suggested in the officially maintained 

documentation page of the IoT Stack29. This IoT Stack is one of the latest association of GEs and 

definitions within a common domain and purpose30.  

                                                
29 http://fiware-iot-stack.readthedocs.io  

30 Other similar set are also called bundles and those officially supported can be found in 
https://catalogue.fiware.org/bundles   

http://fiware-iot-stack.readthedocs.io/
https://catalogue.fiware.org/bundles
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Figure 18 FIWARE IoT stack components 

The IoT Stack groups the following FIWARE APIs: 

● Authentication API 

● Device API 

● Data API 

● Complex Event Processing API 

● Management API 

 

 

Figure 19: Context broker and IoT agents 
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Figure 20: Relation of FIWARE with IOT-A functional model 

3.4.2.2 OpenIoT 

OpenIoT is open source middleware and development platform infrastructure that aims at: 

● Collecting and processing data from virtually sensors, including physical devices, sensor 

processing algorithms, social media processing algorithms and more. (In OpenIoT the term 

sensor refers to any components that can provide observations) 

● Semantically annotating sensor data, according to the W3C Semantic Sensor Networks 

(SSN) specifications. 

● Streaming the data of the various sensors to a cloud computing infrastructure. 

● Dynamically discovering/querying sensors and their data. 

● Composing and delivering IoT services that comprise data from multiple sensors. 

● Visualizing IoT data based on appropriate mashups (charts, graphs, maps etc.) 

● Optimizing resources within the OpenIoT middleware and cloud computing infrastructure. 

To achieve this architecture is divided in seven main elements divided in three planes; 

Physical Plane 

1.   The Sensor Middleware (Extended Global Sensor Network, X-GSN), collects, filters, 

combines, and semantically annotates data streams from virtual sensors or physical 

devices. Acts as a hub between the OpenIoT platform and the physical world. The Sensor 

Middleware is deployed on the basis of one or more distributed instances (nodes), which 

may belong to different administrative entities. The prototype implementation of the 

OpenIoT platform uses the GSN sensor middleware that has been extended and called 

X-GSN (Extended GSN). 

Virtualized Plane 
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2. The Cloud Data Storage.( Linked Stream Middleware Light,LSM-Light), enables the 

storage of data streams stemming from the sensor middleware thereby acting as a cloud 

database. Also, stores the metadata required for the operation of the OpenIoT platform 

(functional data). The prototype implementation of the OpenIoT platform uses a re-designed 

LSM Middleware, with push-pull data functionalities and cloud interfaces for enabling 

additional cloud-based streaming processing. 

3.      the Scheduler together with the Discovery Services functionality, processes all the 

requests for services from the Request Definition and ensures their proper access to the 

resources (e.g., data streams) that they require. This component undertakes the following 

tasks: it discovers the sensors and the associated data streams that can contribute to service 

setup; it manages a service and selects/enables the resources involved in service provision. 

4.      the Service Delivery and Utility manager, performs a dual role: combines the data 

streams as indicated by service workflows within the OpenIoT system in order to deliver the 

requested service (with the help of the SPARQL query provided by the Scheduler) either to 

the Request presentation or a third-party application (using the service description and 

resources identified and reserved by the Scheduler component) and acts as a service 

metering facility, keeping track of utility metrics for each individual service. This metering 

functionality will be used to drive functionalities as accounting, billing, and utility-driven 

resource optimization. 

Utility/Application Plane 

5.      the Request Definition, selects mashups from a library in order to make a service 

presentation in a Web interface. Communicates with the Service Delivery & Utility Manager 

to visualize these services, obtaining the relevant data. 

6.      the Request Presentation , component enables specification of service requests to 

the OpenIoT platform providing a Web interface. It a set of services for specifying and 

formulating requests, while also submitting them to the Global Scheduler. 

7.      the Configuration/Monitoring, enables the management and configuration of 

functionalities over the sensors and the (OpenIoT) services that are deployed within the 

platform. Also enables the user to monitor the status of the different deployed modules31. 

Everything is running at the top of a JBoss application server, and it provides User Interfaces that 

include: 

● IDE Core 

● Request Definition 

● Request-Presentation 

● Virtual Sensor Schema Editor and 

● Management, Monitoring and Editors 

The following picture depicts the architecture in the IOT-A functional model to observe how the 

physical plane is in charge of the parts related with communication and devices (also with application 

if we take in account that for OpenIoT Twitter could provide data as a device), the green ones, and 

the virtualized plane and utility/management plane are in charge of the organisation, management 

and processing parts, the red and blue ones. 

                                                
31 OpenIoT draft http://cordis.europa.eu/docs/projects/cnect/5/287305/080/deliverables/001-OpenIoTD431Draft.pdf 

https://www.google.com/url?q=http://cordis.europa.eu/docs/projects/cnect/5/287305/080/deliverables/001-OpenIoTD431Draft.pdf&sa=D&ust=1484397798701000&usg=AFQjCNFsDu5f0Z73N8httrBgRgXFBg0oGg
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Figure 21: Relationship of OpenIoT with IOT-A functional model 

3.4.2.3 UniversAAL 

UniversAAL is the result of the homonymous FP7-ICT project UNIVERSAAL: UNIVERsal open 

platform and reference Specification for Ambient Assisted Living, coordinated by SINTEF32 and 

developed by a consortium of 19 partners. Currently is maintained by some of their creators, who 

are creating the UniversAAL Coalition, expected to be officially announced during the first quarter of 

2017. 

UniversAAL is defined as an independent (funded publicly so far) IoT platform that provides a 

service-oriented environment – via an Enterprise Service Bus (ESB) model – enabling developers 

to utilize the cumulative potential of the sum of capabilities in the environment and compose their 

software applications over all verticals. This becomes possible through an implementation of 

semantic interoperability for SOA at the level of communication protocols (existing since 2008); this 

way, universAAL avoids domain-specific APIs by reducing syntactical dependencies to one single 

brokerage API, allows dynamic evolution of arbitrary constellations based on loose coupling, and 

enables integration and interoperability in a domain- and vendor-independent way. 

UniversAAL communication protocols hide distribution and heterogeneity, currently with Java based 

implementations for the OSGi and Android runtime environments. It supports different types of 

targets, including mobile, embedded, and server- / Cloud-based.  

The main features of universAAL are: 

● 100% Semantic: it brings a list of extendable ontologies to define every communication that 

is produced within the system. 

                                                
32 https://www.sintef.no/en/  

https://www.sintef.no/en/
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● Context bus: a single channel to publish and consume the context information produced by 

the attached entities. 

● Service bus: a single channel to share the service-related information, defined in a semantic 

way. 

● UI bus (optional): a single channel to transport all the UI interactions produced an requested. 

It implements multi-modality, so the interactions are adapted to the context and the end-user 

leveraging the semantic capacity of the system. 

● Ontology management: it allows the extension of the existing ontologies and provides tools 

to support the basic operations with ontologies. 

● Remote interoperability among universAAL instance: includes mechanisms to allow the 

coexistence and collaboration of multiple universAAL instances in a single network. 

● Compatibility with some hardware technologies (Continua Alliance, ZigBee): provides 

adapters to a set of technologies for physical devices attachment. 

● Semantic reasoner: includes a semantic reasoner to set triggers according to situations and 

thresholds in a semantic way. 

 

UniversAAL is publicly available in github33 under the Apache Software License 2.0. 

 

Figure 22: Relationship of UniversAAL with IOT-A Functional Model 

3.4.2.4 OM2M 

OM2M34 is an open source project created by Eclipse under EPL license that implements the 

specification of oneM2M and SmartM2M standards. 

                                                
33 https://github.com/universAAL  

34 https://wiki.eclipse.org/OM2M/one 

https://github.com/universAAL
https://www.google.com/url?q=https://wiki.eclipse.org/OM2M/one&sa=D&ust=1484255088810000&usg=AFQjCNGHeHBSwXrvySLA5BWqCAav_sUJdg
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The main characteristic is that it implements a Service Common Entity (CSE), which is similar to a 

service layer, that can be deployed on a M2M server (CSE-IN) a gateway (CSE-MN) or a device 

(CSE-AE). 

The features that the CSE offers are: 

● Application Enablement 

● Security 

● Triggering 

● Notification 

● Persistency 

● Device Interworking 

● Remote Entity Management 

● Routing 

● and Communication 

Is created in Java and runs at the top of an OSGi Framework called Equinox, so is modular and can 

be extended by plugins (OSGi Bundles). For building it uses Maven and Tyco. Each bundle offers 

specific functionalities and can be remotely installed, started, stopped, updated or uninstalled without 

reboot. 

 

Figure 23: Eclipse OM2M Building Blocks 

Additionally, it provides a RESTful API with primitive procedures for machines as: 

● Authentication 

● Resource Discovery, 

● Application registration, 

● Containers management 

● Synchronous and Asynchronous communication 

● Access right authorization 

● Groups organization 

● And re-targeting. 

This API operates on the following primary resource types: 

● CseBase: describes the hosting CSE, and is the root for all other resources within the hosting 

CSE. 
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● remoteCse: stores information related to M2M CSEs residing on other M2M machines after 

successful mutual authentication. It enables Cses interactions using retargeting operations 

● AE: stores information about the Application Entity after a successful registration on the 

hosting CSE. 

● Container: acts as a mediator for data buffering to enable data exchange between 

applications and CSEs 

● AccessControlPolicies: manages permissions and permissions holders to limit and protect 

the access to the resource tree structure. 

● Group: enhances resources tree operations and simplifying the interactions on the API 

interfaces by adding the grouping feature. It enables an issuer to send one request to a set 

of receivers instead of sending requests one by one. 

● Subscription: stores information related to subscriptions for some resources. It allow 

subscribers to receive asynchronous notification when an event happens such as the 

reception of new sensor event or the creation, update, or delete of a resource. 

This helps to develop services and applications independently of the underlying network. Also, It 

supports multiple protocol bindings such as HTTP and CoAP. Various interworking proxies are 

provided to enable seamless communication with vendor-specific technologies such as Zigbee and 

Phidgets devices. 

We can apply the ARM FM to the OM2M obtaining a comparative very significant and relevant as 

we can see in the following figure[27]. 

 

Figure 24: Relationship of OM2M and IOT-A Functional Model 

3.4.2.5 Microsoft Azure 

Azure IoT Hub is an extension towards the IoT domain that is integrated into Microsoft Azure cloud 

offering. Its main purpose is to enable reliable and secure bidirectional communications between a 

large number of IoT devices and a back-end engine, typically cloud-hosted. The Azure IoT Hub 

provides reliable device-to-cloud and cloud-to-device messaging, secure communications using per- 

device security credentials and access control. It offers extensive monitoring for device connectivity 
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and device identity management events and includes device libraries for the most popular languages 

and platforms. It also provides an IoT gateway SDK for the development processing and application 

logic at the edge. 

The Microsoft Azure IoT platform is composed of core platform services and application-level 

components to facilitate the processing needs across three major areas of a typical IoT solution. 

This includes 

1.  device connectivity  

2.  data processing, analytics, and management and     

3.  presentation and business connectivity.   

Devices can be connected directly or indirectly via a gateway, and both may implement edge 

intelligence with different levels of processing capabilities. A cloud gateway provides endpoints for 

device connectivity and facilitates bidirectional communication with the backend system. The back 

end comprises multiple components to provide device registration and discovery, data collection, 

transformation, and analytics, as well as business logic and visualizations. The business integration 

and presentation layer is responsible for the integration of the IoT environment into the business 

processes of an enterprise. 

For what concerns connectivity, Microsoft Azure Hub supports different connectivity options in order 

to integrate IoT resources, that can be connected directly or indirectly via so called field gateways. 

The main integration point towards the devices provides is the Azure IoT hub which offers support 

for three protocols: 

●  AMQP (with optional WebSocket support)   

●  MQTT and   

●  HTTP 1.1 over TLS protocols   

The Azure IoT device SDK can be used to simplify the development of IoT clients that can connect 

to the Azure IoT hub via the options above. More constrained devices require a field gateway 

implementation to translate from protocols such as CoAP, OMA LWM2M, OPC, Bluetooth or ZigBee. 
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3.4.2.6 Amazon AWS IoT 

AWS IoT is a managed cloud platform that lets connected devices easily and securely interact with 

cloud applications and other devices. It provides services hosted in the leading cloud services AWS 

(standing for Amazon Web Services) and leverages most of the services/modules on that to facilitate 

some of the most common processes such as  

 

● AWS Lambda (serverless cloud computing) 

● Kinesis (streaming data operations) 

● S3 (cloud storage) 

● Machine Learning 

● DynamoDB (NoSQL database) 

● CloudWatch (monitoring of cloud applications) 

● CloudTrail (API calls logging) 

● Elasticsearch Service with built-in Kibana integration (data visualization) 

 

The AWS IoT module covers exclusively those aspects that are exclusive (or highly bound to) of the 

IoT domain (see the available documentation)35:  

 

● Device management 

● Device SDK connectors 

● Message Broker 

● Virtual entities (device shadows) 

● Rules engine 

 

 

Figure 25: Amazon AWS IoT main architecture 

 

                                                
35 http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html  

http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
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Figure 26: Relationship of Amazon AWS IoT  

3.4.2.7 AllJoyn 

AllJoyn is a collaborative open source software framework, that has since October 2016 been 
merged into IoTivity36. It is flexible, it promotes proximal network and it has an optional cloud 
connection. Being an open source project, it is licensed under the Creative Commons License and 
developed by the AllSeen Alliance37 (including, among others, Qualcomm, Foxconn, Technicolor, 
LG-Innotek, LeTV, Microsoft and Xiaomi) and in collaboration with the Linux Foundation. 

AllJoyn provides a universal software framework and core set of system services, which enabled 
interoperability among connected products and software applications. This is achieved by creating 
dynamic proximal networks using the D-Bus message bus. Compatible devices and applications 
could find each other and communicate in a client-server model across the boundaries of product 
categories, platforms, brands and connection types – including fields such as Connected Home, 
Smart TV, Smart Audio and Broadband Gateways. This is made possible by usage of introspection 
XML files, which are owned by each device on the network and they advertise device's abilities. 
AllJoyn is a core component in Windows 10. 

The framework of AllJoyn has both routers and apps; communication between the latter always goes 
through the former. The AllJoyn application advertises its services, and when a neighbouring 
application discovers the application that does the advertising, it can create a session by connection 
to a specific port. Sessions between applications can be either point-to-point or multi-point. 

Apps and routers can run on the same physical device. In the case that the app uses its own router, 
the router is called bundled router. If all apps on the device share a common router, then this router 
is called a standalone router. This is common on Linux systems where router runs as a daemon 

                                                
36 https://www.iotivity.org/  
37 https://allseenalliance.org/  

https://www.iotivity.org/
https://allseenalliance.org/
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process. However, if an app uses a router on a different device, which is common on embedded 
devices, we use for it the term thin app. 

To facilitate interoperability between apps, AllJoyn implements service frameworks, which implement 
a set of common services, like onboarding, notification and control panel. These are divided into 
AllSeen working groups, such as: 

● Onboarding - to provide a consistent way to bring a new device onto the wi-fi network, 
● Configuration - to allow one to configure certain attributes of an application or device, such 

as its name, 
● Notifications - applications can send and receive text-based, as well as audio and image 

messages directly or via URLs, 
● Control panel - to allow remote access to a virtual control panel for the device. 

AllJoyn apps can communicate with one another through wi-fi, Ethernet, serial or Power Line (PLC).  

 

Figure 27: Relationship of AllJoyn with IOT-A functional model 

3.4.2.8 Butler 

BUTLER (uBiquitous, secUre inTernet-of-things with Location and contEx-awaReness) is a FP7-ICT 

project ended in 2014 and involved 17 partners (6 academic institutions and 11 companies), 

coordinated by INNO. Leveraging on a context and location aware, pervasive information system, 

BUTLER aimed at the development of inherently secure (from physical to application layer), energy-

efficient and optimized applications spreading across different scenarios (Home, Office, 

Transportation, Health, etc.). Indeed, BUTLER provides a horizontal platform where IoT devices can 

be reused by various applications from different domains via intermediate value added services such 

as localization, context capturing, behaviour capturing, security management, etc.  
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Figure 28: Butler generic architecture 

To such purpose, BUTLER presents a smartDevice-centric network architecture where smartObject 

(sensors, actuators), smartMobile (user’s personal device) and smartServers (providers of contents 

and services) are interconnected directly over IPv6 or by means of a SmartGateway (for devices 

adopting CoAP, ZigBee, BT, NFC, etc.). Just the Butler SmartGateway plays a crucial role for the 

integration of heterogeneous SmartObjects by representing different devices in a homogeneous way 

through a Service-Oriented approach and through several IoT Protocol Adapters. In particular, 

BUTLER layered architecture (Communications Layer, Data/Context Management Layer, 

System/Device Management Layer, Service Layer) is modular, extensible and domain independent 

since it implements a set of principles and guidelines that can be used to build any kind of IoT 

systems. Indeed, integrates existing and develops new technologies to form a “bundle” of 

applications, platform features and services that will bring IoT to life.  

BUTLER has taken advantage of existing efforts, either within the framework of the research-related 

EU initiatives (e.g., especially IoT-A for the Butler Information Model definition and FIWARE for the 

context abstraction), or supported by other industry standards body (e.g., OMA, OAuth, SAML 2.0 

or OSGi). All the components developed in the project, integrated demo (e.g. with iCore platform) 

and trials are available on the IOT OPEN PLATFORMS portal. 
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Figure 29: Relationship of BUTLER with IOT-A functional model 

3.4.2.9 i-Core 

iCore is a FP7-ICT project ended in 2014 and involved 19 partners from industry, research and 

academia, coordinated by CREATE-NET. The iCore proposed solution for addressing the 

heterogeneity of objects and the need for resilience in very large IoT scenarios is a cognitive 

application domain neutral management framework. Although most of the iCore concepts have been 

inherited by the IoT-A (Internet of Thing- Architecture), iCore building blocks refer to four specific 

concepts (virtualization, composition, cognition and proximity) spread among a three-layered (VO 

Level, CVO Level, Service Level) architecture.  

At the first level the focus is on the virtualization activity, that allows linking every real-world object 

(RWO) with a digital always-on alter ego, called virtual object (VO). VOs reflect RWOs status and 

capabilities, and can be dynamically created, destroyed or changed. At the second level, the focus 

in on the composition activity, since VOs are aggregated in more sophisticated entities, called 

composite virtual objects (CVOs). CVOs are cognitive mashup of semantically interoperable VOs 

aiming at rendering services in accordance with both the application and user requirements. At the 

third and last level, the Service one, mechanisms related to User Characterization, Situation 

Awareness and Intent Recognition support the Service Request Analysis, whose output provides the 

input parameters for the composition processes of CVO Level. Learning mechanisms, Semantic 

Query Matchers, and RDF Rules Inference Engines are the enabling supports for the Service 

Execution Request process, in accordance to the stored policies.  
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Figure 30: i-Core generic architecture 

Cognition spreads in all the three aforementioned architectural levels, under different forms 

(optimization techniques, learning mechanism, ontology, etc.). In detail, at VO Level cognition needs 

for VOs self-management and self-configuration in order to handle data flows, to optimize resources, 

to monitor relevant RWOs. At CVO Level, cognition needs for meeting the application requirements 

and the VOs/CVOs capabilities, choosing between VOs/CVOs candidates, recognizing already 

faced scenarios (pattern recognition and machine learning techniques) and reuse or adapt already 

built solutions. Finally, at Service Level cognition is used as semantic reasoning in order to capture 

the application requirements, translate them into appropriate request service format and so guide 

the selection process at the lower levels.  

The proximity concept instead expresses the level of relatedness/usefulness between any IoT 

user/application and any object in order to achieve more and more automation and scalability in the 

cognitive selection of VOs/CVOs.  

Several iCore trials and integrated demo (e.g. with Butler platform) related to different application 

domains (home automation, logistics, security, etc.) have been realized as proof-of-concept. iCore 

resources are subject to different licenses. 
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Figure 31: Relationship of i-Core with IOT-A functional model 

3.4.2.10 Sofia 2 

SOFIA238 IoT is a Platform created by the union of an Open Source project called SOFIA (Smart 

Objects For Intelligent Applications), which is a middleware, and the Indra company effort. 

SOFIA was a middleware architecture that allowed the interoperability of several systems and 

devices. It allowed making real information available for intelligent. This interoperability was achieved 

using different applications that share semantic concepts. 

Some of its main advantages are: 

● Open-source 

● Multi-platform: Available for MS Windows, Android, Linux, iOS… 

● Multi-language: It has libraries in Java, JavaScript, C++, Arduino… 

● Communication agnostic: With implementations for TCP, MQTT, HTTP (REST and 

WebServices), Ajax Push, … 

Late on, Indra company kept evolving the original SOFIA project, creating a platform that focuses on 

enterprise use. The current version of the Platform is called SOFIA2. 

This platform allows the interoperability between multiples IT systems and IoT devices, joining the 

aforementioned middleware with a repository capable of processing thousands of events per second, 

with huge storage and Big Data analytics and additionally offers: 

● Real time interoperability between systems, networks, devices and sensors in a feasible and 

secure way. 

● Design of actuation rules from data received and learning through Big Data Advanced 

Analytics 

                                                
38 http://sofia2.com/ 

https://www.google.com/url?q=http://sofia2.com/&sa=D&ust=1484255088788000&usg=AFQjCNGkgH5yJ0NSavkNSbUq2_Z0iM3GRg
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● Incorporation of georeferenced visualization tools, integrating information from several 

sources and synoptics about the operation. 

 

Even though it’s not Open Source, it provides an Open API and client to access its services. 

Furthermore, SOFIA2 is focused on these areas: 

● Adapting it to the enterprise environment: High availability operation with distributed data 

centres. 

● Working with the Platform was simplified, particularly in the following areas: 

○ Ontology development (ontologies became lightweight) 

○ Query language 

○ Smart Space Access Protocol: With a JSON implementation besides the XML one. 

● Big Data Interfaces (Hadoop) to host huge amounts of data and data warehouse. 

● Integration capacities with back-ends using standard protocols, e.g. Web Services. 

● Plug-in concept to expand the Semantic Information Broker 

● Integrated storage and GIS queries 

● Addition of pluggable security mechanisms. 

● REST interfaces to connect easily from smart phones, devices, RIA applications, … 

To better understand the architecture of the platform, SOFIA2 can be conceptualized through these 

concepts: 

 

 

Figure 32: SOFIA2's conceptual blocks 

 

o Ontology: The entities handled inside the Smart Space and exchanged between the 

Things and the SIB. 

o Smart Space: is the virtual environment where different devices and applications 

interoperate with each other to provide a complex functionality. 

o Semantic Information Broker (SIB): core of the Platform. It receives, processes and 

stores all the information of applications connected to the SOFIA Platform, thus acting as 

the Interoperability Bus. All the existing concepts in the domain (reflected in the 

ontologies) and their current states (specific instants of the ontologies) are reflected on it. 

o Knowledge Processor (KP): Represents each element which communicates with a 

Smart Space by producing and/or consuming information. 

o    Smart Space Access Protocol (SSAP): This is the standard messaging language to 

communicate between the SIBs and the KPs. There are two implementations: XML or 

JSON. 
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It can be appreciated that the main field of work is on the Ontologies, and the interoperability in this 

area. Thus, applications sharing classes (commonly called concepts) from the same ontology can 

easily exchange information using specific instances of those common classes. Sofia2 represents 

ontologies in JSON format to be used by the KP, representing determined data[28]. 

 

Figure 33: Relationship of Sofia2 with IOT-A functional model 

3.4.2.11 ThingSpeak 

Attending to the description of its developers; “ThingSpeak39 is an open source IoT application and 

API to store and retrieve data from things using HTTP over the Internet or via a Local Area 

Network.”[29] 

So is not properly said a platform but an application to support and build IoT information ecosystem 

on the application and service level. The main characteristics it that you can create sensor logging 

applications, location tracking applications, and a social network of things with status updates to 

have a handler application for data. 

Between its functionalities, ThingSpeak allow to storing and retrieving numeric and alphanumeric 

data, the API allows numeric data processing such as time-scaling, averaging, median, summing, 

and rounding. 

Also, there are the called Channels, which are the main build block of the system and store all the 

data that a ThingSpeak application collects, and supports data entries of up to 8 fields that can hold 

any type of data, plus three fields for location data and one for status data (latitude, longitude, 

elevation, and status). The channel feeds support the following formats: JSON, XML, and CSV. 

One can get data into a channel from a device, website, or another ThingSpeak channel. Once one 

collects data in a channel, you can use ThingSpeak Apps to analyze and visualize it. Also it supports 

                                                
39 https://thingspeak.com/  

https://thingspeak.com/
https://thingspeak.com/
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time zone management, read/write API key management and JavaScript-based charts from 

Highslide Software / Torstein Hønsi. 

 

 

 

Figure 34: Architecture of ThingSpeak 

Detailed study of channels allows one to obtain the settings or parameters needed to create the 

communication and to start to retrieve data from the devices to the ThingSpeak applications. 

Channel Settings 

● Channel Name: Enter a unique name for the ThingSpeak channel. 

● Description: Enter a description of the ThingSpeak channel. 

● Field#: Check the box to enable the field, and enter a field name. Each ThingSpeak channel 

can have up to 8 fields. 

● Metadata: Enter information about channel data, including JSON, XML, or CSV data. 

● Tags: Enter keywords that identify the channel. Separate tags with commas. 

● Latitude: Specify the position of the sensor or thing that collects data in decimal degrees. 

For example, the latitude of the city of London is 51.5072. 

● Longitude: Specify the position of the sensor or thing that collects data in decimal degrees. 

For example, the longitude of the city of London is -0.1275. 

● Elevation: Specify the position of the sensor or thing that collects data in meters. For 

example, the elevation of the city of London is 35.052. 

● Make Public: If you want to make the channel publicly available, check this box. 

● URL: If you have a website that contains information about your ThingSpeak channel, specify 

the URL. 

● Video ID: If you have a YouTube or Vimeo video that displays your channel information, 

specify the full path of the video URL. 
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Figure 35: Relationship of ThingSpeak platform with IOT-A functional model 

3.4.2.12 GE Predix 

Predix is the key product from GE in the IoT Platform field, and it is targeted for the Industrial Internet. 

According to GE, this platform should help Business in creating different innovative solutions based 

on Predix capability of handling real-time operational data and transform this into valuable 

knowledge. The platform should be a one-stop shop allowing users to have secure, fast and effective 

deployments for industrial apps. 

Clearly, GE has a very large industrial know-how and this can help companies transform themselves. 

Predix is used first and foremost within GE business, and this knowledge and experience based on 

GE manufacturing operations, securing and monitoring the approximately $1 trillion GE industrial 

assets deployed worldwide, is for sure a unique asset to this tool. 

GE decided on a platform because it offers a standardized way to enable an entire business to 

quickly take advantage of operational and business innovations. By using a platform that is designed 

around a reusable building block approach, developers can: 

 build apps quickly,   

 leverage work elsewhere, 

 reduce sources of error, 

 develop and share best practices, 

 lower risk of cost and time overruns, 

 future-proof their initial investments .  

Independent third parties can also build apps and services on the platform, allowing businesses to 

extend capabilities easily by tapping the industrial ecosystem. The cloud model allows businesses 

to take advantage of key capabilities including: 
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● economics of a centrally managed and shared infrastructure in a pay-as-you-go subscription 

model, 

● scale to meet different business and application workloads by easily adjusting capacity on- 

demand,   

● assets can be connected across the entire business so data can be captured,    

● analytics can be developed and run to deliver insights at all levels of the organization.  

  

A common cloud architecture also enables improved system governance, standardized security 

vulnerability assessments, and release management control and consistency 

By combining cutting-edge IT with leading-edge OT, Predix brings world-class software innovation 

to your assets and operations, while integrating within your organization’s existing IT systems. Predix 

is the only platform designed to:  

● address the key challenges that prevent growth and market competitiveness,    

● capture and analyse the velocity, volume, variety, and complexity of industrial data,    

● meet the demanding needs for industrial grade, end-to-end cyber, informational, and 

operational security.   

● innovate faster by eliminating the barriers to entry to develop industrial apps for new business 

outcomes,  

● take advantage of an industry-wide ecosystem of partners to extend capabilities through 

integrated software, hardware, and services.   

Predix provides fast access to data and timely analytics while minimizing storage and compute costs 

It offers a secure, multi-tenancy model that includes network-level data isolation and encrypted key-

management capabilities It also supports the ability to plug in analytic engines and languages to 

interact and process the data. There are four key components: 

1. Connection to the source:  Connections are established with GE and non-GE machine 

sensors, controllers, gateways, enterprise databases, historians, at les, and cloud-based 

applications.  

2. Data ingestion: Data is ingested from the source in real time, and by bulk upload Workflow 

tools allow the user to identify specific sources and to create default data flows for all—or 

specific—data sets and data types, including unstructured, semi-structured, and structured 

These tools speed the design, testing, and generation of code, making it easier to manage 

and monitor simple, one- time projects to complex, ongoing data synchronization project. 

3. Pipeline processing: The ingestion pipeline can  efficiently ingest massive amounts  of 

data from millions of assets However, data can be messy, arrive  in different formats, and 

come from multiple sources, all of which  make running predictive analytics di cult Pipeline 

processing allows the data to be converted to the correct format so that predictive analysis 

and data modelling can be done in real time The pipeline policy framework provides 

governance and catalogue services, allowing users to perform data cleansing, increase data 

quality, data enrichment (for example, merging with location or weather data), data tagging, 

and real-time data processing.  

4. Data management:  Data needs to be stored in the appropriate data store, whether it be 

time series for machine sensor data, Binary Large. 

   

Object (BLOB) (for example, MRI images), or an RDBMS This allows use of the data for both 

operational and analytical purposes It also provides data blending capabilities, where users can 



 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

80  / 191 

deploy tools to extract value from these data sources to patterns and process complex events (i.e., 

look for a combination of certain types of events to create a higher-level business event) 

To take advantage of the Industrial Internet, integration with existing—and future—equipment, data, 

and analytics is critical, especially in brownfield sites Predix achieves this at a number of levels: 

● Machines: Connect machines of any vendor or vintage Predix machine supports a number 

of protocols, including OPC-UA, DDS, and MODBUS, as well as  TCP-based sockets 

communication. 

● Data: Standard connectors are included for time series, location, ERP, and  CRM 

systems Custom connectors can also be built to incorporate proprietary data schemas. 

● Programming languages / tools: Support is provided for Java, Node js, Python, Artefactory, 

GitHub, JaCoCo, and Ruby on Rails   

● Analytics: Support is provided for Java, Matlab, and Python    

● Mobile devices: By supporting HTML5, existing desktop browsers, smartphones, and tablets 

can be used across the business.    

3.4.2.13 Contiki 

Contiki is a highly portable operating system for constrained systems with a focus on low-power 

wireless IoT devices. While there are many similar OS such as TinyOS, what makes Contiki different 

is the completeness and flexibility it offers to the programmers. 

Contiki can fit into 10kB of RAM and 100kB of ROM. It runs on small microcontroller architectures 

such as Atmel AVR, 8051 SoC, ARM-powered and MSP430 devices and includes a very light 

implementation of IP called uIP. uIP otherwise known as “micro IP”, was designed to incorporate 

minimal set of components, that are necessary for a full TCP/IP stack. It was meant for tiny 8 and 

16 Bit microcontrollers, and this stack includes TCP, UDP, and ICMP protocols along with an 

implementation of IPv6, called uIPv6. uIPv6 is claimed to be the world’s smallest certified IPv6 stack 

for low-cost networked device such as sensors and actuators. 

Operating system features include: 

● Multitasking kernel 

● A Graphical User Interface 

● Process and memory management (The 'protothreads' allow memory-efficient concurrent 

programming on constrained devices) 

● Communication management (Contiki supports both IPv4 and IPv6 stack implementations, 

which include TCP, UDP and HTTP protocols with the smallest footprints) 

LoWPAN (IEEE 802.15.4) and 6LoWPAN are supported by Contiki OS. Low-power wireless 

personal area networks have the characteristics of small packet sizes, low data rates, low-power 

devices and large number of devices. 

Contiki is a completely open source software, distributed using the 3-clause BSD-style licence. The 

complete code is available on github for use or further development. The software was created by 

Adam Dunkels in 2002 for Cisco and has been further developed by a worldwide team of developers 

from Texas Instruments, ST Microelectronics, and many others. Contiki comes with much 

documentation apart from well documented code. There are also community forums where active 

discussions happen. 
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Figure 36 Contiki architecture 

 

3.4.2.14 eCare 

The e-Care Telecom Italia Lab (Tilab) Platform is an innovative cloud based platform and an 

evolution of the commercial service “Nuvola It Home Doctor”, the distance monitoring system, 

developed by TI for the prevention and cure environment. It is composed of two modules: quantitative 

measurement management (collection and analysis of physiological parameters), and qualitative 

measure management (health status analysis through questionnaires). 

The e-Care Tilab is focused on non-mobile remote monitoring based on nonwearable measurement 

devices. It is based on Cloud infrastructures to enable data storing, off-line analysis, and data 

visualization through a remote services. 

During the pilot the e-Care platform consists of a solution used to monitoring Lifestyles at subject’s 

home, recording periodically weight, blood pressure, eating habits and physical activity practice 

through use of electromedical devices interconnected to the same platform. In particular, during the 

experimental nutritional counselling (m-Health) will be carried out: - Recordings weight at home by 

electromedical devices (weekly) - Recordings blood pressure at home, only for subjects with 

borderline blood pressure values (daily). - Real-time recordings of eating habits and physical activity 

practice through computerized questionnaires on e-Care platform (Twice a month). The 

Electromedical devices used are equipped with wireless bluetooth interface, which allows the 

transmission of the detected physiological parameters automatically and wireless from medical 

Devices to Smartphone / Tablet. The electro-medical devices used have the CE mark according to 

Directive 93/42 / CEE certifying that the device respects the Operators and Patients Minimum 

Essential Safety Requirements. It is required the Smartphone / Tablet, appropriately equipped with 

a special application software, so they can to connect to Electromedical Devices During the 

measurement of the subject's parameters, using Bluetooth wireless technology. The gateway 

receives the measurements from devices and sends them to the platform via 2G/3G/4G/Wi-Fi/ADSL 

connectivity. The measurements detected by Electromedical Devices and received on Smartphone 
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/ Tablet are transferred in real time or deferred, via GPRS or UMTS, to the Collection Center (back 

end portal of Central Platform) for next web consultation on web by the health operator and by the 

subject. 

The measurements make by the subject are also stored on their smartphone. Accessing to the tele-

monitoring application the subject can consult all the values: a different graphic connotation of 

measurement also allows to distinguish between measurements already sent to the Platform and 

the measurements still to send. Doctors have at their disposal the instruments to evaluate the results 

(by web access to the medical platform) and, on the basis of patients’ condition, are able to interact 

with them through the available means (SMS, telephone, videocalling) and modify their treatments. 

The Smartphones compatible with the tele-monitoring application must to have Android operating 

system. 

The e-Care Tilab Platform is made of basic components used as middleware: (i) THP (telemedicine 

horizontal platform) that works like a hub to exchange data between other systems; it combines 

multiple frameworks (such as Liferay, Hibernate, etc.) to perform its tasks, and (ii) SH (service 

module) to receive measurements from gateways/devices and send configuration parameters to 

gateways. 

The e-Care Tilab Platform provides different web services and an API through which offers the 

possibility for other applications to use basic services like Calendar, Forum, Rating, etc. Data is 

stored in Oracle databases: one standard that records directory and personal user information, and 

one custom for recording measurements and vertical health information. Data is stored in a cloud 

architecture and could stay on virtual machines different from the application server. 

 

Figure 37 Relationship of IBM Watson with IOT-A reference model 
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3.4.2.15 IBM Watson 

The internet of things on Bluemix utilizes the IBM Watson IoT Platform. Generally, Bluemix functions 

as a cloud platform as a service (PaaS) powered by open source projects and developed by IBM. It 

supports multiple programming languages such as Java, Node.js, Go, PHP, Python, Ruby Sinatra, 

Ruby on Rails and can be extended to support other languages such as Scala using buildpacks. It 

also supports multiple services as well as integrated DevOps to build, run, deploy and manage 

applications on the cloud. Bluemix is based on Cloud Foundry open technology and runs on 

SoftLayer infrastructure. There are initial free plans that include up to 20 devices, 10 applications 

bindings and 100MB of data exchange. Additional usage is billed at a per MB rate. 

Besides common IoT services, Bluemix provides extensions for Business Rules, Hadoop 

processing, Cloudant and MongoDB NoSQL database layer, different DevOps tools, Messaging, 

GeoSpatial analysis, and access to the Watson services, particularly for Natural Language 

Processing. 

Connecting to the platform is possible for devices and gateways. The data is secured in the cloud 

by connecting using MQTT messaging protocol or HTTP. Watson is the hub allowing set up and 

management of connected devices and applications allowing access to live and historical data. Rest 

and real-time APIs are available to facilitate connections between devices and applications.

 

Figure 38: Relationship of IBM Watson with IOT-A reference model 

3.4.2.16 WSO2 

WSO2 is an open source service-oriented architecture (SOA) middleware. It is designed with 

independent components, so it can be adapted for a lean targeted solution to enterprise applications. 

The entire WSO2 middleware stack works seamlessly across private, public, WSO2 managed and 

hybrid clouds, as well as on-premise. 
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To completely protect from lock-in, all WSO2 products are 100% Open Source and based on Open 

Standards. Furthermore, WSO2 products released under the Apache License Version 2.0. WSO2 

it’s open to anyone who is interested in their products to get involved in the WSO2 community. 

Developers can extend the platform, customize code and use any programming model they like, 

report bugs or security vulnerabilities, prepare training materials, participate in forums and events, 

subscribe to public mailing lists, etc. 

WSO2 products make heavy use of Java technology and are built on top of WSO2 Carbon, the 

company's SOA middleware platform. Carbon makes use of Apache Axis2 and encapsulates SOA 

functionality such as data services, business process management, ESB routing/transformation, 

rules, security, throttling, caching, logging and monitoring. 

Not all components are used as stand-alone implementations. Many of them are used to supplement 

the capabilities or add functionality to an implementation of the Enterprise Service Bus. The main 

components that can be used in the WSO2 middleware are: 

API Management 

API Manager: API management platform for creating, deploying and managing APIs to expose data 

and functionality of backend systems. 

API Cloud: Hosted API management service. 

Integration 

Enterprise Service Bus: Allows developers to connect and manage systems and software in 

accordance with SOA Governance principles. 

Data Services Server: Provides a Web service interface for data stores. 

Message Broker: Translates, validates and routes messages between systems. 

Business Process Server: A graphical console to manage business processes and human tasks. 

Analytics 

Data Analytics Server: Real-time, batch, interactive and predictive analytics using enterprise data. 

Complex Event Processor: Real-time event processing and detection. Identify patterns from multiple 

data sources, analyse their impacts. Uses WSO2 Siddhi and Apache Storm. 

Machine Learner: Explorative data analysis using models to generate predictions. Uses Apache 

Spark. 

Identity Management and Security 

Identity Server: Connects and manages multiple identities across applications, APIs, the cloud, 

mobile, and Internet of Things devices. 

Services and App Dev 

Application server: Allows share business logic, data, and process across the entire IT ecosystem. 

It provides hosting shared, multi-tenant, elastically scaling SaaS applications. 

App Cloud: Provides a comprehensive cloud ecosystem that evolves to enable easy and efficient 

integration, identity and API management for your digital enterprise. 

Microservices Framework for Java: Allow to create microservices in Java with container-based 

deployment. 
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Figure 39: WSO2 components and generic architecture 

Management and Governance 

App Manager: Facilitates the process of creating, deploying and managing applications. 

Governance Registry: Storage, cataloguing, indexing, managing and governing metadata related to 

enterprise assets. 

Mobile and IoT 

IoT Server: Internet of things platform for device management. 

Enterprise Mobility Manager: Device management and business policy enforcement for mobile 

devices. 

The following picture depicts how these components are related to the IOT-A model: 
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Figure 40: Relationship of WSO2 with IOT-A reference model 

3.4.3 INTER-IoT Functional Model 

Once we learned the functional model capabilities of the selected set of IoT Platforms (see, sections 

3.4.2), we have been able to design a brand new Functional Model with INTER-IoT’s vision for 

making IoT Platforms interoperable. This Functional Model is based on some concepts defined by 

the IoT-A, but is designed with the aim of dealing with the problem of interoperability among 

platforms. 

The Functional Model to be used in the INTER-IoT has been generated taking in mind that the 

interoperability among IoT Platforms can be done at different layers, as we stated in the Description 

of Work of the INTER-IoT proposal. Therefore, the Functional Model of INTER-IoT is not an IoT 

system model, but a model to enable interoperability among platforms, each of which may follow the 

IoT-A Functional model. The Functional Model is comprised of a set of Functional Groups (FG) of 

INTER-IoT, which have been derived as follows: 

● From some of the main abstractions identified in the Domain Model (IoT Platform, Platform 

Interoperability Services, Platform Ontologies, VE Interoperability Services), the “IoT 

Platform”, “Service Interoperability”, “Semantics” and “Device Interoperability” FGs are 

derived (see 3.2). 

● From some other of the main abstractions identified in the Domain Model related to offering 

access and interactions with devices, which already existed in the IoT-A Domain Model 

(Virtual Entities, IoT Services, Resources), the “Device Access” FGs is derived. 

● From the abstraction identified in the Domain Model related to the physical devices that 

already existed in the IoT-A Domain Model (Device, Sensor, Actuator, Tag), the “Device” FGs 

is derived. 
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● As defined in the requirements, there is a need to access different IoT Platforms to make 

them interoperable at several layers. To address this, the “Platform Interoperability” FG has 

been identified. 

● As defined in the requirements, the users of INTER-IoT will be also applications or systems 

willing to access the different platforms, so an Application FG has been identified for this 

purpose. 

● To address consistently the concern expressed about IoT Trust, Security and 

Privacy in the interoperability realm, the need for a transversal “Security” FG is identified. 

● Finally, the transversal “Management” FG is required for the management of 

and/or interaction between the functionality groups. 

We have generated a novel Functional Model for the INTER-IoT Reference Model that is depicted 

in the figure below. This new Functional Model is fully oriented to the interoperability among IoT 

Platforms. It contains eight longitudinal Functionality Groups (light blue) complemented by two 

transversal Functionality Groups (Management and Security, dark blue). These transversal groups 

provide functionalities that are required by any of the longitudinal groups. 

 

Figure 41: Functional Model of INTER-IoT Reference Model 

The interactions among the different FGs has also been included. Depicted with orange arrows in 

Figure X, is the interaction between two FGs. As it can be seen, the layout of the interaction among 

FGs is quite vertical between the Application FG and the Device/IoT Platform Interoperability FGs. 

The Management FG and the Security FG interact with almost all the FGs in the model, so we have 

decided not to include them in the diagram, being considered these FGs as transversal ones. 

Talking about interoperability, three FGs are out of the scope of this nature of solutions. The 

Application FG is responsible for using the underlying FGs to make use of the interoperability 

features through INTER-IoT. The Device FG can be considered a legacy FG to be integrated, thus 

being too generic and diverse. The IoT Platform Interoperability FG represents external existing IoT 

Platforms that are going to be interconnected or accessed through the INTER-IoT. The Application 

FG, the Device FG, and the IoT Platform Interoperability FG have been excluded from the description 

of FGs as their description won’t add any value from the interoperability point of view. 
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Hereafter, the different five interoperability-oriented FGs (Service Interoperability, Semantics, 

Platform Interoperability and Device Access) are described in detail. 

3.4.3.1 Service Interoperability 

The Service Interoperability FG relates to the need to interoperate different IoT Platforms at the 

Service layers. Interoperability between IoT Platforms can be handled at different layers (e.g. device, 

middleware, service, etc.). The Service Interoperability FG works at the service layer of each 

platform, regardless of their underlying infrastructure. 

The overall goal of the Service Interoperability FG is to provide “compound” services to the 

Application FG, which are comprised of existing services that different IoT Platforms expose. An 

example of this would be a service aimed at offering access to historical data about traffic intensity 

in a region, when that service needs to access a historical data service from different government 

organizations (e.g. National Roads, Regional Road and Local Road Agencies). 

Therefore, the Service Interoperability FG is responsible for accessing and using services that 

already exist in heterogeneous IoT Platforms. It also needs to provide a means to design the new 

“compound” services where some components are the services that exist in the concerning IoT 

Platforms to be interoperated. 

Those new services were done using existing IoT Platform’s services need to be stored. A client of 

this FG will usually be an actor at the Application Layer, who will define new services and will manage 

them. Later, these new services will be executed when requested by the Application FG. The Service 

Interoperability FG will be responsible for executing them, accessing IoT Platform Services and 

providing the results back to the Application FG. 

The Service Interoperability FG can also interact with the Semantics FG for requesting semantics 

features needed for the execution of the services, like, for instance, aligning different ontologies used 

by different IoT Platforms. 

3.4.3.2 Semantics 

The role of the Semantics FG is to deal with the management of ontologies that are needed for 

making IoT Platforms interoperable. Traditional interoperability designs leave semantics tasks to the 

Application side, but this approach lacks the necessary interoperability features. For instance, no 

common data processing can be made at any component, as data ontologies are unknown. 

Compound services are then very limited without semantic support, as the data from different 

platforms is not compatible due to the lack of ontology. 

We consider semantics essential for interoperating IoT Platforms without transferring responsibilities 

to the end user. The Semantics FG is the responsible for providing support to all the management 

of ontologies needed at INTER-IoT. It defines the core ontology used for interoperating a specific set 

of IoT Platforms, each with its own ontology. It is also able to identify the ontologies used at the 

different platforms interoperated for the different devices or services providing information. 

One of the main functions of the Semantics FG is to perform, so called, ontology alignment, which 

means to perform the translation from an origin ontology (maybe from an IoT Platform) to a target 

ontology (maybe needed by a destination IoT Platform). This ontology alignment process is just a 

step needed to perform the semantic translation of content among IoT Platforms, which is the final 

goal of the Semantics FG. The semantic translation among platforms, provided by the Semantics 

FG offers the following functions: 
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● Identify or define the origin or destination ontologies of the data involved in a data 

communication between IoT Platforms. 

● Perform the ontology alignment from these origin ontologies to a common ontology. 

● Perform the ontology alignment from the common ontology to the destination ontology. 

The Semantics FG can provide its capabilities to several FGs with different purposes: 

● Service Interoperability FG. It allows the Service Interoperability FG to perform alignment of 

data ontologies from different IoT Platform services so that common service processing can 

be done. 

● Platform Interoperability FG. The Platform Interoperability FG can use this FG when particular 

services need to translate ontologies from data flowing from heterogeneous IoT Platforms 

with its own ontology into a common one to be provided to a user at the Application FG or, 

for instance, to interconnect sensor data from one to another platform each one of them 

having different ontologies. 

● Device Interoperability FG. It allows this layer to perform ontology translation of data between 

devices, when making Device to Device interconnections, if data format or data ontology is 

different. 

● Application FG. Although users, at the Application FG, will usually need to use the Service 

Interoperability FG, Platform Interoperability FG or Device Interoperability FG to make IoT 

Platforms interoperable in different ways, there is a possibility that the services provided by 

the Semantics FG can be of high value to an external user. This is a secondary functionality 

of interoperable IoT Platforms, but it’s considered interesting when, for instance, a user wants 

to orchestrate its own services using raw data from different IoT Platforms and this data 

needs to be semantically homogenized. 

3.4.3.3 Platform Interoperability 

The Platform Interoperability FG is a central group that takes place in the most cases of 

interoperability between IoT Platforms. Its main goal is to interact with the different IoT Platforms to 

be interconnected. This FG abstracts the remaining groups from knowing about the details of the IoT 

Platforms, so much in terms of communications as in terms of capabilities, communication, security 

and so on. 

It’s important to highlight that the Platform Interoperability FG is the responsible for talking with the 

IoT Platforms, not for implementing any of the features that the IoT Platforms provide (what, in IoT-

A’s Functional Model, is described in the IoT Process, IoT Service or Virtual Entities FGs).  

The Platform Interoperability FG has three main functions: 

● To enable the access to different IoT Platforms. This includes the use of the appropriate 

protocols and APIs at middleware level that each platform exposes. 

● To keep track of the interconnected IoT Platforms and their devices, so that they can easily 

be found, when needed. This allows the remaining groups to not to know about the location 

of the platforms, or how the devices are connected to them. 

● To perform device and platform interactions, like querying data from different devices and 

platforms in a common way, mapping sensor data flows from a source to a destination, 

offering subscriptions to sensor data, etc. 

 

This FG makes use of the Semantics FG, for instance, to translate ontologies from data flowing from 

heterogeneous IoT Platforms with its own ontology, into a common one to be provided to a user at 
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the Application FG. The Platform Interoperability FG talks also with the Service Interoperability FG 

to enable the access to services existing in an IoT Platform, or to provide a subscription to a flow of 

data coming from any IoT Platform. 

The Platform Interoperability FG is the only FG that interacts with the IoT Platform FG. It’s 

responsible for the aspects of dealing with these IoT Platforms (protocol communication, APIs, 

security features, data access, etc.). 

On the device side, the Platform Interoperability FG does not interact directly with devices connected 

to the IoT Platforms. Note that, regarding the interoperability at the device layer, the Platform 

Interoperability FG can communicate with the Device Interoperability FG for two reasons: to enable 

the flow of data coming from devices not connected to an IoT Platform towards an existing IoT 

Platform, and for using this very data as another data source to be accessed by the Application or 

Service interoperability FGs for interconnection purposes. 

3.4.3.4 Device Access 

As it has been described in the Document of Work of the project (DoW) and has widely addressed 

in D3.1, there is a great need for making legacy sensor systems or disparate devices interoperable, 

as those connected to the real IoT Platforms. In order to allow the upper functional groups to be able 

to access these devices, this functional group is needed. 

The main role of Device Access FG is to provide transparent access to very different devices when 

they are not connected to real IoT Platforms. 

The main functions of this FG are: 

● To enable the communication with the devices, independently of the access protocols, acting 

as the edge of the interoperability at low level. 

● To abstract the physical entities and their related devices, which work in physical plane, from 

the concepts of IoT Service and Virtual Entity. IoT Service and Virtual Entities are closely 

related, and provide access to the devices and their resources in the virtual plane. The 

relationship between a Virtual Entity FG and an IoT Service reflect the features of the Domain 

Model related to the VE, Physical Entity, IoT Service and Resource. 

The Virtual Entity and the IoT Service are like the groups described in IoT-A functional model with 

the same name. In the figure below, the basic concepts of Virtual Entities, IoT Services, Resources 

and Devices are described: 
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Figure 42: Relationship among main entities about devices in the physical and virtual plane 

 

To understand the different concepts, an example has been depicted as follows: 

 

 

Figure 43: Example of relationship among main entities about devices 

As of IoT-A: “The Virtual Entity contains functions for interacting with the IoT System on the basis of 

VEs, as well as functionalities for discovering and looking up Services that can provide information 

about VEs, or which allow the interaction with VEs”. “The IoT Service contains IoT Services as well 

as functionalities for discovery, look-up, and name resolution of IoT Services”. 

The Device Access FG interacts with the Device FG to interact physically with the devices. It also 

interacts with the Device Interoperability FG, to enable the interoperability at device and network 

layer and also to integrate with the Platform Interoperability FG as described in section 3.4.3.5. 
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3.4.3.5 IoT-A Background 

The role of the Device Interoperability FG appears once the Virtual Entities and IoT Services are 

available. The Device Interoperability FG addresses the functionalities around making the devices 

interoperable. 

The Device Interoperability FG is responsible for defining the rules to interconnect devices among 

them, achieving the D2D (Device to Device) interoperability. It may enable that, for instance, when 

a person leaves a house, its heating system goes in low mode. 

This FG is also in charge to perform the Network to Network Interoperability for the networks the 

devices are connected to. This implies routing, roaming and off-loading capabilities to enable the 

devices to move among different networks. 

The Device Interoperability FG can interact with the Platform Interoperability FG in two ways: it can 

act as a client of IoT Platforms, for interconnecting legacy or disparate devices to existing IoT 

Platforms through the appropriate device register and data retrieval/actuating functions typical these 

platforms. It can also act as a kind of IoT Platform for the Platform Interoperability FG, when there is 

no IoT Platform where to attach the devices, but an application can access these devices for 

interoperating with other IoT Platform information. In this last case, the Platform Interoperability FG 

would interact with devices through the Device Interoperability FG. 

Semantics can also be a resource to be used for translating sensor data. the Device Interoperability 

FG can communicate with the Semantics FG to achieve this. 

3.4.3.6 Management 

The Management FC considers all the functionalities needed to rule the interoperability among 

different IoT Platforms. The Management FC is thus, responsible for initializing, monitoring and 

modifying the operation of the interoperability among IoT Platforms. 

According to Pras A. [34], the main reasons for needing management fall within the following groups: 

Cost Reduction 

Users, obviously want to operate a system at the lowest possible cost. This implies that the design 

of the solution should satisfy a great number of potential users and situations so that the cost can 

be recovered among many users. To achieve this, the design should be as multipurpose as possible. 

It means that the system should parametrized to a wide range of scenarios and user needs. The 

Management FC will be responsible for setting up these parameters for any final deployment of 

INTER-IoT. 

Lack of design experience 

We cannot assume that users of INTER-IoT will always be high-skilled IT engineers that can easily 

understand all the concepts and apply them right, finding good solutions for each and every problem. 

Some of the problems that will face our end users will arise during the operation phase of the system, 

not during the design phase. For instance, an IoT Platform can decelerate its performance or even 

shutdown completely, some devices can have malfunctions overloading with irrelevant data, some 

external component can inject too much traffic in form of requests, like a DDoS attack or a service 

become unavailable at a certain moment. 
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To address this reality, the Management FC will need to include capabilities to mitigate the impact 

of these issues without a necessary good design of the interoperability made by an INTER-IoT user. 

Some examples of this would be to monitor IoT Platforms state or to handle incoming requests. 

Fault Handling 

Failures are inherent to any operating system. They can have many causes, not being possible to 

prevent all the failures. As the consequences of these failures can be very severe, it’s necessary 

that the Management FC includes strategies and actions to control the operation of the 

interoperability solution. 

Such control implies the monitoring of the whole system, the prediction of potential failures, the 

detection of existing failures, the mitigation of their effects and, if possible, to repair them. The 

Management FC is responsible for addressing these features, through monitoring capabilities and 

the possibility to change operational parameters during run time, such as platform and device 

registries, communication channel re-mapping, service catalogue status, etc. 

Flexibility 

Traditional interoperability design is based on specific user requirements, which drive the design of 

a specific solution by, for instance, defining specific communications or translations between two IoT 

Platforms. The danger of this approach is that, on one hand, requirements can change in time, 

affecting the already deployed solution, and on the other hand, each interoperability scenario may 

have its own specific requirements. 

Instead of designing a new interoperability solution each time, it is better to include some flexibility 

in INTER-IoT, so that the Management FC can adapt to different situations and react to changes 

during the operational phase. 

Some flexibility features have been included in the requirements. The Management FC is 

responsible for supporting these features during the operational phase. Some examples of this is 

the ability to use different ontologies for the same iot Platform and change them during runtime, to 

be able to define new services and have them available, or to define new rules for making devices 

interoperable among them. 

3.4.3.7 Security 

The Security FG is responsible for ensuring all the security aspects involved in the interoperability of 

IoT Platforms. The security in our realm has two faces: 

● Management of the security aspects related to the connection with underlying IoT Platforms. 

This implies to accomplish with the different security features that the platforms require. 

INTER-IoT will need to tackle the user authentication for connecting to a platform, the 

authorisation management (e.g. use of authentication tokens) and the encryption of some 

communications. Moreover, the access to the different IoT Platforms maybe user-based or 

anonymized depending on the decision of platform owners, so it must be handled by INTER-

IoT with flexibility for each scenario. 

● Management of the internal security of INTER-IoT. The connection to INTER-IoT must be 

secured, with appropriate authentication capabilities, and authorisation management. The 

identity of each user must be preserved, so much for keeping the identification until the IoT 

Platform, as to keep track of the anonymization when talking with the IoT Platforms. This 

internal security also implies the permission assignment to specific IoT Platforms and its 

resources (devices, services, etc.) under certain conditions. for instance, a platform owner 
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may will to give access to a subset of devices to a set of user roles, but only within a time 

range, or when mobile devices are at a certain location. 

The Security FG interacts with all the different groups and will allow that certain accesses are made, 

or that certain interconnections between two platforms are authorised or not. 

3.4.4 Conclusions 

In this section, we analysed the most relevant IoT platforms. Clearly, as the number of them is over 

300, this is not a whole comprehensive study, not a taxonomy or a benchmarking, but rather an 

understanding of what are the main characteristics of the different efforts in this area, trying to see 

through a reverse-mapping on the IoT-A Functional model where it would be possible to find 

analogies and similarities to the different IoT Platforms. 

Given the work above, it’s then possible to derive the Functional View of the different schemas, as 

explained in the introductory section. The Functional View will allow us to assess the different 

functional features of the platforms, and to propose an architecture for our INTER-FW product. 

3.5 Communication Model 

3.5.1 Introduction 

The approach of INTER-IoT to the CM, is the creation of a layered solution that is equivalent to each 

of the IoT aspects as is shown in the figure. 

 

Figure 44: Comparison between traditional OSI model, IoT stack and INTER-IoT stack 

 D2D: is equivalent to the Physical and Link aspects, due to is in charge of manage the 

communication technologies of the low levels of the stack, that includes technologies as WiFi, 

Ethernet, Bluetooth, etc. that belongs to these abstraction layers. 

 N2N: is equivalent to the Network & ID aspect, due to is in charge of addressing and routing 

the information through the nodes of the IoT system as well as the packet filtering and traffic 

control. 

 MW2MW: is equivalent to End-to-end communication, that involves application protocols to 

exchange the information (HTTP, MQTT, CoAP…) and part of the presentation and 

accessibility to the data, stored in the IoT platforms. 
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 AS2AS: Is in this case equivalent to the Data aspect, due to the interoperability carried out 

in this layer is mostly through the translation from one data format to another, (e.g. CoAP is 

translatable to HTTP by decompression or XML is translatable to EXI by compression, JSON 

is translatable to XML by mapping…). 

 DS2DS: involves, for sure, the Data aspect because is in charge to translate semantics of 

messages exchanged by IoT Artefacts (platforms, gateways, application, etc) within the 

INTER-IoT system. 

3.5.2 Communication Protocols on IoT Platforms 
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I-CORE   X   X X X X  

Table 4: Summary of most used communication protocols in IoT Platforms. 

What is notable in the above table is that, even with the heterogeneity in the IoT environment, some 

protocols are winning places between the one most used for this environment. Thus, it can be noticed 

that low-level layers (that involve PHY, MAC and network), are implemented mostly in all gateways 

or frameworks. Examples of protocols in these are: Bluetooth, WiFi, ZigBee or those covered by the 

IEEE 802.15 standard. 

 It is true that some other protocols are widely used, by sensor or devices, as LoRa, ANT or cellular 

network protocols, but still the most common protocols implemented in the systems analysed are 

the ones listed in Table 4 

  From the other side, at application level something similar occurs, some protocols are already 

widely spread meanwhile others have been appearing with the increasing of smart devices 

connected to the network. The most common web service protocol used over the transport layer was 

HTTP, over TCP, but with this growth other protocols as CoAP, over UDP, or even AMQP, over TCP, 

have been introduced in the frame of communication technologies. So, this, HTTP, MQTT, CoAP 

and AMQP are the protocols implemented in most IoT platform with services, normally, web services. 

Even if the most suitable protocol for IoT could be CoAP, or even others as LWM2M, for its size, 

speediness, low power consumption… yet HTTP, together with REST architecture of web services, 

is commonly used for all platforms. 

This way, implementing these two protocols, the platform can communicate for one side with 

constrained devices to obtain the information using CoAP, and communicates with other less 

constrained devices or applications using HTTP or MQTT, creating a trade-off between performance 

and complexity. 

 

Figure 45: Comparison between traditional Internet stack and the IoT network stack. [32] 
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For that reason, INTER-IoT implements the most common protocols within each layer to allow the 

communication and interoperability between different services and resources that belong to different 

devices, platforms, or even in different sub-networks. 

3.5.3 INTER-IoT Domain Model element communications 

The Communication Model is used to identify the communication system elements and/or Users 

among those defined in the Domain Model, but, taking in account that the CM define Users in 

different categories as: Human Users, Services or Active digital artefacts. 

So that, the INTER-IoT Communication Model explains the interaction between elements on the 

INTER-IoT Domain Model, previously identified in Section 3.2.3, and how to communicate two 

Entities through its relevant layers. 

3.5.3.1 Device to Device Interactions 

In Device to Device interactions the Device is composed by a Sensor and Actuator, or both, and with 
a unique direction for it to be addressable. Optionally, a Device could be just a simple Tag referencing 
this Device. This is the main component for the interaction and with this is representing the Physical 
Device in our Domain Model. Most of cases, but not always, the Physical Device is represented or 
described in the Virtual plane by the Virtual Device component and together with the Physical Device 
counterpoint they conform the Augmented Entity; with the characteristics and features of the Physical 
Device and the extra-information Metadata of the Virtual Device. 
 
Additionally, other resources of the D2D gateway, the N2N network or the Platform will appear in the 

communication. The implementation of the Domain model in the Device architecture described in 

the deliverable D3.1 is as follows: Device (Sensor, Actuator or Tag) represents the objects we desire 

to interconnect, Physical and Virtual Entities are concepts implemented by the gateway as well as 

the Augmented Entity and the Interoperability resources or Services are provided by the components 

within the D2D gateway solution(see next figure). 

 

Examples of interaction: 

● A device communicates through the Physical gateway 
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Figure 46: Domain Model entities involved in Device-to-Device communication when the device communicates through 
the physical gateway Device communicates through the virtual gateway 

The same way, the values obtained by one Device (sensor) could be measured until the virtual part 

of the gateway to be forwarded to another device (actuator) connected to the virtual part. 

In this interaction, the Virtual Entity located in the gateway takes part on the communication (see 

Figure 47). 
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Figure 47: Domain Model entities involved in Device-to-Device communication when the device communicates through 
the virtual gateway 

In both cases, one of the devices could be another Entity, as a Platform, or another gateway but this 

interaction will be contemplated in future sub-sections. 

3.5.3.2 Network to Network Interactions 

Examples of interaction: 

● Device communicates with resource in the network. 

In this case, the interaction takes place within the network, when a device or entity interacts with a 

resource or service hosted and running in the in the network, or even when one or both element that 

want to interact belong to this network (see next figure). 
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Figure 48: Domain Model entities involved in Network-to-Network communication when the device communicates with 
resource in the network 

● Platform service or a resource communicates with another resource in the network 

The domain model element communications affecting the network layer are the IoT Platforms and 

Platform services (red) requesting information about the IoT Services (green) available in the 

resources specifically network resources (yellow). See Figure 49. 
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Figure 49: Domain Model entities involved in Device-to-Device communication when platform communicates with 
another resource in network 

3.5.3.3 Middleware to Middleware Interactions 

In middleware to middleware interactions, Platform Ontology and IoT Platform represent key 

components that interact with underlying middleware IoT platforms. Platform Ontology holds the 

“knowledge” about how to talk to and understand an IoT middleware implementation, while the IoT 

Platform entity “knows” about a specific IoT middleware deployment. Those two components thus 

appear in all Middleware to Middleware communication scenarios. In specific cases, they are aided 

by the other two additions to the INTER-IoT domain model to the IoT-A model: Platform 

Interoperability Service and Platform Service.  

The implementation of the domain model in the middleware architecture described in the deliverable 

D3.1 is as follows: Platform Ontology and IoT Platform are implemented through the Communication 

and control segment (Platform Ontology and IoT Platform) and Bridges segment (IoT Platform), while 

Interoperability Service and Platform Service are partially implemented through the MW2MW 

services segment. 

Examples of interaction between Middleware and Middleware are: 
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 User – Middleware of IoT Platform 

The interaction between user and middleware entails the usage of the platform’s ontology, 

knowledge of which is stored within the Platform Ontology component, as well as the usage of the 

IoT platform itself, which is represented with the IoT Platform component. With the aid of these two 

components the interaction with specific segments of underlying IoT platforms (marked in yellow) is 

made possible (IoT Service, Virtual Entity, Augmented  Entity, Physical Entity). 

 

 

Figure 50: Domain Model entities involved in Middleware-to-Middleware communication when the user communicates 
with an IoT Platform 

 User configuring a Middleware – Middleware between IoT Platforms 

In the case of a user attempting to configure the INTER-IoT middleware, we highlight the component 

Platform Ontology, due to the need to understand platform’s specific ontology, as well as the 

components IoT Platform (implementation of the platform itself), Platform Service (providing the 

support for configuration of a specific platform) and Platform Interoperability Service (providing 

support for configuration of interoperability between platforms).  
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Figure 51: Domain Model entities involved in Middleware-to-Middleware communication when the user configures a 
Middleware to Middleware communication between two IoT Platforms 

 Direct communication Middleware – Middleware between IoT Platforms 

Direct communication between two middlewares includes the usage of the Platform Ontology 

component (providing the basis for ontology translations between different platforms, operating 

under the two middlewares). The IoT Service component of one middleware platform initiates 

communication through the IoT Platform component, using the knowledge about the ontology of the 

other middleware and accessing the Virtual Entity component (which could be a device, to which it 

tries to write data) in the other middleware. 
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Figure 52: Domain Model entities involved in a direct Middleware-to-Middleware communication between IoT Platforms 

3.5.3.4 Application & Services to Application & Services Interactions 

In AS2AS interactions Platform Service, IoT platforms and Platform Interoperability Service 

represent the key components that interact with the IoT Platforms. 

Platforms Service exposes functionality about Resources related to Virtual Entities, they offer more 

elaborated services that internally make use of IoT Services. For that reason, they are placed in the 

Application and Service Layer and can be used as building blocks for creating more complex 

interoperability services among different IoT platforms. 

The Platform Interoperability Service handles the definition of new compound services that appear 

as a consequence of using, and mixing in any way the Platform Services from one or more IoT 

platforms. So, the Platform Interoperability Service is linked with the different Platform Services it 

uses. The used Platform Services are just part of IoT Platforms. In some cases, it would be 

necessary the interaction with Platform Ontology, because it holds the information about how to 

understand the services from the IoT Platforms.Examples of interaction: 

● User creating a Composed Service. 

A user wants to create a composite service, he needs to interact with the Platform Service of the IoT 

Platforms. He also can use a service that have been already composed communicating with the 

Platform Interoperability Service to be possible to compose it with other Platform Services. 
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Figure 53: Domain Model entities involved in Application&Services-to-Application&Services communication when the 
user creates a compound service 

● Service of an Iot Platform communicates with a Service from another IoT Platform 

The following interaction takes place when a Service from a platform desires to communicate with 

another service from another platform. When two services communicate it is reflected in the Platform 

Interoperability Service that indicates which Platforms Services from the IoT Platforms participate in 

this composition.  

Finally, the Platform Ontology will perform the need of ontology translation between these services, 

to understand each other. 
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Figure 54: Domain Model entities involved in Application&Services-to-Application&Services communication when the 
compound service communicates with a Service from another IoT Platform 

3.5.3.5 Data & Semantics Interactions 

 

Figure 55: Domain Model entities involved in Data&Semantics Interactions 
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Interactions between Domain Model elements on DS2DS layer are exclusively between an IoT 

artefact (platform) and its ontology. They are two-fold and divided into preparation of ontology and 

its usage. 

In the INTER-IoT approach, every platform (system, application, etc.), which would voluntarily like to 

interoperate with one or more other platforms needs to be prepared and willing, first. In order to 

enable semantic interoperability, and explicit ontology is needed. Some platforms, or middlewares 

(e.g. UniversAAL, OpenIoT) already need to have OWL ontologies ready before deployment. These 

ontologies can be used in INTER-IoT. 

In other cases, any semantics present in a platform needs to be extracted and formalized into an 

OWL ontology. This process is called “lifting to OWL”, and is described in [1]. In short, lifting to OWL 

is a process in which semantics of platforms, sometimes contained in data schemas, are made 

explicit and stored in an ontology. The most popular languages that can be used in lifting are:  XML, 

RDF, JSON LD, but other formalisms are also acceptable. Such formal description must cover all 

aspects of data communication that will be needed for interoperability. It must represent entities (and 

their properties), which exist “inside” of the artefact. This formal description is to be used in creation 

of platform ontology, as well as in instantiation of communication channel(s) needed to send/receive 

messages to/from other artefacts (platforms, devices, middleware, services, or applications). 

Once a platform has an ontology it is then used to create alignments to and from the GOIoTP, that 

later serve as configuration for IPSM. The semantic translation process that takes place inside IPSM 

is non-discriminative when it comes to contents or intentions of communication. It simply translates 

the meaning of messages, according to configuration of the communication channel that received 

the messages. Dynamic creation of communication channels allows DS2DS interactions to serve 

multiple purposes and assist in operation of other INTER-IoT components, as well as other artefacts, 

if they wish to use IPSM as a “stand-alone” service within INTER-IoT. 

It should be stressed that data processing within a single artefact can be represented through more 

than one ontology (or, possibly, modules within a single modular ontology). Such situation can 

materialize when different ontologies are used in different “conversations” (concerning different 

aspects of data, usually with different artefacts). In this way, proposed approach gains flexibility and 

addresses the issue of scalability (semantic processing is applied to smaller (sub-)ontologies). 

3.5.4 INTER-IoT Channel Model for Interoperability 

3.5.4.1 Introduction 

The channel model depicted in this section comes from the concepts presented in 7.6.4 of [25]. The 

following points aim at explain how are the different layer protocols involved in the interoperability. 

This first draft helps on selection the appropriate mechanisms to build an effective software 

architecture capable to fulfil the objectives of the project. 

Interoperability can only be achieved if every layer can communicate to its counterpart (at the same 

layer level) on another device. For this reason, an architecture has been set up in a way that allows 

virtualization at low-levels already. 

Each paragraph of this section will describe a certain interoperability action. These actions will be 

illustrated by both the gateway configuration, as well as the virtual configuration for multiple protocol 

stacks. 
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3.5.4.2 Device to Device Interactions 

Device to device interaction or D2D interoperability will be made possible by the Rules Engine that 
is acting on the dispatcher. The image below is a screen-capture given from the upper part of the 
device layer. This is where the Rules Engine is located.  

 

 

Figure 56 Device-to-Device interactions with location of Rules Engine 

The Rules Engine will instruct the dispatcher to route a signal not to the MW-layers above, but via 

the MW modules and bridges to another device dispatcher to initiate D2D interoperability. Which 

bridge is used will be managed by the GW configuration, the Rules Engine will only interfere when 

interoperability is needed. When data needs to go up into the higher layers the dispatcher will simply 

get the specific bridge information from the GW configuration manager. 

The Interoperability actions are programmed into the rules engine through the API. The user must 

set up the mapping of the communication in an easy way through a user interface which will be 

running on the API to allow the creation of inter-operability communication mapping. 

The entire upper part of the gateway as shown in the figure can be implemented in the virtual world 

and does not necessarily have to be implemented on the device. When preferred however it can 

also be implemented on the device. 

Device to device interoperability is possible in two ways. The first way is the simplest way, that is 

when the sensor and actuator are both connected to the same gateway. In this case, there is a direct 

link inside the gateway. The dispatcher will route the communication via the rules engine to the 

correct protocol module which will route it further to the connected access network.  

The schematic representation is depicted below. 
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Figure 57 Communication diagram in device-to-device interoperability 

In this case the gateway is implemented in the physical device. When the gateway is virtual or when 

the sensor and actuator are connected to different gateways, a more complex situation occurs. 

In case of a virtual gateway and sensor and actuator connected to the same device there is only 1 

gateway, in the representation below is the situation given for sensor and actuator on different 

gateways. 

For this case the communication is going through the physical gateway, which translates it to 

Ethernet and sends it to the virtual part. Here the dispatcher will route the communication via the 

rules engine, only this time the communication channel is routed to the middleware layer. In this 

layer, can, depending on the settings, interconnectivity be created on several levels. 

 

Figure 58 Communication diagram in device-to-device interoperability with virtual gateway 

3.5.4.3 Network to Network Interactions 

The interaction of a resource from an IoT Device that communicates with other resource from another 

IoT Platform will be used as an example of interaction in the N2N layer. This interaction is described 

in the image bellow through an example with the protocol stacks that take part in the interaction. 
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Figure 59 Communication diagram in network-to-network interoperability (SDN) 

A specific resource from an IoT Device located within it wants to communicate among the SDN 

network. For that purpose, the Devices connect with the AP or Switch that is connected to the 

network as a network gateway. This switch, if needed connects with the SDN controller to updates 

the routing information table to know the next hop. Finally, the information arrives until the last switch 

to which is connected our IoT Platform destination. 

An example of software defined radio communication is indicated in the image below.  

In this example, an application on the left side of the image wants to send a message to another 
application. The platform supplying the message must first connect to the SDR via Ethernet. The 
SDR, functioning as a level 2 bridge, will send the information from the external SDR unit to the SDR 
unit connected to the Inter-IoT SDR gateway module. The information is then passed on to the 
receiving application. The SDR unit in this example provides an additional entry/exit point to the 
Inter-IoT that can operate to meet end user requirements if standard methods are not available. 
 

 

Figure 60  Communication diagram in SDR 
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3.5.4.4 Middleware to Middleware Interactions 

An example of middleware to middleware communication is indicated in the image bellow. 

Application on IoT middleware on the left side of the image wants to send a message to another 

application on another IoT middleware on the right side. The message must first cross a bridge from 

middleware of the sending platform into INTER-IoT middleware, then be semantically translated in 

the presentation layer of the INTER-IoT middleware into the format, understood by the target 

middleware, only to cross another bridge that is associated with the middleware of the receiving 

platform. The second bridge also routes the message to the target middleware through WiFi instead 

of Ethernet, demonstrating the technical agnosticism of the INTER-IoT middleware. 

 

Figure 61: Communication diagram in middleware-to-middleware interoperability 

3.5.4.5 Application & Services to Application & Services Interactions 

The interaction of a Service from an IoT Platform that communicates with a Service from another IoT 

Platform will be used as an example of interaction in the AS2AS layer. This communication is 

described in the image bellow through an example of stack protocol that takes part in the interaction.  

 

 

Figure 62: Communication diagram in AS-to-AS interoperability 

Application within an IoT Platform on the left side of the image wants to send a message to another 

application in another IoT Platform on the right side. It works similarly as in the MW2MW layer. 
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The message comes from the Platform X Service to the Orchestrator inside INTER-IoT AS2AS 

solution. The orchestration module would be responsible of making calls to IoT Platform Services 

and carry out the internal processes necessary to make the composition successful. 

If needed, a specific translation of presentation format takes place in the translator component of the 

AS2AS. It performs translation of input messages, expressed in source format, to output messages, 

expressed in target format. 

Later, the parsed message, with the format of the destination platforms, goes from the Orchestrator 

to the receiving Platform Y Service. 

3.5.4.6 Data & Semantics Interactions 

DS2DS layer interactions are limited exclusively to application layer software. In DS2DS a central 

component acts as an intermediary in communication, and has its own communication infrastructure. 

To achieve interoperability on data and semantics layer, IoT platforms (and other artefacts) use this 

central mediation component that acts as a “semantic bridge” between IoT artefacts ((platforms, 

gateways, applications, etc.). This mediation component, which can be named IPSM (Inter Platform 

Semantic Mediator), performs the semantic translation (configured with ontology alignments) of 

incoming messages, representing semantics of artefact P1 to semantics of artefacts e.g.  P2, P3. 

Figure 1 shows a general view on the sample interaction, whereas Figure 63 shows details of the 

interaction between source artefact, IPSM and target artefacts. 

 

 

Figure 63 Interaction between source artefact, IPSM and target artefacts 

IPSM must expose a mechanism for configuration. An additional communication infrastructure is 

required to enable communication between IPSM and all other artefacts that are to use its semantic 

translation services. Communication infrastructure can be based on communication channels 

consisting of a source, sink, and a series of flows between sources and sinks. The IPSM will work 

concurrently servicing multiple communication channels each representing a single 

“communication”. While each channel will have one input and output, multiple artefacts will be 

allowed to use its output, and write to the input. Channels may be combined in the communication 

infrastructure to facilitate one-to-many, many-to-one and many-to-many communication.  
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4 INTER-IoT Reference Architecture 

4.1 Functional View 

4.1.1 IoT-A’s Functional View 

IoT-A’s Functional View has the same nine functional views than the Functional Model: 

● Application 

● Service Organisation 

● IoT Process Management 

● Virtual Entity 

● IoT Service 

● Device 

● Management 

● Security 

The Application FG and the Device FG are considered out of the scope of the IoT-A Reference 

Architecture, so they are not described in the Functional View. In IoT-A’s diagram of Functional View, 

they are coloured in yellow to indicate they are not described. 

The Functional Components of the seven functional groups included in the IoT-A Reference 

Architecture are included in the following diagram: 

 

Figure 64: IOT-A functional components 

The frames inside each functional group are the Functional Components identified for each 

Functional Group. The description of each Functional Group has been done in the Functional Model. 

Describing each of the Functional Components of the Functional Groups does not add any value to 

this document. If the reader is interested in more details, a read to [25] is recommended. 
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4.1.2 IoT Functional View Platform Analysis 

Following the functional view proposed in IOT-A, an analysis of the platforms under study has been 

done. In the next subsections, commonalities and discrepancies between platforms will be analysed 

for each functional group, paying attention to the relevant functional components in IoT-A.  

To perform the study, each platform has been studied and determined if they provide at least one 

feature to cover partially or completely each of the functional components of the IOT-A. Then, the 

number of the FC-compliant has been aggregated, giving an idea of the availability of the features, 

also revealing what is considered important in the industry and academia, which has a relevance in 

order to prioritize functionalities when a great adoption is intended. 

This analysis aims at two main objectives, on one hand, an analysis of the so-identified market and 

research relevant platforms, which (as aforementioned) helps to find overall connection between 

different solutions and determine which ways of interoperability will be more effective and beneficial 

in the long term. On the other hand, the project has a limited scope and it will offer support (at 

integration-ready level) to a limited number of platforms as already stated in several points of this 

documents. The re-elaboration of the analysis with the initially supported platforms will give also an 

idea of which interoperability layers’ mechanisms prioritize in order to provide early results to support 

pilots and third parties to join. 

Complete dataset with annotations are available in this document in the Annex 3. 

4.1.2.1 Application 

The application comprises all those features that are domain/application specific and thus, they are 

out of the scope of the definition of the platform interoperability, as is defined in INTER-IoT. 

While in the study performed some aspects of the application FG were described (such as the 

domains where the platform operates or offer specific solutions (see 3.4 and subsections), the 

conclusions of them are not relevant for the functional view or the development of a reference 

architecture to build interoperability mechanism between IoT platforms. 

For completeness, the prevalence of the domain aimed in the platforms under study is shown in the 

following histogram:  
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Figure 65 Domain prevalence in studied platforms 

The analysis reveals that the domains with more support are healthcare, transport, home, city and 

parking. This shows the areas where the IoT is expanding faster (such as transport) or it has a 

smoother implantation (as in cities). 

4.1.2.2 Management 

 

The study of the Management functional components for the set of 16 

platforms shows a clear predominance of the Configuration FC (implemented 

in 12 out of 16 platforms analysed) and the Reporting FC (10/16).  

This shows that system initialization including the attached devices and the 

assessment of the overall performed are considered key pieces for an IoT 

platform. However, in general, the implementation of the IOT-A FCs of this 

group is high in the analysed set, finding only a significant lack of coverage 

on the State FC, which can be related to the legacy systems support that 

many of the platforms present. The legacy systems coming from home 

automation or telemetry often do not support queries or network info 

reporting, making virtually impossible to feature the state of the device 

networks. As a matter of the facts, those platforms that were born with a 

strong support of these communication protocol, do not care much about 

those features that were not available for their focus technologies. 

In the case of the selected platforms to be natively supported in INTER-IoT 

(see Figure 10), all the FC similarly covered, being particularly remarkable, 

as in the case of the Configuration, which is implemented by all of them. In 

Figure 66 Management 
FCs prevalence in 15 

platforms study 
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the rest of FCs, the 3/5 platform cover them, a prevalence similar 

to the results of the complete study. 

For the purpose of the INTER-IoT Project, this means that, at 

management level, a common configuration interface could be 

implemented for the INTER-IoT user, as part of the framework 

planned. Other features would have compatibility with some but not 

all the initially supported platforms, so that the feasibility is limited 

and the decision of implementation depends strongly on the 

requirements of the project and the INTER-FW (see deliverables 

D2.3 and D2.4). In general, FIWARE, MS Azure and Open IoT are 

the most complete platforms in terms of system management 

among the selected platforms, while extending the scope to the 

complete study, GE Predix and Sofia2 also have full feature set. 

 

 

 

 

4.1.2.3 Management 

 

The service organisation group, which evaluates the ability to manage 

services in the platforms is highly supported by all platforms, presenting 

figures of coverage about the 60% ~ 70% of each functional component. In 

this case, the degree of implementation is similar in the three components, 

being slightly more popular the service orchestration. Service organisation 

is a concept highly bound to the service presence itself, so it can be 

observed in the detail that is very usual that platform with more upper layers 

implement at least two components of this group while more middleware-

centric platforms (such as AllJoyn or OneM2M) do not implement any at all, 

since they are device focused in spite of the service focus of the former. 

Figure 68: Service organisation FCs prevalence in 
15 platforms study 

 

For the selection of platforms initially supported, the situation is 

different. OneM2M is a middleware centric platform, so it does not 

give support to any kind of service composition, not including 

services in its domain model. The rest of platforms have a wider 

scope and support in some way operations and combinations with 

services. Consequently, it can be observed a coverage of 80% in 

orchestration and choreography. 

This FG is especially relevant for the AS2AS, as it gives a first idea 

of which platforms will be able to connect services and also 

provides an idea of the service interoperability mechanisms 

supported in the focus group. 

Figure 67 Management 
FCs prevalence in INTER-

IoT initial platforms 

Figure 69 Service 
organisation FCs prevalence 
in INTER-IoT intial platforms 
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4.1.2.4 IoT Process Management 

 

This group has a significant lower coverage in all platforms, being 

present in around the 50% of platforms, regardless if it is analysed 

the full set of platforms or the focus group. 

The concept of IoT processes in IOT-A is related to the Business 

Management and how the IoT specific constraints are mapped there. 

As the definition of IoT Process is very specific and new, part of the 

platforms does not offer a particular solution for this characteristics, 

transferring the responsibility to the end user (using external services 

or custom logic). This is particularly true in the device or middleware 

centric platforms which provide more 

features in the lower layers. 

In the case of the focus group the situation is similar. Process 

modelling is supported in Azure, Open IoT and UniversAAL (with 

limitations in the last two, though) while process execution is 

supported only in Azure and OpenIoT.  

With the perspective of interoperability, this FG is not very relevant, 

since the business processes concerning two or more different 

platforms can be modelled (and executed) externally leveraging the 

already proposed AS2AS layer. 

4.1.2.5 Virtual Entity 

The Virtual Entity Functional Group has the 

mission of handle the relations between 

virtual entities and associated services, 

providing the needed mechanisms to 

discovering, updating and accessing to entity 

level services and features. In the global 

study, it has been found that the 

accomplishment of these features is high 

except for the VE & IoT Service. 

Monitoring component, which is probably the 

most complex of the three components 

identified in IOT-A for this FG. Therefore, it is 

declared to be implemented (or partially 

covered in less than the 50% of the analysed 

platforms (6 out of 16). However, the VE 

Resolution and the VE service capabilities 

are supported in more than the 70% of 

platforms, which shows the relevancy of these 

components for the platforms. 

Figure 70 IoT process 
management FCs prevalence in 

16 platforms study 

Figure 71  IoT process 
management FCs prevalence 
in INTER-IoT initial platforms 

Figure 72 Virtual Entity FCs prevalence in 15 platforms study 
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For the focus group, the 

implementation of these components 

reaches higher levels, reaching the 

80% in the case of VE Services 

component. In this case, the OneM2M 

platform makes the difference since it 

does not support virtual entity related 

components, despite the rest of the 

platforms of the subset.  

Virtual entities are a key concept in the 

INTER-IoT concept, architecture and 

framework. It is thanks to the entity 

virtualization that heterogeneous data 

can be harmonized, stored, transmitted 

and even translated into different 

ontologies. As explained in previous 

sections and in INTER-IOT Deliverable 

D3.1, released at the same time of this 

document, the concept is largely used at interoperability level, being a keystone for D2D and 

MW2MW. The high accomplishment of this functional group in the focus group and in the global 

study guarantees the viability of the solutions proposed in the Deliverable D3.1. 

4.1.2.6 IoT Service 

The IoT Service FG and its components are well covered in the IoT platforms, according to the study 

done. In this case, the study was one step further and analysed the prevalence of specific services, 

from a set of platform services typically present in sensor-related scenarios: 

 Query information 

 Update information 

 Use resource operation/service 

 Subscribe to information 

 Subscription with filters 

 Registration 

 Historic data access 

 CEP 

 Big data storage 

 Others 

 IoT Client 

While for the IoT Service Resolution, a list of features was also provided, based on the definition of 

IOT-A. 

 Discovery 

 Lookup 

 Service Id. Resolution 

Figure 73 Virtual Entity FCs prevalence in the INTER-IoT 
initial platforms 
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 Service Descr. Mgmt. 

 Others 

In general terms, the service 

implementation levels are high, 

reaching the 100% or near in cases as 

the registration or the complex event 

processing (CEP). This also occurs in 

the IoT Service Resolution, which is 

supported in the ~70% of platforms on 

average for the four specific features 

analysed. 

 

 

 

 

 

For the initially supported platforms, the 

conclusions are similar, showing again 

the lack of services implemented in 

OneM2M, much more centred in 

communications than in services. The 

IoT Service Resolution is also well 

covered by all the platforms with the 

known exception of OneM2M. 

The following two histograms show the 

number of platforms that implement a 

version of the listed features for each of  

the FC related to IoT Services: 

 

Figure 74 IoT Service FCs prevalence in 15 platforms study 

Figure 75 IoT Service FCs prevalence in INTER-IoT initial 
platforms 
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Figure 76: IoT services implemented in the studied IoT platforms 

 

Figure 77: IoT service resolution policies in the studied IoT platforms 
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4.1.2.7 Security 

The Security FG is a transversal group that applies to all the rest of FGs 

per the IOT-A guidelines. With this in mind, a thorough analysis of the 

security capabilities was performed, assessing not only if each component 

is implemented somehow in every platform but also describing, when 

possible, the technologies used and more specific details related to the 

implementation of the components (see Annex 3 for further details). 

The results show that the security is a common concern in the platforms 

analysed. All the analysed platforms implement more than one component 

of the identified in the Functional View. However, the strategies to 

accomplish the Security related operations differ between platform. While 

authorisation and authentication are the preferred mechanisms (present 

in ~ 90% of the platforms), trust and reputation is significantly less 

prevalent with only the ~ 30% of platforms implementing policies or 

components in this way. 

For the focus group, results are similar, with a 

better support (practically full support) of the 

authorisation and authentication components and 

a better coverage of the rest of components.  

The security FG is a concern of each 

interoperability layer and the INTER-IOT 

framework, which is in charge to coordinate and 

orchestrate all the security policies in order to maintain or improve the 

existing security standards in the platforms. 

According to the results obtained, the interoperability efforts here should go 

on the direction of ensuring and, when possible, centralising the 

authentication and authorisation in platforms. 

 

 

 

4.1.2.8 Communication 

The diversity of the device-to-device or device-to-gateway communications is 

one of the reasons of having so heterogeneous platforms. It is usually a starting point for creating a 

so-called information silo, since the lack of device interoperability with other devices or, more 

important, with other platforms usually ends in a domain/application specific deployment that forgets 

completely about interoperability due to the difficulties to achieve it. 

This is the closest FG to the physical level, and thus it should better be implemented in the device 

and middleware centric platforms. However, probably due to the reasons described previously, the 

implementation of the components in this group is still poor in the platforms analysed. The most 

spread mechanism of communication supported is the end to end communication, while the network 

communication and the hop to hop communications are marginally covered. 

 

Figure 78 Security FCs 
prevalence in 15 platforms 

study 

Figure 79 Security FCs 
prevalence in INTER-IoT 

intial study 
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Figure 80: Communication FCs prevalence in 15 platforms study 

The situation in the general study and in the case of the focus group is similar. With this results, it 

keeps clear that further efforts in communication standardization are needed. From the project point 

of view, the end to end communication is the best option to implement interoperability mechanisms, 

as devised in D2D layer (see Deliverable D3.1). 

 

Figure 81: Communication FCs prevalence in INTER-IoT initial platforms 

As mentioned, the range of different communications/standards/protocols to (mostly) physically 

transmit information from one device to a gateway, a dongle or another device is vast. The study 

considered this and analysed the full set of possible communication in all the platforms reviewed, 

whose result is depicted in the following histogram: 

 

Figure 82: Communication protocols at different layers supported by the platforms studied 

It is obvious that this chart mixes very different communication modes, some of them compatible 

between them (e.g. it is possible to have Bluetooth and MQTT communications at the same time). 

The analysis has considered each supported communication regardless the OSI layer which is 
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aimed at, to show on one hand the variety of possibilities and also to find the most popular device to 

platform communication methods that are supported in the cohort under study. 

4.1.2.9 Device 

This group is considered out of the scope of this document and is not included in the analysis. 

However, since information about supported devices is offered, there has been created a histogram 

with the main groups of device groups and its support in the studied platforms.  

 

Figure 83: Type of devices aimed by the platforms studied 

4.1.3 INTER-IoT Functional View 

The Functional View of INTER-IoT has been derived from two inputs: 

● INTER-IoT Functional Model, as described in section 3.4.3. The Functional Groups and their 

relationship were kept for the Functional View. 

● The requirements and use cases identified in WP2. 

The requirements and use cases have been analysed to group them in clusters of common 

functionality. Then these clusters have been reviewed with the technical leaders for the different 

interoperability layers and the Software Architect to refine them. 

We have elaborated a novel Functional View for the INTER-IoT Reference Architecture that is 

depicted in the following figure: 
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Figure 84: Functional-decomposition viewpoint of the INTER-IoT Reference Architecture 

The Functional View of INTER-IoT is focussed on the challenge of interoperability between IoT 

platforms. This has led to manage eleven Functional Groups. Among these, it’s important to remark 

that: 

● The Application FG, the Device FG and the IoT Platform FG are out-of-scope of the INTER-

IoT Reference Architecture, consequently they have not been described and have been 

represented in yellow colour. They are considered out of the scope because they represent 

external groups that are going to be interoperated through the INTER-IoT. They already exist, 

they are not going to be created in the project, they are just going to be used. 

● The remaining five longitudinal Functionality Groups are represented in light blue colour. 

● The Management FG and the Security FG are transversal Functionality Groups and are 

shown in dark blue colour. These transversal groups provide functionalities that are required 

by any of the longitudinal groups. 

In the following sections, we describe each of the Functional Components grouped by Functional 

Group. 

4.1.3.1 Service Interoperability 

The role of the Service Interoperability FG is to support the Application & Service to Application & 

Service (AS2AS) interoperability through the definition and execution of new compound services that 

make use of already existing services in the underlying IoT Platforms. Its goal is to use services from 

different IoT and create new services based on them. 

The Service Interoperability FG consists of three Functional Components (see figure below): 

● Service Resolution; 

● Service Composition; 

● Service Orchestration. 
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Figure 85: Service Interoperability 

The Service Resolution FC is responsible for the storage of what we call flows. A flow is a logical 

definition of a sequence of steps, each of which can be a service existing in an IoT Platform. The 

functions of the Service Resolution FC are three: (1) to resolve the access to IoT Platform services 

that can be used in a flow, (2) to store the definition of services and atomic components so that they 

can be used by the Service Composition FC and instantiated by the Service Orchestration FC and 

(3) to provide storage and access to the logical definition of flows. 

The flows that are defined for service interoperability have to be stored by the Service Resolution 

FC, also enabling the semantic cataloguing of services and their discovery. 

The main role of the Service Composition FC is to design new compound services based on 

services that IoT Platforms exposes. These services have been previously defined and catalogued 

by the Service Resolution FC. The new services are designed like flows which will be later executed. 

The flows that are designed by the Service composition FC are stored by the Service Resolution FC. 

Finally, the Service Orchestration FC is responsible for the execution of the flows that are stored 

in the catalogue managed by the Service Resolution FC. The execution of these flows are initiated 

by triggers (user request, IoT Platform event or alert, data received, etc.) which have been defined 

for each flow. 

4.1.3.2 Semantics 

The Semantics FG is the central Functional Group that addresses the challenges related to 

semantic interoperability of IoT Platforms. It provides support for the other FGs dealing with 

interoperability about IoT: The Service Interoperability FG, the Platform Interoperability FG and the 

Device Interoperability FG. 

The Semantics FG consists of two Functional Components (see Figure 86): 

● Ontology Resolution; 

● Ontology Alignment. 
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Figure 86: Semantics 

 

The Ontology Resolution FC is responsible for managing the different ontologies used at the 

various IoT Platforms that are connected through INTER-IoT. These ontologies have a double 

approach: 

● Syntactic knowledge; 

● Semantic knowledge. 

The syntactic knowledge is about being aware of the syntax that the IoT Platforms uses for 

interchanging data, what usually is related to the communication protocol being used or the type of 

the API: JSON, XML, etc. 

The semantic knowledge is about being aware of the structure and meaning of the data, usually 

through OWL or similar definitions (JSON-schema, XSD, etc.). 

The Ontology Resolution FC is the component that stores these data descriptions and offers access 

to them for the Ontology Alignment FC. 

The Ontology Alignment FC is responsible for performing the alignment from a source data with 

an ontology to a target data with its own ontology. It makes the data translation between two 

ontologies, using the ontology definitions resolved by the Ontology Resolution FC. 

4.1.3.3 Platform Interoperability 

The overall goal of the Platform Interoperability FG is to interact with the different IoT Platforms to 

be interconnected. It is the responsible for accessing the IoT Platforms, not for implementing any of 

the features that the IoT Platforms provide.  

The Platform Interoperability FG has three Functional Components (see Figure 87): 

● Platform Resolution; 

● Platform Access; 

● Platform Service. 
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Figure 87: Platform Interoperability 

The Platform Resolution FC is responsible for discovering and cataloguing the IoT Platforms that 

are available at a specific deployment of INTER-IoT as well as their devices, capabilities and IoT 

Platform Services, so that they can easily be found, when needed. This allows the remaining groups 

to not to know about the location of the platforms, or how the devices are connected to them. When 

any Functional Component needs to access a specific resource of an IoT Platform, it will use the 

Platform Resolution FC to get its identification, location and way of accessing. 

The Platform Resolution FC is also responsible for roaming capabilities of mobile devices between 

IoT Platforms. 

The main role of the Platform Access FC is to implement the functions needed for connecting to an 

IoT Platform and accessing their resources (specific discovery, lookup, data query, data subscription, 

device registry, etc.). This includes the use of the appropriate protocols and APIs that each platform 

exposes. 

The Platform Access FC depends on the specific details of implementation for each of the IoT 

Platforms supported. 

The Platform Service FC is responsible for performing device and platform interactions, like 

querying data from different devices and platforms in a common way, mapping sensor data flows 

from a source to a destination, offering subscriptions to sensor data, etc. 

4.1.3.4 Device Interoperability 

The Device Interoperability FG addresses the challenges of making legacy devices and non-real IoT 

Platform interoperable with other IoT Platforms and systems. 

It consists of three Functional Components (see Figure 88): 

● Device to Device Interoperability; 

● Network Interoperability; 

● IoT Platform Interoperability. 
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Figure 88: Device Interoperability 

The three identified Functional Components deal only with interoperability related to devices. 

The Device to Device Interoperability FC implements the needed functionalities to achieve the 

interoperability among devices which are available through the Device Access FG. 

To enable this interoperability among devices rules are defined. These rules define the actions to be 

followed when some update is received from a device through the Device Access FG, like for 

instance to send a request to another device(s), also through the Device Access FG. An example of 

this would be to switch on a set of outdoor lights when a proximity sensor detects that someone is 

close. 

The Network Interoperability FC is responsible for managing the interoperability between networks 

or parts of the network that belong to an IoT deployment, and which are accessible through the 

Device Access FG. We understand the network level of an IoT deployment as the protocols, systems, 

and devices that work on the layer 2 and 3 of the OSI stack of protocol. The particularity of the 

network on the IoT is the treatment of many different types of data flows as well as protocols to 

support this communication.  

The Network Interoperability FC addresses the mobility of objects through different access networks 

or secure seamless mobility and the backing of real time data among the network. The operation in 

highly constrained environment is also an important issue. The interoperability solution is based on 

software defined paradigms but mainly on two approaches: SDR for interoperability on access 

network and SDN/NFV for the core network. 

The role of the IoT Platform Interoperability FC is to enable the interaction between the devices 

available from the Device Access FG and the Platform Interoperability FG. Please, note that the 

devices available from the Device Access FG are not devices tied to existing IoT Platforms. The 

devices connected to an IoT Platform are accessed through the interaction between the Platform 

Interoperability FG and the IoT Platform FG, while the devices not tied to an IoT Platform (those 

connected to legacy sensor systems that cannot be considered as IoT Platform), are accessed 

through the Device Access FG. 

The interaction between the IoT Platform Interoperability FC and the Platform Interoperability FG 

works in two ways: 

● The IoT Platform Interoperability FC can act as a client of IoT Platforms, thus being 

responsible for interconnecting legacy or disparate devices into existing IoT Platforms. This 

is achieved through the appropriate device register and data retrieval/actuating functions, 

typical in these platforms. 
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● The IoT Platform Interoperability FC can also act as a kind of legacy IoT Platform from the 

point of view of Platform Interoperability FG. This may happen when there is no IoT Platform 

where to attach the devices, but there is a need from an external application to access these 

devices and, maybe, interoperating their data with information from other IoT Platforms. In 

this last case, the Platform Interoperability FG would interact with devices through the Device 

Interoperability FG. 

4.1.3.5 Device Access 

The Device Access FC embraces the functionality described in Communication, IoT Service and 

Virtual Entity FG’s of the IoT-A Functional View. This Functional Component is responsible for 

offering a common interface to services and virtual entities that represent and expose functionality 

of physical devices. 

It abstracts all the necessary functions for managing the devices and interacting with them. 

The Device Access FC consists of three Functional Components (see Figure 89 below): 

● Communication; 

● IoT Service; 

● Virtual Entity; 

 

 

Figure 89: Device Access 

The aim of the Communication FC is to perform the function of dealing with the devices through 

very different techniques, abstracting the IoT Service from the technical details of the communication 

with the devices. It provides a common interface to the IoT Service so that it can access or interact 

with very different devices in a common way. 

The whole communication protocol stack under the transport layer must be handled by the 

Communication FG. This protocol stack management implies to address all the features related to 

the communication tasks (flow control, network access, protocol conversion, etc.). Therefore, it’s 

responsibility of the Communication FG to manage the communication with the devices with two 

different aspects: 

● Access network. Handling the access to the different communication networks that may 

appear to establish the contact with the devices (WiFi, LTE, Bluetooth Low Energy, Serial, 

etc.). 

● Transport Protocol Management. Managing the necessary actions to provide end-to-end 

communication between devices and gateways, specifically supporting transport protocols 

like MQTT, CoAP, LWM2M, Raw, etc. 

The Communication FG interacts with the Device FG on its southbound interface and with the IoT 

Service FC to provide it the interaction with devices in a common way and to keep updated the 

necessary functions of Service Resolution. 
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The IoT Service FC is responsible for managing IoT Services as well as functionalities for discovery, 

look-up, and name resolution of IoT Services. These services expose resources of devices to the 

rest of the components. It may allow to gather information about a sensor in a continuous 

asynchronous way, after a subscription, for instance. Or it may allow to submit requests to an 

actuator. A specific IoT Service could be to provide access to recent history of sensor observations. 

The typical functions of the IoT Service FC are two: 

● To access resources, interacting in three different ways: (1) to query information about a 

resource of a device, e.g. get current temperature of thermometer X, (2) to subscribe to 

observations about a resource of a device and receive notifications asynchronous for each 

new observation, e.g. receive all temperature measurement under 0ºC for thermometer X, 

(3) to submit a request to a resource of an actuator, e.g. switch light actuator Y on. 

● To provide the necessary functions for finding the appropriate IoT Services, which may 

include: discovery, lookup, service locators, service management, etc. 

The IoT Service runs in the virtual plane, decoupling the interaction with the resources of devices 

from their usage. 

The Virtual Entity FC allows the interaction with an IoT Platform on the basis of Virtual Entities 

rather than IoT Services. It contains the functions to associate the Virtual Entities with the IoT 

Services and with the physical things they represent. 

The typical functions of the Virtual Entity FC are: 

● Discovery and lookup functions to find VE’s and their resources and register of new ones. 

Handling VE’s, which includes getting the values of the entities’ attributes, updating this data, and 

accessing its recent history. 

4.1.4 Interactions of the Functional View 

To better understand the Reference Architecture from a functional point of view, it’s recommended 

to describe the communication among the Functional Components for some relevant interactions. 

We have gathered the most relevant use cases from the Deliverables D2.4 INTER-IoT Requirements 

and Business Analysis, and D2.3 (Use cases manual). 

The different interactions are described below: 

4.1.4.1 Subscription merged data flows from two IoT Platforms to an external user 

This interaction can appear when an external user uses INTER-IoT to receive a continuous single 

data flow with information from different sensors placed at different IoT Platforms: IoT Platform 1 and 

IoT Platform 2. 

This interaction assumes that the external user has previously established the subscription to the 

two IoT Platforms 1 and 2. 

The interaction among the different components is depicted in the diagram below: 
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Figure 90: Functional View interaction for subscription to 2 IoT Platforms 

In the diagram, it can be observed that each of the IoT Platforms 1 & 2 notify the Platform Access 

FC that a new sensor observation is available as the Platform Access FC is subscribed to both IoT 

Platforms. 

1. Just after each notification, the Platform Access FC receives the data and sends it to the 

Ontology Resolution FC with an indication of the specific platform so that the Ontology 

Resolution FC can find the syntactic and semantic description of the input data for each one 

of the observations from each IoT Platform. 

2. In the subscription that the user previously made, a desired output ontology may have been 

requested. This ontology is now being resolved by the Ontology Resolution FC. 

3. The pair <input ontology, output ontology> along with the observation data from each IoT 

Platform is submitted to the Ontology Alignment FC. 

4. The Ontology Alignment FC then performs the semantic translation into the expected output 

ontology. 

5. The translated data from each IoT Platform now translated into the expected output ontology 

is sent to the Platform Service FC. 

6. The Platform Service FC has a register of the subscriptions that external users have made, 

and can identify that the incoming data has to merged into a single data flow that is pushed 

in form of notifications to the external user. 
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4.1.4.2 Device to Device Interoperability 

 

Figure 91: Functional View interaction of device to device interoperability 

In the previous diagram the following FCs take part: 

1. A device pushes data using the communication features. 

2. An IoT Service is attached to the Communication FC so it is fed with the data produced by 

the device. 

3. An IoT Service is provided, so that data pushed can be consumed by upper layers in a IoT 

standardized way. 

4.  The service publishes data to the Device to Device Interoperability FC, which manages the 

routing (source and destination) of the data, and also is able to unify/adapt formats between 

technologies. 

5. Data is pushed into destination device(light) IoT service. 

6. The communication FC converts data to the protocol of the destination device and forwards 

the message. 

4.1.4.3 Service Composition 

For describing the service composition interaction, we are going to use the use case #13: IoT 

interoperability for Vessel Arrivals of D2.4. The reason of selecting this case is that involves two 

different platforms with different ontologies, so that all the FCs have a role and need to interact. The 

main idea around this use case is as follows: 

 

 

 

A CEP Service within ValenciaPort IoT Platform can send an event/raise an alert when a 

vessel has berthed to a dock. When a berthing has been detected, we need to search for 

the nearest cranes in the terminal and instantiate a Web Service in the terminal ICT 

infrastructure. 
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In this example, we will use a Platform Service from ValenciaPort (CEP), a search service of Noatum 

IoT Platform and an external Web Service from Noatum for orchestrating business processes. 

 

 

Figure 92: Functional View interaction of service composition (service to service interoperability) 

Former diagram contains the following interactions between FCs: 

1. CEP service in ValenciaPort and available crane search service are connected to the 

platform access, so that information can be pushed and accessed in that platforms. 

2. Service orchestration FC is able to access native services of the platforms. Native in this 

context means that these services consume platform-specific APIs and communicate data 

exclusively in the platform domain with its platform ontology. 

3. Service resolution FC consumes discover services and provide the means to effectively 

consume them. 

4. As the consumed services provide data in native ontologies, ontology resolution is required. 

5. Ontology alignment works to put the data in the expected output format. 

6. Same as in 5. 

7. Ontology resolution is used to provide aligned data to the service composition FC. 

8. Data is composed (appropriate operations are performed) and send to user. 

9. User destination is resolved in platform service FC. 

4.2 Other views 

This section summarizes other views that are more related to the instantiation of the architecture 

and thus will be reported in future documents. This, an initial introduction is given and, when possible, 

are applied the works (such as requirement specification or scenario definition) performed in the 

project. 
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4.2.1 Information View 

The main reason about connecting objects is to allow an information exchange between each object 

and external systems, and within each other. Therefore, the way to define, structure, store, process, 

manage and exchange information is fundamental in this domain. IoT-A created a specific view (the 

information view) in order to specify a static information structure and a dynamic information flow. 

Based on the IoT Information Model, the Information View gives more details about how the relevant 

information is represented in an IoT system. As the Information View belongs to the reference 

architecture space, and not a specific system architecture, concrete representation alternatives are 

not part of this view. 

The information view also describes the components that handle the information, the flow of 

information through the system and the life cycle of information in the system. 

As described earlier, the Virtual Entity is a key concept of any IoT system as it models the Physical 

Entity that is the real element of interest. As specified in the IoT IM, Virtual Entities have an identifier 

(ID), an EntityType and a number of attributes that provide information about the entity or can be 

used for changing the state of the Virtual Entity, triggering an actuation on the modelled Physical 

Entity. The modelling of the EntityType is of special importance, as it can be used to determine what 

attributes a Virtual Entity instance can have, defining its semantics. The EntityType can be modelled 

in two different ways: either based on a flat type system or as a type hierarchy, enabling sub-type 

matching. 

EntityTypes are similar to classes in object-oriented programming, so UML class diagrams are 

suitable for modelling EntityTypes. Similarly, the generalization relation can be used for modelling 

sub-classes of EntiyTypes, creating a hierarchy of several EntityTypes inheriting attributes from its 

super-classes. 

Services provide access to functions for retrieving information or executing actuation tasks on IoT 

Devices. Service Descriptions contain information about Service interfaces, both on a syntactic as 

well as a semantic level. Furthermore, the Service Description may include information regarding 

the functionality of the resources, or information regarding the device on which the resource is 

running. 

The association between Virtual Entities and Services captures the information on what kind of 

actuation or data is possible to obtain by which Virtual Entity. The association includes the attribute 

of the Virtual Entity for which the Service provides the information or enables the actuation as a result 

of a change in its value. 

Information in the system is handled by IoT Services. IoT Services may provide access to On-Device 

Resources, that provide real-time information about the physical world accessible to the system. 

Other IoT Services may further process and aggregate the information provided by IoT 

Services/Resources, deriving additional higher-level information. Furthermore, information that has 

been gathered by the mentioned IoT Services or has been added directly by a user of the IoT system 

can be stored by a special class of IoT Service, the history storage. A history storage may exist on 

the level of data values directly gathered from sensor resources as a resource history storage or as 

a history storage providing information about a Virtual Entity as a Virtual Entity history storage. 

4.2.1.1 Information Handling by Functional Components 

There are four message exchanges patterns considered for information exchange between IoT 

Functional Components: Push, Request/Response, Subscribe/Notify, Publish/Subscribe. 
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The Push-pattern is a one-way communication between two parties in which a server sends data to 

a predefined client that receives the data. The server hereby knows the address of the client 

beforehand and the client is constantly awaiting messages from the server. The communication 

channel in this pattern is pre-defined and meant to be applied in scenarios in which the 

communication partners do not changed often. For example, the server can be a constrained device 

that sends data to a gateway dedicated to this device. The gateway is listening constantly to the 

device and is consuming the data received from this device. 

 

The Request/Response-pattern is a synchronous way of communication between two parties. A 

client sends a request to a server. The server will receive the request and will send a response back 

to the client. The client is waiting for the response until the server has sent it. 

The Subscribe/Notify-pattern allows an asynchronous way of communication between two parties 

without the client waiting for the server response. The client just indicates the interest in a service 

on the server by sending a subscribe-call to the server. The server stores the subscription together 

with the address of the client wants to get notified on and sends notifications to this address 

whenever they are ready to be sent. 

The Publish/Subscribe-pattern allows a loose coupling between communication partners. There are 

services offering information and advertise those offers on a broker component. When clients declare 

their interest in certain information on the broker the component will make sure the information flow 

between service and client will be established. 

4.2.1.2 Deployment and Operation View 

The Deployment and Operation View aims at developing a set of guidelines to drive users through 

the different design choices that they must face while designing the actual implementation of their 

services. To this extent this view will discuss how to move from the service description and the 

identification of the different functional elements to the selection among the many available 

technologies in the IoT to build up the overall networking behaviour for the deployment. 

Since a complete analysis of all the technological possibilities and their combination may be 

extremely complex, IoT-A focus is on those categories that have the strongest impact on IoT systems 

realization. Starting from the IoT Domain Model, there are three main element groups: Devices, 

Resources, and Services. Each of them poses a different deployment problem, which, in turn, 

reflects on the operational capabilities of the system. 

In particular, the viewpoints used in the Deployment and Operation view are the following: 

● The IoT Domain Model diagram is used as a guideline to describe the specific application 

domain;   

● The Functional Model is used as a reference to the system definition, as it defines Functional 

Groups;  

● Network connectivity diagrams can be used to plan the connectivity topology to enable the 

desired networking capability of the target application; at the deployment level, the 

connectivity diagram will be used to define the hierarchies and the type of the sub-networks 

composing the complete system network;   

● Device Descriptions (such as datasheets and user manuals) can be used to map actual 

hardware on the service and resource requirements of the target system.  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Devices in IoT systems include the whole spectrum of technologies ranging from the simplest of the 

radiofrequency tags to the smartest objects able to understand the environment and take real-time 

decisions. The unifying characteristics are the connection and the capability of performing 

computation. These two characteristics are the subject of the first choices a system designer has to 

make. 

 

Selecting the computational complexity for a given device is intrinsic to the target application and to 

the planned roadmap: for instance, a system architect may choose to have a large amount of 

memory that may seem unnecessary at first, but may be used for future releases and upgrades. On 

the other hand, choosing among the different connectivity types is not as straightforward as different 

choices may provide comparable advantages, but in different areas. For the same reason, it is 

possible to realize different systems implementing the same or similar application from the functional 

view, which are extremely different from the Deployment and Operation view. 

Because of the coexistence of different communication technologies in the same system, the second 

choice the system designer must account for is related to communication protocols. Connectivity 

functionalities for IoT system are defined within the ARM in the Communication FG of the FM; in 

addition, to better understand the application, it is important to describe it within the Functional View. 

The following possibilities have been identified: 

1. IoT protocol suite: This is supposed to be the best solution for interoperability;   

2. Ad-hoc proprietary solutions: Whenever the performance requirements of the target 

application are more important than the system versatility, ad hoc solutions may be the only 

way to go;   

3. Other standards: Depending on the target application domain, regulations may exist forcing 

the system designer to adopt standards, different from those suggested by the IoT protocol 

suite, that solved a given past issue and have been maintained for continuity.   

After having selected the devices and their communication methods, the system designer has to 

account for services and resources, as defined in the IoT Service FG section. These are pieces of 

software that range from simple binary application and increasing their complexity up to full-blown 

control software. Both in the case of resources and for services the key point here is to choose where 

to deploy the software related to a given device. The options are as follows: 

1. On smart objects: This choice applies to simple resource definitions and lightweight 

services, such as web-services that may be realized in few tens or hundreds of bytes;  

2. On gateways: Whenever the target devices are not powerful enough to run the needed 

software themselves, gateways or other more capable devices have to be deployed to assist 

the less capable ones;  

3. In the cloud:  Software can be also deployed on web-farms. This solution improves the 

availability of the services, but may decrease the performance in terms of latency and 

throughput.   

Note that this choice must be made per type of resource and service and depending on the related 

device. As an example, a temperature sensor can be deployed on a wireless constrained device, 

which can host the temperature resource with a simple service for providing it, but, if a more complex 

service (for instance, when the Service Organisation FG is called in) is needed, the software should 

be deployed on a more powerful device as per option 2) or 3). 

On the same line, it is important to select where to store the information collected by the system, let 

their data be gathered by sensor networks or through additional information provided by users. In 

such a choice, a designer must take into consideration the sensitiveness (e.g.: is the device capable 
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of running the security framework), the needed data availability and the degree of redundancy 

needed for data resiliency. This choice is also very important for what concerns interoperability, as 

the location of the data may ease the interaction between different systems – or, at the contrary, 

may prove very complex to overcome. The foreseen options are the following:  

1. Local only:  Data is stored on the device that produced it, only. In such a case, the locality 

of data is enforced and the system does not require complex distributed databases, but, 

depending on the location of a given request, the response might take longer time to be 

delivered and, in the worst-case scenario, it may get lost;   

2. Web only: No local copy is maintained by devices. As soon as data is sent to the aggregator, 

they are dispatched in databases;    

3. Local with web cache: A hierarchical structure for storing data is maintained from devices 

up to database servers.   

Finally, one of the core features of IoT systems is the resolution of services and entities, which is 

provided by the Entity and Service Resolution FCs, respectively and oversees semantically retrieving 

resources and services, discovering new elements and binding users with data, resources, and 

services. This is performed adopting the definitions of the Virtual Entity FG. This choice, while one 

of the most important for the designer, has only two options: 

1. Internal deployment: The core engine is installed on servers belonging to the system and 

is dedicated to the target application or shared between different applications of the same 

provider;   

2. External usage: The core engine is provided by a third party and the system designer  has 

to drive the service development on the third-party APIs.  

Differently from the other choices, this is driven by the cost associated to the maintenance of the 

core engine software. In fact, since it is a critical component of the system, security, availability and 

robustness must be enforced. Hence, for small enterprises the most feasible solution is the external 

one. 

4.3 IoT Architecture Perspective: Non-Functional Properties 

Architectural decisions often address concerns that are common to more than one view, or even all 

of them. These concerns are often related to non-functional or quality properties. In this respect, IoT-

A follows the approach of [3]: these aspects need to be addressed by special perspectives, to build 

a concrete architecture. One important aspects are that these perspectives help to introduce 

Stakeholders requirements in the architectural building process. IoT-A uses the [3] definition for 

perspectives: 

where a quality property is defined as: 

The requirements we collected in D2.3 clearly show a need of addressing non-functional 

requirements. Based on them, we identified the perspectives, which are the most important for IoT-

systems: 

An architectural perspective is a collection of activities, tactics, and guidelines that are 

used to ensure that a system exhibits a particular set of related quality properties that 

require consideration across a number of the system’s architectural views. 

A quality property is an externally visible, non-functional property of a system such as 

performance, security, or scalability. 
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● Evolution and Interoperability;   

● Availability and Resilience;   

● Trust, Security and Privacy and  

● Performance and Scalability.   

In INTER-IoT we collected 4 non-functional requirements related to INTER-FW concerning the 

Evolution and Interoperability perspective, 12 concerning Availability and Resilience, 7 related to 

Trust, Security and Privacy, and 5 related to Performance and Scalability. As can be seen from 

the definition above there is a close relationship between Perspectives, Views and Guidance. 

Using the table template that IoT-A proposes, we can derive the following tables: 

Evolution and Interoperability:   

 

    

Desired Quality 

The ability of the system to be flexible in the face of the inevitable 

change that all systems experience after deployment, balanced 

against the costs of providing such flexibility 

INTER-IoT 

 Requirements 

1,33,34,35 

    

Applicability   

Important for all systems to some extent; more important for longer- 

lived and more widely used systems. IoT systems are expected, as 

an emerging technology, to be highly affected by evolution and 

interoperability issues  

    

Activities 

   

● Characterize the evolution needs      

● Assess the current ease of evolution    

  

● Consider the evolution trade-offs      

● Rework the architecture     

    

Tactics 

   

● Contain change     

● Create extensible interfaces    

● Apply design techniques that facilitate change 

● Apply meta-model-based architectural styles  

● Build variation points into the software    

● Use standard extension points     

● Achieve reliable change  

● Preserve development environments 

 

 Performance and Scalability: 
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Desired Quality The ability of the system to predictably execute within its mandated 

 performance profile and to handle increased processing 

volumes in  the future if required 

INTER-IoT 

Requirements 

3,132,114,115,142 

Applicability 

   

Any system with complex, unclear, or ambitious performance 

requirements;  systems whose architecture includes elements 

whose performance is unknown; and systems where future 

expansion is likely to be significant. IoT systems are very likely to 

have unclear performance characteristics, due to their 

heterogeneity and high connectivity of devices.     

 

Activities 

   

● Capture the performance requirements  

● Create the performance models     

● Analyze the performance model     

● Conduct practical testing 

● Assess against the requirements 

● Rework the architecture  

    

Tactics 

   

● Optimize repeated processing  

● Reduce contention via replication 

● Prioritize processing    

● Consolidate related workload 

● Distribute processing over time    

● Minimize the use of shared resources 

● Reuse resources and results 

● Partition and parallelize 

● Scale up or scale out  

● Degrade gracefully  

● Use asynchronous processing 

● Relax transactional consistency 

● Make design compromises 

Table 5: Interoperability requirements 

 

Availability and Resilience: 

Desired  

 Quality  

   

The ability of the system to be fully or partly operational as and when 

required and to effectively handle failures that could affect system 

availability. 

INTER-IoT 

Requirements 

10, 44, 58, 83, 134, 92, 109, 110, 113, 119, 120, 126 
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Applicability  Any system that has complex or extended availability requirements, 

complex recovery processes, or a high profile (e.g., is visible to the 

 public)  

    

Activities 

● Capture the availability requirements 

● Produce the availability schedule     

● Estimate platform availability 

● Estimate functional availability 

● Assess against the requirements 

● Rework the architecture 

    

Tactics 

   

● Select fault-tolerant hardware  

● Use high-availability clustering and load balancing 

● Log transactions  

● Apply software availability solutions  

● Select or create fault-tolerant software 

● Design for failure  

● Allow for component replication 

● Relax transactional consistency 

● Identify backup and disaster recovery solution 

Figure 93 Availability and resilience requirements 

Trust, Security and Privacy:   

Desired Quality  Ability of the system to enforce the intended confidentiality, integrity 

and service access policies and to detect and recover from failure 

in these security mechanisms, and to be able to build dependability. 

INTER-IoT 

Requirements 

30, 36, 37, 69,77, 104, 117 

Applicability Relevant to all IoT systems.     

Activities 

   

● Capture the privacy requirements     

● Conduct risk analysis 

● Evaluate compliance with existing privacy frameworks. 

● Capture the security requirements  

● Check  interoperability requirements for impacts on security 

processes between heterogeneous peers  

● Conduct risk analysis  

● Use infrastructural Authentication components that support 

more Identity Frameworks for scalability and interoperability 

● Use infrastructural or federated Key Exchange Management 

to secure communication initiation and tunnelling between 

gateways for interoperability 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● Use an Authorization component to enable interoperability 

with other systems  

● Define security impact on interaction model  

● Address all aspects of Service and Communication Security 

● Integrate the trust model and support privacy features  

● Identify security hardware requirements     

● Consider performance/security trade-offs     

● Validate against requirements   

   

 

Tactics 

   

● Use an extended Internet Threat Model for which takes into 

account specific IoT communication vulnerabilities    

● Harden infrastructural functional components Authenticate 

subjects      

● Define  and enforce access policies   

● Secure communication infrastructure (gateways, 

infrastructure services)     

● Secure communication between subjects     

● Secure peripheral networks (data link layer security, network 

entry, secure routing, mobility and handover) 

● Avoid wherever possible wireless communication   

● Physically protect peripheral devices or consider peripheral 

devices as available to malicious users in the attacker model 

● Use an Identity Management component that supports 

Pseudonymization     

● Avoid transmitting identifiers in clear especially over wireless 

connections         

● Minimize unauthorized access to implicit information (e.g. 

deriving location information from service access requests) 

● Validate against requirements  

● Consider the impact of security/performance trade-offs on 

privacy     

● Enable the user to control the privacy (and thus security and 

trust) settings        

● Balance privacy vs. non-repudiation (accountability)   

Figure 94 Trust, security and privacy requirements  
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5 Relationship with INTER-IoT 

Architecture 

5.1 Introduction 

In the previous chapter, we have described a generic ARM (Architecture Reference Model) for the 

interoperability of IoT Platforms. This was one of the objectives of the INTER-IoT project (see 

Objective 2). 

We consider this, a novel approach and a high valuable output of the project. Nevertheless, an ARM 

is a generic model, and we need a concrete model for the design of the architecture of the different 

components of INTER-IoT. This design has been performed in D3.1 using the ongoing work done in 

this deliverable. 

Thus, an architecture has been designed for the different interoperability layers of the INTER-

LAYER, using the INTER-IoT ARM as an input. These architectures for the different layers has gone 

through an iterative process along with the INTER-IoT ARM as described in the Figure 95 below: 

 

Figure 95: Process for generating D3.1 and D4.1 

For both deliverables, the review of requirements, scenarios and use cases has been the main 

inputs, as it’s described in both. The starting point for the process of generating an architecture for 
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the INTER-LAYER has been the definition of a Reference Model (RM) for INTER-IoT. Based upon 

it, the Reference Architecture (RA) has been created, and this has been used as an input for the 

INTER-LAYER Architecture Design. 

This Architecture Design has identified some needs and discrepancies with the RM and RA models, 

initiating an iterative process, that will run until the end of the project as needed. As a matter of fact, 

the second versions of both deliverables (D3.2 and D4.2) are expected to reflect this, along ship with 

the INTER-FW design (D4.3), which will fill-in some missing components of the RA, like those dealing 

with aspects of security and management. 

In order to show the matching of the INTER-IoT RA with the architecture design of INTER-LAYER, 

a mapping of the INTER-IoT Functional View with the different layers of INTER_LAYER has been 

performed. 

This mapping is described in two phases. First, an analysis of the compliance of the RA against the 

DoW has been done to prove its validity, and assess the achievements of the project. Next, an exact 

mapping of the different Functional Components of the INTER-IoT RA with the main design 

components of the INTER-LAYER has been sketched to show the instantiation of the INTER-IoT RA 

to the INTER-LAYER. 

It’s important to notice that the analysis of the relationship of some models of the INTER-IoT 

Reference Model with the INTER-LAYER interoperability layers has already been done (see sections 

3.5.3 INTER-IoT Domain Model Element Communications and 3.5.4 INTER-IoT Channel Model for 

Interoperability). 

This instantiation and alignment of the results will be improved in D4.2 with more views and new 

added changes. 

5.2 Mapping of the Functional View with the multi-layered 

interoperability approach 

A way to assess the validity of the Functional View is to try to match it against the Description of 

Work. To evaluate this assessment, we are first going to extract some relevant excerpts of the 

INTER-IoT proposal and next we will map the Functional View against it: 

1. In the overall goal description of INTER-IoT it’s stated that: 

 

 

 

 

2. The research & innovation objective 1 (“Design and Implementation of an Open Cross-Layer 

Framework for Interoperability of IoT Platforms”) states this: 

 

 

 

 

 

INTER-IoT uses a layer-oriented approach. 

By using the INTER-FW, any IoT platform can be made interoperable with 

respect to its fundamental layers: device, networking, middleware, application 

service, and data/semantics. 
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3. The research & innovation objective 2 (“Definition of Techniques and Tools for interoperability 

at the different IoT Platform Layers”) states this: 

 

 

 

 

4. The INTER-IoT approach (see Figure 96 below) is described as: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 96: INTER-IoT approach abstract schema 

We have matched the different interoperability layers identified in the proposal with the different 

Functional Groups and Functional Components of the INTER-IoT functional View. The mapping of 

the Functional View of INTER-IoT against the interoperability layers, is depicted in the figures below. 

Layer (and cross-layer) interoperability is fundamental to provide global 

interoperability between IoT platforms. 

The INTER-IoT approach will be fundamentally based on three main building 

blocks: 

1. Methods and tools for providing interoperability among and across each layers 

of IoT platforms; 

2. Global framework (INTER-FW) for programming and managing interoperable 

IoT platforms,including INTER-API and several interoperability tools for every 

layer; 

3. Engineering Methodology based on CASE tool for IoT platforms 

integration/interconnection. 
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We have represented filled in light blue colour the Functional Groups involved in the related 

interoperability layer, and in blue border the specific Functional Components that implement the 

necessary functions to provide the expected interoperability layer. 

 

Device-to-Device (D2D) 

 

 

Figure 97: Mapping the functional View with the Device-to-Device Interoperability 

 

Network-to-Network (N2N) 

 

 

Figure 98: Mapping the Functional View with the Network-to-Network Interoperability 
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We have included the Communication FC from the Device Access FG because the Network 

Interoperability is tightly related with communications aspects. 

 

Middleware-to-Middleware (MW2MW) 

 

 

Figure 99: Mapping the Functional View with the Middleware-to-Middleware Interoperability 

 

Application Service-to Application Service (AS2AS) 
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Figure 100: Mapping the Functional View with the Application Service-to Application Service Interoperability 

Data&Semantics-to-Data&Semantics 

 

 

Figure 101: Mapping the Functional View with the Data&Semantics-to-Data&Semantics Interoperability 

 

As we can see, all the proposed interoperability layers are covered in the INTER-IoT Functional 

View. 

5.3 Instantiation of the INTER-IoT RA to INTER-LAYER 

As described in section 5.1, an instantiation of the INTER-IoT Reference Architecture to the different 

layers of the INTER-LAYER has been done. The result is widely described in D3.1. Repeating the 

description is not in the scope of this deliverable, however, an exact mapping of the generic 

Functional Components of the INTER-IoT RA with the main design components of INTER-LAYER 

has been sketched. 

This relationship will also help the reader to understand the real difference between the generic 

INTER-IoT Reference Architecture, which can be applicable to any solution willing to interoperate 

different IoT Platforms, and the concrete instantiation made for the INTER-LAYER. 

5.3.1 Device to Device Interoperability 

The mapping of the D2D Interoperability with the INTER-IoT Functional View is described in two 

steps to help the understanding of a wide set of components. First a mapping of the Functional 

Groups of the INTER-IoT Reference Model with the main modules of the D2D Interoperability 

Architecture has been sketched, using coloured lines to show the relationships. Next, a detailed 

relationship including Functional Components of the INTER-IoT RA is described. 

The D2D Interoperability Architecture corresponds to the also called Gateway Architecture, 

described in section 3.1 of the D3.1. We have rearranged a bit the Gateway Architecture to make it 

more simple to see the mappings through the lines with minimal crossings. We have also changed 

some colours, and we have removed the interaction arrows, as they don’t add value to the functional 
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mapping. As a result, the Gateway Architecture has been flipped horizontally, keeping all the 

components. 

 

 

Figure 102: Alignment of the INTER-IoT Functional Groups with the D2D Interoperability layer of the INTER-LAYER. 

 

Applications  Application 

Device Interoperability  Middleware Controller 

Device Access  A.N. Controller 

Devices  Devices 

Table 6 Alignment of INTER-IoT FGs and D2D Layer Ineroperabilty Infrastructure 
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As described in the Figure 97: Mapping the functional View with the Device-to-Device 

Interoperability, the D2D Interoperability uses two Functional Groups: 

● The Device Access FG. 

● The Device Interoperability FG. 

Apart from this non-transversal Functional Groups of the Reference Model, some other transversal 

or generic Functional Groups have been instantiated for the Device-to-Device Interoperability: 

● The Device FG. 

● The Application FG. 

● The Management FG. 

 

The Device Access FG has been exploited into a set of components that are represented in purple 

colour. This is the FG with more functionality to be implemented for the D2D Interoperability, so a 

wide set of components were expected. The detailed description of this instantiation is described 

below after Figure 103: Mapping of the Functional Components of the INTER-IoT RA with the 

components of the D2D interoperability layer of the INTER-LAYER.Figure 103, in a detailed figure 

with the relationship of the specific Functional Components of each Functional Group. 

The Device Interoperability FG has produced the yellow components of the D2D Interoperability 

Architecture, which are also described in the detailed figure. 

The Device FG corresponds directly to the Device component of the D2D Interoperability 

Architecture, where the devices are located. It’s really an external module, not part of the D2D 

Interoperability Architecture, but that interacts with the Access Network Controller, as is described 

in D3.1. 

The Application FG is mapped to a generic user component which can access directly the gateway, 

and which is placed in the Application component of the D2D Interoperability Architecture. This 

Application module also hosts another component, the Middleware Platform, which is the 

instantiation of the IoT Platform Functional Group of the INTER-IoT RA.  

The Management FG corresponds to the Gateway Configuration components of the D2D 

Architecture. 

Now we are going to show the mapping of the exact Functional Components of the INTER-IoT RA 

with the lower-level components of the D2D interoperability layer of the INTER-LAYER. The aim is 

to see how each Functional Component has been instantiated and to check that there are no missing 

Functional Components in the INTER-IoT RA. Please note that each interoperability layer uses only 

a subset of the existing Functional Groups in INTER-IoT RM & RA. 

The mapping of the exact Functional Components of the INTER-IoT RA with the components of the 

D2D of the INTER-LAYER is depicted as follows: 
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Figure 103: Mapping of the Functional Components of the INTER-IoT RA with the components of the D2D 
interoperability layer of the INTER-LAYER. 

 

Applications  Middleware platform 

IoT Platform Interoperability  Middleware Controller 

Device to device 
interoperability 

 Rules engine 

IoT Service + Virtual Entity  Discovery 

Communications  
Protocol Controller 

A.N. Controller 

Table 7 Mapping of INTER-IoT FGs and D2D Layer Interoperabilty Infrastructure 
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In this figure, we show the instantiation of the different Functional Components of the INTER-IoT RA 

in the Gateway Architecture Design made in D3.1. The following Functional Components of the 

INTER-IoT RA have been instantiated: 

● The IoT Platform Interoperability FC has been directly mapped to a component called 

Middleware Controller, that acts as a mediator between the MW module and the rest of the 

gateway. 

● The Device-to-Device Interoperability FC is implemented in the Rules Engine, which 

performs that D2D interaction through configurable rules.  

● The Communication FC has been instantiated as a set of components enclosed into two 

main groups: 

○ A.N. (Access Network) Controller. It allows access to the devices, offering interfaces 

between the devices and the protocol modules. It includes the different A.N. Modules 

for providing access to different communication channels. 

○ Protocol Controller. It contains all the communication protocols supported by the 

Gateway, also implementing the common interfaces between those protocols and the 

other components. 

● The IoT Service FC and the Virtual Entity FC, are instantiated together through a set of 

modules in the Gateway Architecture. These modules are represented in purple colour 

enclosed by a dashed purple line. They include: 

○ Dispatcher: It handles all traffic between the Protocols layer (Physical device) and the 

Middleware controller (Virtual device). It provides the entry point to the main functions 

of the IoT Service and Virtual entity services. 

○ Device Manager: It provides information of any sensor/actuator. 

○ Registry, Discovery, Data Mapping: They provide the necessary functions for finding 

the appropriate IoT Services. 

○ Measure Storage: It stores measurements from the sensors to offer a history service 

through the Dispatcher. 

5.3.2 Network to Network Interoperability 

We don’t describe the mapping between the Functional Components of the Functional View of the 

INTER-IoT RA and the Network to Network Interoperability Architecture Design. The reason is that 

only one Functional Component was identified in the INTER-IoT RA related to network 

interoperability, as it is shown in Figure 104 below. 
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Figure 104: Functional Components for Network Interoperability.  

Therefore, the instantiation of this Network Interoperability FC has really been an explosion to all 

the components designed in section 3.2 of D3.1. 

During the iterations of the INTER-IoT Reference Architecture and the INTER-LAYER Architecture 

Design described in section 5.1, some discussion arose about the convenience of splitting the 

Network Interoperability FC into two or more FCs, or even whether to create or not a new Functional 

Group. The specific features of network interoperability, which are part of the INTER-IoT, but seem 

not widely addressed as a key issue in interoperability among IoT Platforms, advised us to keep 

identified as a Functional Component, but only as a single component part of the Device 

Interoperability Functional Group. 

 

For the description of the different components of the Network to Network Interoperability 

Architecture Design, we suggest to read the section 3.2 of D3.1. 

5.3.3 Middleware to Middleware Interoperability 

The instantiation of the Functional View to the INTER-Middleware Interoperability layer has followed 

the paths depicted in the Figure 105, as shown below. 

The Middleware to Middleware Interoperability Architecture corresponds to the also called INTER-

MW Architecture, described in section 3.3 of the D3.1. We have rearranged a bit the INTER-MW 

Architecture to make it more simple to see the mappings through the lines with minimal crossings. 

We have also changed some colours, and we have removed the interaction arrows, as they don’t 

add value to the functional mapping. 
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Figure 105: Functional Components of the INTER-IoT RA with the components of the INTER-MW interoperability layer of 
the INTER-LAYER.  
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Platform service  Communication and control 

Platform resolution  MW2MW services 

Platform access  Bridges 

Ontology alignment  IPSM 

Table 8 Mapping of INTER-IoT FGs and MW2MW Layer Interoperability Infrastructure 

In this figure, we show the instantiation of the different Functional Components of the INTER-IoT RA 

in the INTER-MW Architecture Design made in D3.1. The following Functional Components of the 

INTER-IoT RA have been instantiated: 

 

● The Platform Service FC, which was responsible for performing device and platform 

interactions, has been instantiated as a set of components grouped as Communication and 

Control. This group encloses three components: 

○ API Request Manager. It handles requests, received from the API proxy. 

○ Data Flow Manager. It orchestrates data flows from the platforms (bridges) to the 

original caller. 

○ Platform Request Manager. It arranges and manages flow of requests to underlying 

platforms. 

● The Platform Resolution FC which was responsible for discovering and cataloguing the IoT 

Platforms that are available at a specific deployment of INTER-IoT as well as their devices, 

capabilities and IoT Platform Services, has been instantiated as a set of components grouped 

as MW2MW Services. This encloses the following components: 

○ Resource Registry. It contains a list of devices and their properties that can be quickly 

consulted when needed. 

○ Resource Discovery. It finds resources based on queries. 

○ Routing & Roaming Service. It allows the communication with a particular device 

independently of the platform it is currently connected to. 

○ Platform Registry & Capabilities. It contains the information of all connected Platforms 

including their type and service capabilities. 

● The Platform Access FC, that has the role of implementing the functions needed for 

connecting to an IoT Platform and accessing their resources, has been instantiated in the 

bridges component. It is just a collection of bridges for interacting with the different IoT 

Platforms.  A bridge manages the communication with the underlying platforms by translating 

requests and answers in and out. 

● The Semantics components, which are the Ontology Alignment FC and the Ontology 

Resolution FC have been instantiating in a common component called IPSM (IoT Platform 

Semantic Mediator). It is responsible, among other features, for translating incoming 

information, representing semantics of artefact X to semantics of artefact Y. The IPSM will 

use ontological alignments to perform ontology-to-ontology translations. 

5.3.4 Application&Services to Application&Services Interoperability 

The instantiation of the Functional View to the Application&Service Interoperability layer has followed 

the paths depicted in the Figure 106, as shown below. 

The AS2AS Interoperability Architecture has been described in section 3.4 of the D3.1. We have 

rearranged a bit the AS2AS Architecture to make it more simple to see the mappings through the 



 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

156  / 191 

lines with minimal crossings. We have also changed some colours, and we have removed the 

interaction arrows, as they don’t add value to the functional mapping. As a result, the AS2AS 

Architecture has been flipped horizontally, keeping all the components. 

 

Figure 106: Functional Components of the INTER-IoT RA with the components of the Application&Service 
interoperability layer of the INTER-LAYER.  
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Service orchestration  Orchestrator 

Service composition  Communication and control 

Service resolution  Service management 

Semantics  IPSM 

Table 9 Mapping of INTER-IoT FGs and AS2AS Layer Interoperability Infrastructure 

In this figure, we show the instantiation of the different Functional Components of the INTER-IoT RA 

in the AS2AS Architecture Design made in D3.1. The following Functional Components of the 

INTER-IoT RA have been instantiated: 

● The Service Resolution FC was responsible for the storage of what we call flows, 

understood as a logical definition of a sequence of steps, each of which can be a service 

existing in an IoT Platform. It has been instantiated as a group that we have called Service 

Management here for mapping purposes. This group contains two components: 

○ Service Discovery. It manages the detection of services provided by each IoT platform 

attending certain features. 

○ Service Catalogue. It provides storage and access to a uniform catalogue of existing 

and new services. 

● The role of the Service Composition FC was to design new compound services based on 

services that IoT Platforms exposes. The new services are designed like flows which will be 

later executed. In the AS2AS Architecture, it has been instantiated as a set of components 

depicted in green colour: 

○ Modeller. It allows to make a composition of services with a graphical tool 

○ Register Client. It allows the registration of new services through the graphical 

environment. 

○ Flow Repository. It stores the composite services designed with the modeller. 

● The Service Orchestration FC was responsible for the execution of the flows. It has been 

directly mapped to an Orchestrator component of the AS2AS Architecture with all the 

functions of the Service Orchestration FC. 

● As in the MW2MW case, the Semantics components, which are the Ontology Alignment 

FC and the Ontology Resolution FC have been instantiating in a common component called 

IPSM (IoT Platform Semantic Mediator). It is responsible, among other features, for 

translating incoming information, representing semantics of artefact X to semantics of artefact 

Y. The IPSM will use ontological alignments to perform ontology-to-ontology translations. 

5.3.5 Data&Semantics to Data&Semantics Interoperability 

The Semantics FG of the INTER-IoT RA is used in different layers of the interoperability. It has been 

described in the MW2MW Interoperability and AS2AS Interoperability Architectures, the mapping of 

the Functional Components of the Semantics FG of the INTER-IoT RA to the specific components 

used in D3.1. 

Basically, the instantiation has been done designing a common component called IPSM (IoT 

Platform Semantic Mediator), which is widely described in section 3.5 of D3.1. We have rearranged 

a bit the DS2DS Architecture to make it more simple to see the mappings through the lines with 

minimal crossings. We have also changed some colours, and we have removed the interaction 

arrows, as they do not add value to the functional mapping. We have added an enclosing dashed-

box to some components to facilitate the interpretation of the mapping. 
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Figure 107: Functional Components of the INTER-IoT RA with the components of the Data&Semantics interoperability 
layer of the INTER-LAYER.  

Ontology alignment  Alignments repository 

Ontology resolution  IPSM Core 

Application  REST Manager 

Table 10 Mapping of INTER-IoT FGs and DS2DS Layer Interoperability Infrastructure 
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In this figure, we show the instantiation of the different Functional Components of the INTER-IoT RA 

in the DS2DS Architecture Design made in D3.1. The following Functional Components of the 

INTER-IoT RA have been instantiated: 

● The Ontology Resolution FC was responsible for managing the different ontologies used 

at the various IoT Platforms that are connected through INTER-IoT. It has been instantiated 

as the Alignments Repository in the DS2DS Architecture Design.It stores and manages 

alignments (read/write alignments) used in the translation process. It contains: 

○ Input Alignments. 

○ Output Alignments. 

○ Converter. It performs one-time conversion for each new alignment written into the 

repository. 

● The Ontology Alignment FC was responsible for performing the alignment from a source 

data with an ontology to a target data with its own ontology. It makes the data translation 

between two ontologies, using the ontology definitions resolved by the Ontology Resolution 

FC. It has been instantiated as a set of components enclosed by a purple dashed-box. These 

components are depicted in purple/pink or green colour: 

○ Channel Manager. It manages (creates, destroys, lists) Communication Channels i.e. 

flows in message broker and Semantic Translation Channels. 

○ Semantic Translation Channels. A lightweight component that stores information 

about: where to receive data from, which alignment to use, and where to send data 

to. 

○ Alignment Applicator. A component, instances of which are performing semantic 

translation. 

○ IPSM Communication Infrastructure. It facilitates the communication between IoT 

artefacts and the IPSM. 
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6 Appendices 

6.1 Appendix 1 - INTER-IoT requirements relevant to meta-data 

Inter-IoT Requirement Description Meta-data entities + 

comments 

 

INTERIOT-203 (Id 1) 

Roaming across platforms 

Users want to get information about a device 

independently of the platform it is. 

Objects that are moving can switch platform 

to which they are connected. Change 

between a platform and the other should be 

automatic and transparent to the device. 

From INTER-FW point of view, a moving 

device could be set as 'roamable' to specify 

INTER-LAYER that if it's not available in the 

expected platform, it should try to discover it 

in the rest of connected platforms and update 

the device registry  

Device ID, location, 

position 

INTERIOT-278 (Id 42) 

Support for heterogeneous 

information representation 

The method of integration of multiple 

information and knowledge representing the 

same real-world sensing object into a 

consistent, accurate, and useful 

representation. It will help to fully take the 

usage of the IoT information resources for 

different application and service within an IoT 

system or between different information 

systems. 

Sensor, Meta-model 

design 

INTERIOT-325 (Id 10) 

Extensibility (feature 

evolution)  

Functionality must be updated over time, and 

the system should be capable to integrate 

these updates. 

The system should expose functionality to 

the infrastructure maintenance to update the 

functionality when needed with new INTER-

FW versions, without affecting existing 

clients. 

Meta-model design - 

extensibility 

INTERIOT-466 (Id 58) 

Auditability and 

Accountability 

Configured operations performed in the 

system must be tracked uniquely to the entity 

that generated it. 

 

Provenance 

information 

(ownership, 

creation, 

responsibility), users 
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The platform should allow: 

- To retrieve users and/or devices that 

carried out or are in charge of the activities in 

the system and their logged operations. 

- Producing an Audit log with trace of the 

most important data and their values before 

and after changes; 

- Maintain records for a period not less than 

six months; 

- Provide synchronization technologies in 

order to keep aligned the date and time 

recorded in the logs associated with the 

access. 

 

The criteria for registration of the aforesaid 

Log (products so as to not be editable) must 

at least enable the identification: 

- The event that triggered the log (login, 

logout, login failure); 

- The user, the date and the start / end 

connection. 

- The sensitive data updates (before and 

after)  

INTERIOT-473 (Id 63) 

Provision of authentication 

credentials 

Conformity to the legal rules and criteria 

(Privacy code) it must be defined procedures 

and roles for authentication credentials 

management process to enable proper 

management of authentication credentials of 

persons in charge of the data processing. 

As regards the management of the User 

credentials, the platform will have to: 

- allow access only through individual 

authentication credentials (consisting of a 

User ID and an authentication device, e.g. 

Password); 

- prevent the reassignment of User ID to 

another user; 

- allow the definition of access profiles sets 

that guarantee the principles of "need to 

know" and “segregation of duties”; 

Authentication 

credentials and 

methods (user ID, 

email, password, 

checksum, 

encrypted key 

file,authentication 

device,authenticatio

n token) 
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- allow the extraction of the information 

required to verify the correct allocation of 

authentication credentials and their 

authorization profiles; 

- carry out automatic checks at least monthly 

of the users inactive for more than six 

months in order to suspend, unless the users 

for which it has been required and authorized 

a derogation on the basis of an operational 

need.  

INTERIOT-479 (Id 69) 

Confidentiality 

Conformity to the legal rules and criteria 

(Privacy code): In order to ensure the 

confidentiality of data, it will have to ensure 

compliance with the principle of "need to 

know" through the implementation of 

appropriate measures. 

Avoid data falsification or disclosure. 

- If the need of data processing ended, such 

data must be deleted permanently and 

irreversibly in order to prevent unauthorized 

treatment. 

- It must be guaranteed the logical isolation 

of data belonging to different customers on a 

single platform. In particular, it must be 

guaranteed the segregation of single 

customer views, in order to allow processing 

of data only to persons in charge of the 

processing (preventing access / views by 

unauthorized persons). 

- Special procedures for extraction and 

transmission of the data processed by the 

platform must be available. 

- In order to ensure the confidentiality of data 

stored in the platform encryption must be 

provide of identification codes or other 

solutions that make health data unintelligible 

to those who are authorized to access (i.e. 

identification data decoupled from health / 

sensitive ones). 

Authentication 

credentials and 

methods 

INTERIOT-483 (Id 4) 

Alignment with AIOTI 

architecture and view 

 

A key requirement for the system 

architecture is the alignment with the 

architectural reference models of other IoT 

projects, and especially AIOTI.  

Meta-model design 
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AIOTI architectural model is suitable for 

guiding the development of INTER-IoT 

architecture. The use of AIOTI view of the 

architecture of Internet of Things will be 

useful, in order to utilize its results and from 

other projects to avoid re-inventing a new 

architectural model from scratch, and to be 

aligned and compatible with those projects. 

INTERIOT-540 (Id 98) 

Data provenance 

Data provenance metadata should allow to 

identify what is the origin of data e.g. which 

artefact collected the data. 

Provenance (source 

of information – 

platform, device or 

user) 

INTERIOT-547 (Id 77) 

Users manage how their 

public data is seen 

Devices/IoT platforms as data sources are 

owned by different third parties. The owner 

of the object should be able to manage who 

and when other users have access to their 

information. 

 

IoT platforms should support data ownership 

management, data-flow monitoring, and 

access management. Data visibility is 

managed according to owning entities 

policies. This is managed globally (platform 

independent) 

 

At the configuration of an IoT platform 

registrated into INTER-IoT, the software 

integrator may be able to specify a list of 

devices and/or operations which will be 

accessible from external agents through 

INTER-IoT, how long, with whom, etc.  

Data access policy – 

when, who (user, 

role, device, 

platform) 

INTERIOT-616 (Id 186) 

Design of required 

ontologies 

To achieve semantic interoperability generic 

ontology(ies) should be used. 

Use of required ontologies - a generic 

ontology of the Internet of Things. Creation 

of GOIoTP, a global IoT ontology, providing 

common understanding of the IoT (generic) 

meta-structure, and enabling semantic 

interoperability. It is required to be designed 

or chosen from available ones in order to 

produce semantic alignment. GOIoTP will be 

based on current main IoT ontologies, such 

as W3C SSN, SAREF, etc. 

Meta-model design 
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INTERIOT-662 (Id 223) 

Semantic support for 

virtual smart objects, not 

only sensors 

More broad definition of smart object in the 

ontology, not only referred to physical 

sensors but to other types of smart object. 

INTER-IoT ontology, GOIoTP, will include 

support for smart objects that are not 

sensors, but act as smart devices, such as 

virtual devices, human interfaces or 

algorithms. Many ontologies do not include 

objects that are not sensors, although they 

are potential and relevant IoT smart objects. 

Device (sensor, 

actuator, human 

interface) 

INTERIOT-663 (Id 224) 

Location semantic support 

for mobile smart objects 

The location of smart objects may be a 

critical information in order to analyse data 

from them, specially in the case of mobile 

sensors, and it is not considered in many 

ontologies. 

 

Device location / 

position 

INTERIOT-693 (Id 132) 

Portability 

Unique names, usage, disambiguation. 

Service providers must be able to switch 

between customers / users. 

Entities (users, 

services) IDs 

INTERIOT-699 (Id 254) 

Each data unit is identified 

univocally 

Allow traceability, storage and decoupling 

between transmissions. 

Each minimal unit of meaningful data 

transmission (e.g. a heart rate measurement 

or a truck location event) must contain an 

identifier allowing retrieve the source of data 

and the network/platform for traceability. 

Provenance (source 

of information – 

platform, network, 

device) 

INTERIOT-702 (Id 256) 

Each device has a unique 

INTER-IoT identifier 

Each device connected to the network must 

be recognized in order to be able to process 

data to and from the device. There should 

not be a limitation to the number of devices 

that can connect.  

An identifier system must be developed to be 

able to identify each device. 

Granularity in identification must reach the 

device level.  

Device ID 

INTERIOT-703 (Id 257) 

The INTER-IoT unique ID 

is used to find the platform-

specific ID of the device  

The platform specific ID needs to be 

retrieved from the INTER-IoT ID. 

The platform specific ID of each element 

needs to be retrieved from que unique ID 

assigned in INTER-IoT. This ensures 

traceability. 

Device ID 
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INTERIOT-706 (Id 260) 

Manages user permission 

Users have permissions to access different 

platform/devices that need to be managed. 

 

User permissions for 

platforms/devices. 

INTERIOT-708 (Id 262) 

Manages group-based 

permissions 

 

Permissions can be managed at group level 

in order to simplify business processes.  

User groups 

INTERIOT-709 (Id 263) 

Access to personal data 

needs to be previously 

authorized 

Personal data access must meet the EU 

policies. 

Access to personal information must be 

previously authorized by the owner. 

Authorization 

INTERIOT-712 (Id 266) 

API allows 

resources/capabilities 

discovery 

Applications and/or physical devices needs 

to know the resources and capabilities of the 

connected platforms. 

API allow applications to discover resources 

and capabilities of the platforms. 

Platform 

INTERIOT-723 (Id 278) 

Future-proof 

Future-proof: Future versions of the protocol 

must work with prior versions and provide all 

the same capabilities as prior versions. 

Meta-model design 

INTERIOT-729 (Id 91) 

The implementation must 

be done by phases and 

progressively 

When a complex system migrates to a new 

IoT protocol it is impossible to do it all at the 

same time. 

The process of implementation a new IoT 

protocol has to be compatible with both at the 

same time, i.e. at least it should have a 

gateway between the new and the old 

systems. 

Meta-model design 

INTERIOT-829 (Id 280) 

Requests filtering 

Access needs can be very different for each 

situation, so tools must be provided to the 

user to select what he needs. 

When sending a requests to INTER-FW, it 

will be possible to specify filtering: The 

system shares a common filter format when 

possible. This filtering will allow: 

- Selection of platform(s). 

- Selection of device(s). 

- Selection of property type(s). 

- Selection of property filtering(s). 

Platform, Device, 

Geolocation 
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- Selection of geo-queries (if allowed by the 

IoT platform).  

 

6.2 Appendix 2 - IoT ontologies 

Ontology Dublin Core 

 

URI http://purl.org/dc/terms 

Available at: http://dublincore.org/ 

Documentation at: http://dublincore.org/documents/dcmi-terms/ 

Description: 

 

A set of vocabulary terms that can be used to describe web such as web pages and 

physical resources such as books or CDs, and objects like artworks. 

 

Ontology FoaF (Friend of a Friend) 

 

URI http://xmlns.com/foaf/spec/ 

Available at: http://xmlns.com/foaf/spec/ 

Documentation at: http://www.foaf-project.org/ 

Description: 

 

FoaF (Friend of a Friend) describes persons, their activities and their relations to 

other people and objects. FoaF allows to describe social networks without the need 

for a centralised database. 

 

Ontology DUL (Dolce Ultra Lite) 

 

URI http://www.ontologydesignpatterns.org/ont/dul/DUL.owl 

Available at: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl 

Documentation at: 
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+

DnS_Ultralite 

Description: 

 

It is a simplification and an improvement of some parts of DOLCE ( Descriptive 

Ontology for Linguistic and Cognitive Engineering) Lite-Plus library and 

Descriptions and Situations ontology (DnS). Its purpose is to provide a set of upper 
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level concepts that can be the basis for easier interoperability among many middle 

and lower level ontologies. 

 

Ontology Prov-O 

 

URI http://www.w3.org/ns/prov# 

Available at: http://www.w3.org/ns/prov-o 

Documentation at: https://www.w3.org/TR/prov-o/ 

Description: 

 

The PROV-O ontology is a realization of the PROV model in OWL. The model itself 

is used to represent provenance, i.e. information about actors, entities and activities 

involved in producing a piece of data (e.g. a document) or thing (e.g. a physical 

book), regarding quality, reliability, trustworthiness. 

 

Ontology Schema.org 

 

URI http://topbraid.org/schema/ 

Available at: http://topbraid.org/schema/schema.rdf 

Documentation at: http://topbraid.org/schema/ 

Description: 

 

Schema.org is a collection of terms that webmasters can use to markup their pages 

to improve the display of search results. There is an up-to-date OWL version of the 

ontology produced by TopQuadrant. 

 

Ontology SAO (Stream Annotation Ontology) 

 

URI http://purl.oclc.org/NET/UNIS/sao/sao 

Available at: 
http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/saov06.

rdf 

Documentation at: http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao 

Description: 

 

A lightweight ontology used to represent the features of a stream data. It is built on 

top of Semantic Sensor Networks (SSN), PROV-O and TimeLine Ontologies, and 

involves connections with the Complex Event Processing Ontology.and Quality 

Ontology.  
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Ontology M3-lite 

 

URI http://purl.org/iot/vocab/m3-lite 

Available at: http://purl.org/iot/vocab/m3-lite 

Documentation at: https://mimove-apps.paris.inria.fr/ontology/m3lite.html 

Description: 

 

Machine-to-Machine measurement ontology is refactored, cleaned and simplified 

version of M3 ontology. 

 

Ontology Open-IoT Ontology 

 

URI http://openiot.eu/ontology/ns/ 

Available at: http://openiot.eu/ontology/ns/openiot.owl 

Documentation at: https://github.com/OpenIotOrg/openiot/wiki/X-GSN-Use 

Description: 

 

It was developed within the OpenIoT project. The ontology is a comparatively big 

model that (re)uses and combines other ontologies. Those include all modules of 

the SSN (the main basis for the OpenIoT), SPITFIRE (including sensor networks), 

Event Model-F, PROV-O, LinkedGeoData, WGS84, CloudDomain, SIOC, 

Association Ontology and others, including smaller ontologies developed at the 

DERI (currently, Insight Centre). It also makes use of ontologies that provide base 

for those enumerated before, e.g. DUL. Other than those from the SSN, OpenIoT, 

uses a large number of SPITFIRE concepts, e.g. network and sensor network 

descriptions. Although some of the mentioned ontologies are not imported by the 

OpenIoT explicitly, they appear in all examples, documentation and project 

deliverables. Therefore, we treat OpenIoT as a combination of parts of all of those. 

Similarly to the SSN, OpenIoT does not define its own location concepts and does 

not explicitly import geolocation ontologies. It relies on other ontologies for that but, 

in contrast to the SSN, it clearly indicates LinkedGeoData and WGS84 as sources 

of geolocation descriptions. It defines a limited set of units of measure (e.g. 

temperature, wind speed), but only when they were relevant to the OpenIoT project 

pilot implementation. 

 

Ontology OneM2M Base Ontology 

 

URI 
http://www.onem2m.org/ontology/Base_Ontology/base_o

ntology 

Available at: 
http://www.onem2m.org/ontology/Base_Ontology/oneM2

M_Base_Ontology-V_2_0_0.owl 
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Documentation at: http://www.onem2m.org/technical/onem2m-ontologies 

Description: 

 

 It is a recently created ontology, with first non-draft release in August 2016. It is 

relatively small, prepared for the release 2.0 of oneM2M specifications, and 

designed with the intention of providing a shared ontological base to which other 

ontologies align to. It is similar to the SSN, since any concrete system necessarily 

needs to extend it before implementation. It describes devices in a very broad 

scope, enabling (in a very general sense) specification of device functionality, 

networking properties, operation and services. The philosophy behind this 

approach was to enable discovery of semantically demarcated resources using a 

minimal set of concepts. It is a base ontology, as it does not extend any other base 

models (such as DUL or Dublin Core). 

 

Ontologies UniversAAL ontologies 

 

URI http://ontology.universAAL.org/[ontology name].owl 

Available at: 
http://ontology.universaal.org/ 

https://github.com/universAAL/ontology 

Documentation at: https://github.com/universAAL/ontology/wiki 

Description: 

A set of ontologies developed within UniversAAL (Universal open platform and 

reference Specification for Ambient Assisted Living) project. The following 

ontologies were used as data models for information shared thourgh the 

middleware buses. The following ontologies were selected as relevant in the 

INTER-IoT context: 

● Devices - unified device ontology. 

● Measurement - ontology for representing different measurement 

capabilities e.g. measurement, signal, error. 

● Data Representation - basic data representation model with concepts 

representing e.g. root class for all locations, root class for comparable individuals, 

enumeration for QoS rating. 

● Unit - ontology for unit representation such as ampere, bit, gram. 

● Physical Things - ontology for physical things. It is part of the Physical 

World upper ontology concept, which defines the most general concepts from the 

physical world as opposed to the virtual realm. 

● Security - ontology defining the most general concepts dealing security. 

● Location - ontology for locations. It is part of the Physical World upper 

ontology concept, which defines the most general concepts from the physical 

world as opposed to the virtual realm. 

● Service Bus - ontology of the universAAL Service Bus 

● Health, HealthMeasurement, - health ontologies as an example of domain 

ontologies defining the health service, based on the treatment concept and 

measurements of health parameters 
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● PersonalHealthDevice - ontology for person-related health devices 

(Continua certified devices) e.g. blood pressure monitor, weighing scale,... 

 

Ontology SSN Ontology 

 

URI http://purl.oclc.org/NET/ssnx/ssn 

Available at: https://www.w3.org/ns/ssn/ 

Documentation at: https://www.w3.org/TR/vocab-ssn/ 

Description: 

 

This ontology describes sensors and observations, and related concepts. It does 

not describe domain concepts, time, locations, etc. as these are intended to be 

included from other ontologies via OWL imports. 

 

Ontology SAREF 

 

URI https://w3id.org/saref 

Available at: http://ontology.tno.nl/saref.owl 

Documentation at: http://ontology.tno.nl/saref/ 

Description: 

 

It covers the area of smart devices in houses, offices, public places, etc. It does not 

focus on any industrial or scientific implementation. The devices are characterized 

predominantly by the function(s) they perform, commands they accept, and states 

they can be in. Those three categories serve as basic building blocks of the 

semantic description in SAREF. Elements from each can be combined to produce 

complex descriptions of multi-functional devices. The description is complemented 

by device services that offer functions. A noteworthy module of SAREF is the 

energy and power profile that has received considerable attention shortly after its 

inception. SAREF uses WGS84 for geolocation and defines its own set of 

measurement units. 

 

Ontology Fiesta-IoT Ontology 

 

URI https://mimove-apps.paris.inria.fr/ontology/fiesta-iot.owl 

Available at: https://mimove-apps.paris.inria.fr/ontology/fiesta-iot.owl 

Documentation at: http://ontology.fiesta-iot.eu/ontologyDocs/fiesta-iot/doc 

Description: 

 



 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

171 / 191  

FIESTA-IoT Ontology is designed with a goal to achieve semantic interoperability 

among heterogeneous testbeds. To build the ontology, a number of core concepts 

from various mainstream ontologies and taxonomies were merged, such as W3C 

SSN, M3-lite, WGS84, IoT-lite, Time, and DUL ontology. 

 

Ontology iot-lite 

 

URI http://purl.oclc.org/NET/UNIS/fiware/iot-lite 

Available at: 
http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite/iot-

lite.rdf 

Documentation at: http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite 

Description: 

 

It is an instantiation of the SSN, i.e. a direct extension of some of its modules. It is 

a minimal ontology, to which most of the caveats of the SSN apply. Those include: 

focus on sensors and observations, reliance on other ontologies (e.g. time or units 

ontologies), high modularity and extendability. The idea behind IoT-Lite was to 

create a small/light semantic model that would be less taxing (than other, more 

verbose and broader models) on devices that process it. At the same time, it needed 

to cover enough concepts to be useful. The ontology describes devices, objects, 

systems and services. The main extension of the SSN in the IoT-Lite lies in addition 

of actuators (to complement sensors, as a device type) and a coverage property. It 

explicitly uses concepts from a geolocation ontology (WGS84) to demarcate device 

coverage and deployment location. 

 

Ontology 
Ontology Modeling for Intelligent Domotic 

Environments (dogont) 

 

URI http://elite.polito.it/ontologies/dogont 

Available at: http://elite.polito.it/ontologies/dogont.owl 

Documentation at: http://www.cad.polito.it/pap/exact/iswc08.html 

Description: 

 

The DogOnt ontology supports device/network independent description of houses, 

including both controllable and architectural elements. 

 

Ontology IoT-O 

 

URI http://www.irit.fr/recherches/MELODI/ontologies/IoT-O# 
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Available at: 
http://lov.okfn.org/dataset/lov/vocabs/ioto/versions/2015-

02-20.n3 

Documentation at: 
https://www.irit.fr/recherches/MELODI/ontologies/IoT-

O.html 

Description: 

 

IoT-O is a core domain Internet of Things ontology. It is intended to model horizontal 

knowledge about IoT systems and applications, and to be extended with vertical, 

application specific knowledge. It is constituted of different modules : - A sensing 

module, based on W3C's SSN (http://purl.oclc.org/NET/ssnx/ssn) - An acting 

module, based on SAN (http://www.irit.fr/recherches/MELODI/ontologies/SAN) - A 

service module, based on MSM (http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-

09-03.rdf) and hRest (http://www.wsmo.org/ns/hrests) - A lifecycle module, based 

on a lifecycle vocabulary (http://vocab.org/lifecycle/schema-20080603.rdf) and an 

iot-specific extension (http://www.irit.fr/recherches/MELODI/ontologies/IoT-

Lifecycle) - An energy module, based on powerOnt 

(ttp://elite.polito.it/ontologies/poweront.owl) IoT-O developping team also 

contributes to the oneM2M IoT interoperability standard 

 

Ontology  Spitfire Ontology 

 

URI http://spitfire-project.eu/ontology/ns 

Available at: http://spitfire-project.eu/ontology.owl 

Documentation at: http://spitfire-project.eu/incontextsensing/ontology.php 

Description: 

 

The SPITFIRE Ontology (spt) is based on the alignment among Dolce+DnS 

Ultralite(dul), the W3C Semantic Sensor Network ontology (ssn) and the Event 

Model-F ontology (event). 

 

Ontology SAN (Semantic Actuator Network) 

 

URI  

Available at:  

Documentation at: http://www.irit.fr/recherches/MELODI/ontologies/SAN 

Description: 

 

This ontology is intended to describe Semantic Actuator Networks, as a 

counterpoint to SSN definition of Semantic Sensor Networks. An actuator is a 

physical device having an effect on the world (see Actuator for more information). 

It is worth noticing that some concepts are imported from SSN, but not SSN as a 

whole. This is a design choice intended to separate as much as possible the 
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definition on actuator from the definition of sensor, which are completely different 

concept that can be used independently from each other. This ontology is used as 

a ontological module in IoT-O ontology. 

 

Model SensorThings 

 

URI N/A 

Available at: https://github.com/opengeospatial/sensorthings 

Documentation at: http://docs.opengeospatial.org/is/15-078r6/15-078r6.html 

Description: 

 

API: http://cite.opengeospatial.org/te2/about/sta10/1.0/site/apidocs/index.html 

Documentation at: http://docs.opengeospatial.org/is/15-078r6/15-078r6.html OGC 

SensorML for sensor description URI: 

http://www.opengeospatial.org/standards/sensorml OGC SensorML for sensor 

description specification: http://www.opengeospatial.org/standards/om OGC 

Observations and Measurements: http://www.opengeospatial.org/standards/om 

 

Ontology W3C OWL-Time ontology 

 

URI http://www.w3.org/2006/time# 

Available at: https://www.w3.org/2006/time 

Documentation at: https://www.w3.org/TR/owl-time/ 

Description: 

 

 The ontology provides a vocabulary for expressing facts about topological relations 

among instants and intervals, together with information about durations, and about 

temporal position including date-time information. 

 

Ontology Timeline Ontology 

 

URI http://purl.org/NET/c4dm/timeline.owl 

Available at: http://motools.sf.net/timeline/timeline.n3 

Documentation at: http://motools.sourceforge.net/timeline/timeline.html 

Description: 

 

The ontology defines the TimeLine concept, that is meant to identify a temporal 

backbone. Each temporal object (signal, video, performance, work, etc.) can be 

associated to such a timeline. Then, a number of Interval and Instant can be defined 

on this timeline. 
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Ontology Process Execution Ontology 

 

URI https://w3id.org/pep/ 

Available at: https://w3id.org/pep/ 

Documentation at: http://ci.emse.fr/pep/ 

Description: 

 

The process execution ontology is a proposal for a simple extension of both the 

[W3C Semantic Sensor Network](https://www.w3.org/TR/vocab-ssn/) and the 

[Semantic Actuator 

Network](https://www.irit.fr/recherches/MELODI/ontologies/SAN.owl) ontology 

cores. 

 

Ontology Event Ontology 

 

URI http://purl.org/NET/c4dm/event.owl 

Available at: http://motools.sf.net/event/event.n3 

Documentation at: http://motools.sourceforge.net/event/event.html 

Description: 

 

This ontology deals with the notion of reified events. It defines one main Event 

concept that may have a location, a time, active agents, factors and products. 

 

Ontology Geoposition Ontology (wgs84_pos) 

 

URI http://www.w3.org/2003/01/geo/wgs84_pos 

Available at: https://www.w3.org/2003/01/geo/wgs84_pos.rdf 

Documentation at: https://www.w3.org/2003/01/geo/ 

Description: 

 

A vocabulary for representing latitude, longitude and altitude information in the 

WGS84 geodetic reference datum. Basic classes are: SpatialThing (anything with 

special extent) and Point (a point described using a coordinate system such as 

WGS84). Basic properties are: latitude, longitude, location, altitude, lat/long. 

 

Ontology GeoSPARQL 

 

URI http://www.opengis.net/ont/geosparql 



 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

175 / 191  

Available at: 
http://schemas.opengis.net/geosparql/1.0/geosparql_voca

b_all.rdf 

Documentation at: http://www.opengeospatial.org/standards/geosparql 

Description: 

 

The OGC GeoSPARQL standard supports representing and querying geospatial 

data on the Semantic Web. GeoSPARQL defines a vocabulary for representing 

geospatial data in RDF, and it defines an extension to the SPARQL query language 

for processing geospatial data.  GeoSPARQL ontology defines a list of spatial 

concepts described in OGC/ISO Simple Features e.g. point, line, polygon that can 

be placed in a geometry concept hierarchies. 

 

Model / Ontology GeoRSS 

 

URI http://www.georss.org/georss/ 

Available at: 
https://www.w3.org/2005/Incubator/geo/XGR-geo-

20071023/W3C_XGR_Geo_files/geo_2007.owl 

Documentation at: http://www.georss.org/ 

Description: 

 

Geographically Encoded Objects for RSS feeds is an emerging standard for 

encoding location as part of a Web feed. Two encodings of GeoRSS are available: 

GeoRSS-Simple - a lightweight format that supports basic geometries and covers 

the typical use cases when encoding locations. 

GeoRSS GML - a formal Open Geospatial Consortium (OGC) GML Application 

Profile, that supports a greater range of features than GeoRSS Simple e.g. 

coordinate reference systems other than WGS84 latitude/longitude. 

 

W3C Geo OWL provides an ontology which closely matches the GeoRSS feature 

model and which utilizes the existing GeoRSS vocabulary for geographic properties 

and classes. 

 

Format GeoJSON (IETF RFC 7946) 

 

URI N/A 

Available at: http://geojson.org/ 

Documentation at: https://tools.ietf.org/html/rfc7946 

Description: 

 

GeoJSON is a geospatial data interchange format based on JSON proposed by 

Internet Engineering Task Force (IETF). It defines several types of JSON objects 

and the way in which they can be combined to represent data about geographic 
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features, their properties, and their spatial extents. GeoJSON uses a geographic 

coordinate reference system, WGS84 and units of decimal degrees. 

 

Ontology Library for Quantity Kinds and Units 

 

URI http://purl.oclc.org/NET/ssnx/qu/qu 

Available at: http://purl.oclc.org/NET/ssnx/qu/qu 

Documentation at: https://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu 

Description: 

 

This ontology is partially based on the SysML QUDV (Quantities, Units, Dimensions 

and Values) proposed by a working group of the SysML 1.2 Revision Task Force 

(RTF), working in close coordination with the OMG MARTE specification group. 

 

Ontology Ontology for Quantity Kinds and Units 

 

URI http://purl.oclc.org/NET/ssnx/qu/qu-rec20 

Available at: http://purl.oclc.org/NET/ssnx/qu/qu-rec20 

Documentation at: 
https://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu-

rec20.html 

Description: 

 

Ontology units and quantities definitions that imports the qu ontology. It defines 

numerous dimensions and can be used as a common model for describing the type 

of data measured by sensors. 

 

Ontology Units of Measurement (UO) 

 

URI http://purl.obolibrary.org/obo/uo.owl 

Available at: http://www.berkeleybop.org/ontologies/uo.owl 

Documentation at: https://bioportal.bioontology.org/ontologies/UO 

Description: 

 

The Ontology of Units of Measurement is developed as part of the OBO Foundry 

initiative. 

 

 

Model Unified Code for Units of Measure (UCUM) 
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URI http://unitsofmeasure.org/trac 

Available at: http://unitsofmeasure.org/trac 

Documentation at: http://unitsofmeasure.org/ucum.html 

Description: 

 

A code system intended to include all units of measures being contemporarily used 

in international science, engineering, and business. A typical application of UCUM 

are electronic data interchange (EDI) protocols, but it can also be used in other 

types of machine communication. 

 

 

Ontology IoT-A Ontologies 

 

URI  

Available at: http://www.surrey.ac.uk/ccsr/ontologies/DeviceModel.owl 

Documentation at: 
http://iot.ee.surrey.ac.uk/s2w/share/ontologies/iot-

a/original/ 

Description: 

 

The following ontologies were developed within IoT-A projects: 

 

DeviceModel.owl - extends W3C SSN and DUL ontologies with TagDevice, 

NodeDevice, ActuatingDevice, Actuator concepts 

LocationModel.owl - describes location with concepts such as SpatialThing, Room, 

Building, Floor, Premises, Compass_Area 

ResourceModel.owl - describes a resource i.e. a computational  element  that  gives 

access to information about or actuation capabilities on 

a Physical Entity 

ServiceModel.owl - exposes resource functionalities in terms of the input, output, 

precondition, and effect 

ServiceInstance.owl - sample instances built on the service model 

VirtualEntityModel.owl - describes a  physical  object  that  is  relevant from a user 

or application perspective 

VirtualEntityInstance.owl - sample instances built on the virtual entity model 

AssociationModel.owl - imports VirtualEntityModel.owl and ServiceModel.owl and 

adds concepts to relate virtual entites to services. e.g. ServiceCabalilities, 

VEServiceDescription 

AssociationInstance.owl - sample instances built on the association model 

 

Ontology Quantities, Units, Dimensions, and Types Ontology 
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URI 

   

 

http://qudt.org/1.1/schema/qudt 

Available at: http://qudt.org/1.1/schema/qudt 

Documentation at: https://bioportal.bioontology.org/ontologies/QUDT 

Description: 

 

The ontology specifies the base classes properties, and restrictions used for 

modeling measurable quantities, units for measuring different kinds of quantities 

and and their dimensions in various measurement systems. 

 

Model 

 
Web Service Modelling Ontology (WSMO) 

 

URI N/A 

Available at: https://www.w3.org/Submission/WSMO/#appendixA 

Documentation at: https://www.w3.org/Submission/WSMO/ 

Description: 

 

WSMO is a top-down conceptual framework for describing semantic web services 

in order to facilitate the automation of discovering, combining and invoking. It 

provides ontology-based framework with components, ontologies, web service 

descriptions (describe the functional and behavioral aspects), goals (user desires) 

and mediators (interoperability between different WSMO elements).  

 

Ontology WSMO-Lite 

 

URI http://www.wsmo.org/ns/wsmo-lite/index.rdfxml 

Available at: http://www.wsmo.org/ns/wsmo-lite# 

Documentation at: https://www.w3.org/Submission/WSMO-Lite/ 

Description: 

 

This is a lightweight ontology for semantic annotations of services, intended for use 

with SAWSDL and the Minimal Service Model. 

 

Ontology 
OWL-S: Semantic Markup for Web Services 

 

 

URI N/A 
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Available at: http://www.daml.org/services/owl-s/1.0/ 

Documentation at: https://www.w3.org/Submission/OWL-S/ 

Description: 

 

OWL ontology for describing semantic web services. It was designed to enable 

automatic discovering, invoking, composing, and monitoring web resources offering 

services. OWL-S has three main parts: service role (service description), service 

model (how a client can interact with the service e.g. inputs, outputs) and service 

grounding (details needed to interact with the service e.g. communication protocols, 

message formats).  
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6.3 Appendix 3 - Functional view study dataset 

6.3.1 Applications 
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Specific application domains the IoT platform is designed or used for
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6.3.2 Management 
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Y Y Y Y Y

Backend Dev ice Management - IDAS Resource Usage Monit. Data Visualization - SpagoBI Backend Dev ice Management - IDAS Auxiliar enablers

Y P Y Y Y

Extended GSN (X-GSN)
Application Runtime Monitoring (with Jav a 

Melody )

Application Runtime Monitoring (with Jav a 

Melody )
OpenIoT Security  and Priv acy  module Virtual Sensor Conf iguration & Monitoring

Y Y P P

Middleware, prof iling tool, LDDI Context History , Log Monitor tool
User Prof ile Tool (it does not link dev ices 

and users) AAL Space Prof iles

Only  in supported technologies (potentially , 

ZigBee, Bluetooth Continua Alliance, KNX). 

It does not prov ies an API to globally  
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Functionalities that are needed to govern an IoT system

Management
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6.3.3 Service Organization 
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Used for composing and orchestrating Services of different levels of abstraction

Service Organization
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6.3.4 IoT Process Management 
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To provide the functional concepts necessary to conceptually integrate the idiosyncrasies of the IoT world into 

traditional (business) processes. The different roles of the business objects and users will be defined here

IoT Process Management
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6.3.5 Virtual Entity 
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Contiki

Sofia 2

ThingSpeak

GE Predix
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Microsoft Azure IoT

Amazon AWS IoT
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Open IoT

UniversAAL

VE Service

Functions for interacting with the IoT System on the basis of VEs, as well as functionalities for discovering and looking up services 

about VEs.

Virtual Entity
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6.3.6 IoT Service 
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IoT Service IoT Service Resolution.

IoT Service

Discovery, look-up, and name resolution of IoT Services. IoT Services can be used to get information provided by a resource retrieved from 

a sensor device
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6.3.7 Security 
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6.3.8 Communication 
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End To End Communication

Communication

It's an abstraction, modelling the variety of interaction schemes derived from the many technologies belonging to IoT systems and 

providing a common interface to the IoT Service FG
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6.3.9 Devices 

  

Platform

IP
 C

a
p

a
b

le

C
o

n
s

tr
a

in
e

d

G
a

te
w

a
y

H
T

T
P

 e
n

a
b

le
d

C
o

A
P

 e
n

a
b

le
d

Y Y Y Y

Y Y

Y Y

Y Y

Y Y

Y Y Y

Y

Y Y Y Y Y

Y Y Y Y Y

Y Y Y

KP

Y

Y Y Y Y

Y Y

Y

Y Y Y Y Y

IBM Watson IoT

WSO2

Contiki

Sofia 2

ThingSpeak

GE Predix

All-Joyn

Butler

i-Core

OneM2M

Microsoft Azure IoT

Amazon AWS IoT

FIWare

Open IoT

UniversAAL

Devices



 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

189 / 191  

7 References 

[1] MacKenzie et al. Reference Model for Service Oriented Architecture 1.0 http://docs.oasis-

open.org/soa-rm/v1.0/soa-rm.pdf OASIS Standard, 12 October 2006 

[2] Bass, Len. Software architecture in practice. Pearson Education India, 2007 

[3] Nick Rozanski, Eoin Woods. Software Systems Architecture: Working with Stakeholders Using 

Viewpoints and Perspectives. Addison-Wesley, 2005. 

[4] Shames, P. and Yamada, T. Reference architecture for space data systems. s.l.: DSpace at Jet 

Propulsion Laboratory [http://trsnew.jpl.nasa.gov/dspace-oai/request] (United States), 2004 

[5] Marek Obitko (advisor Vladimir Marik): Translations between Ontologies in Multi-Agent Systems, 

Ph.D. dissertation, Faculty of Electrical Engineering, Czech Technical University in Prague, 2007. 

[6] Muller, G. A reference architecture primer, (2008). Available at 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.5696&rep=rep1&type=pdf 

[7] Haller S. The Things in the Internet of Things. Tokyo: s.n, 2010. Available at http://www.iot-

a.eu/public/news/resources/TheThingsintheInternetofThings_SH.pdf 

[8] Basic Geo (WGS84 lat/long) vocabulary (https://www.w3.org/2003/01/geo/) 

[9] INTER-IoT Project (http://www.inter-iot-project.eu) 

[10] oneM2Mstandards for M2M and the Internet of Things (http://www.onem2m.org/) 

[11] Semantic Sensor Network XG nal report (2011) (https://goo.gl/aaTcSf) 

[12] SmartM2M; Smart Appliances; Reference Ontology and oneM2M mapping. 

Technicalspecification 103 264, European Telecommunications Standards Institute (2015) 

[13] Ben Alaya, M., Medjiah, S., Monteil, T., Drira, K.: Towards Semantic Data Interoperability in 

oneM2M Standard. IEEE Communications Magazine 53(12), pp. 35-41 (Dec 2015) 

(https://hal.archives-ouvertes.fr/hal-01228327) 

[14] Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylo, K.: IoT-Lite: A lightweight semantic model 

for the Internet of Things. In: Proc. of the IEEE Conferences on Ubiquitous Intelligence & Computing, 

July 2016, Toulouse, France 

[15] Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S., Graybeal, J., 

Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Phuoc, D.L., Lefort, 

L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor, K.: The SSN 

ontology of the W3C semantic sensor network incubator group. Web Semantics: Science, Services 

and Agents on the World Wide Web 17, pp. 25-32 (2012) (https://goo.gl/urwO7g) 

[16] Daniele, L., den Hartog, F., Roes, J.: Created in close interaction with the industry: The Smart 

Appliances REFerence (SAREF) ontology. In: Cuel, R., Young, R. (eds.) Formal Ontologies Meet 

Industry: Proc. of the 7th Int. Workshop, FOMI 2015, Berlin, Germany, August 5, 2015. pp. 100-112. 

Springer (2015) 

[17] Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Semantic 

interoperability in the Internet of Things: an overview from the INTER-IoT perspective (in press). 

Journal of Network and Computer Applications (2016) 

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.5696&rep=rep1&type=pdf
http://www.iot-a.eu/public/news/resources/TheThingsintheInternetofThings_SH.pdf
http://www.iot-a.eu/public/news/resources/TheThingsintheInternetofThings_SH.pdf
https://www.w3.org/2003/01/geo/
http://www.inter-iot-project.eu/
http://www.onem2m.org/
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
https://hal.archives-ouvertes.fr/hal-01228327
http://www.websemanticsjournal.org/index.php/ps/article/view/312


 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

190  / 191 

[18] Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Towards semantic 

interoperability between Internet of Things platforms (submitted for publication). Springer (2016) 

[19] Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K., Fortino, G.: Tools for 

ontology matching—practical considerations from INTER-IoT perspective. In: Proc. of the 8th Int. 

Conference on Internet and Distributed Computing Systems. LNCS, vol. 9864, pp. 296-307. Springer 

(2016) 

[20] Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K., Palau, C.E.: From 

implicit semantics towards ontologies—practical considerations from the INTER-IoT perspective 

(submitted for publication). In: Proc. of 1st edition of Globe-IoT 2017: Towards Global Interoperability 

among IoT Systems (2017) 

[21] Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? 

International journal of human-computer studies 43(5), pp. 907-928 (1995) 

[22] Jayaraman, P.P., Calbimonte, J.P., Quoc, H.N.M.: The schema editor of OpenIoT for semantic 

sensor networks. In: Kyzirakos, K., Henson, C.A., Perry, M., Varanka, D., Grütter, R., Calbimonte, 

J.P., Celino, I., Valle, E.D., Dell'Aglio, D., Krötzsch, M., Schlobach, S. (eds.) Proc. of the 1st Joint 

Int. Workshop on Semantic Sensor Networks and Terra Cognita (SSN-TC 2015) and the 4th Int. 

Workshop on Ordering and Reasoning (OrdRing 2015) co-located with the 14th Int. Semantic Web 

Conference (ISWC 2015), Bethlehem, PA, United States, October 11-12th, 2015. CEUR Workshop 

Proceedings, vol. 1488, pp. 25-30. CEUR-WS.org (2015) 

[23] Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.P., Riahi, M., Aberer, K., 

Jayaraman, P.P., Zaslavsky, A., Podnar Žš arko, I., Skorin-Kapov, L., Herzog, R.: OpenIoT: Open 

source Internet-of-Things in the Cloud. In: Podnar Žarko, I., Pripužic, K., Serrano, M. (eds.) 

Interoperability and Open-Source Solutions for the Internet of Things. LNCS, vol. 9001, pp. 13-35. 

Springer-Verlag (2015) 

[24] Vrandečić, D.: Ontology Evaluation, pp. 293-313. Springer Berlin, Heidelberg (2009) 

(http://dx.doi.org/10.1007/978-3-540-92673-3_13) 

[25] Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., Meissner, S., eds.: 

Enabling Things to Talk—Designing IoT solutions with the IoT Architectural Reference Model, 

Springer-Verlag (2013) 

[26] Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja, Katarzyna Wasielewska, 

and Carlos E. Palau. From implicit semantics towards ontologies—practical considerations from the 

INTER-IoT perspective. In Proceedings of 1st edition of Globe-IoT 2017: Towards Global 

Interoperability among IoT Systems. Accepted for publication, 2017. 

[27] Eclipse OneM2M site https://wiki.eclipse.org/OM2M/one 

[28] Sofia2 site http://sofia2.com/ 

[29] ThingSpeak Help site https://es.mathworks.com/help/thingspeak/ 

[30] IOT-A D1.5 Final Architectural Reference Model for the IoT http://www.iot-a.eu/public/public-

documents/d1.5/at_download/file  

[31] McGuinness, Deborah L., and Frank Van Harmelen. "OWL web ontology language 

overview." W3C recommendation 10.10 (2004): 2004. 

[32] Ronak Sutaria and Raghunath Govindachari from Mindtree Labs in "Making sense of 

interoperability:Protocols and Standardization initiatives in IOT 

http://dx.doi.org/10.1007/978-3-540-92673-3_13
https://www.google.com/url?q=https://wiki.eclipse.org/OM2M/one&sa=D&ust=1484255088810000&usg=AFQjCNGHeHBSwXrvySLA5BWqCAav_sUJdg
https://www.google.com/url?q=http://sofia2.com/&sa=D&ust=1484255088788000&usg=AFQjCNGkgH5yJ0NSavkNSbUq2_Z0iM3GRg
https://es.mathworks.com/help/thingspeak/
http://www.iot-a.eu/public/public-documents/d1.5/at_download/file
http://www.iot-a.eu/public/public-documents/d1.5/at_download/file


 Initial Reference IoT Platform Meta-Architecture and Meta Data Model 

191 / 191  

[33] The IoT ARM reference manual, Fraunhofer, Martin Bauer et al. 

http://publica.fraunhofer.de/dokumente/N-276076.html  

[34] Pras, A. Network Management Architectures. ISSN 1381-3617. PhD Thesis, University of 

Twente. 

http://publica.fraunhofer.de/dokumente/N-276076.html

