

Deliverable D4.1
Initial Reference IoT Platform Meta-Architecture and

Meta Data Model

15/01/2017

Ref. Ares(2017)219512 - 16/01/2017

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

INTER-IoT

INTER-IoT aim is to design, implement and test a framework that will allow

interoperability among different Internet of Things (IoT) platforms.

Most current existing IoT developments are based on “closed-loop” concepts, focusing

on a specific purpose and being isolated from the rest of the world. Integration between

heterogeneous elements is usually done at device or network level, and is just limited to

data gathering. Our belief is that a multi-layered approach integrating different IoT

devices, networks, platforms, services and applications will allow a global continuum of

data, infrastructures and services that can will enable different IoT scenarios. As well,

reuse and integration of existing and future IoT systems will be facilitated, creating a

defacto global ecosystem of interoperable IoT platforms.

In the absence of global IoT standards, the INTER-IoT results will allow any company to

design and develop new IoT devices or services, leveraging on the existing ecosystem,

and bring get them to market quickly.

INTER-IoT has been financed by the Horizon 2020 initiative of the European

Commission, contract 687283.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

1 / 191

INTER-IoT

Initial Reference IoT Platform Meta-Architecture and
Meta Data Model

Version: 1.0

Security: Public

12/01/2017

The INTER-IoT project has been financed by the Horizon 2020 initiative of the European Commission, contract 687283

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

2 / 191

Disclaimer

This document contains material, which is the copyright of certain INTER-IoT consortium parties, and may not

be reproduced or copied without permission.
The information contained in this document is the proprietary confidential information of the INTER-IoT

consortium (including the Commission Services) and may not be disclosed except in accordance with the

consortium agreement.
The commercial use of any information contained in this document may require a license from the proprietor

of that information.
Neither the project consortium as a whole nor a certain party of the consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.
The information in this document is subject to change without notice.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

3 / 191

Executive Summary

The following document is the deliverable D4.1 Initial Reference IoT Platform Meta-Architecture and

Meta Data Model of the INTER-IoT Project. It officially reports on the activity of the first six months

in the Work Package 4 (Interoperability Framework) of the project. However, in practise, this

document contains also knowledge and outcomes generated in Work Package 3 (Layer

Interoperability) activities, due to the technical software engineering nature of the document.

D4.1 is the formal output of the WP4 tasks T4.1 Design of a Reference Meta-Architecture for

Interoperable IoT Platforms and T4.2 Design of a Reference Meta-Data Model for Interoperable IoT

Platforms. It also coincides with project milestone MS4 Initial Architecture Release, which is

completely specified between documents D3.1 and D4.1.

This document is divided in 7 sections. Section 1 presents an initial introduction with the project

purpose and background.

Section 2 describes the approach followed in the works related to this report, mainly, but not

exclusively, based on the IOT-A proposed approach for creating reference architectures and

following a similar approach to describe the reference model and other perspectives and views

relevant in this stage of the project.

Section 3 defines the INTER-IoT Reference Model, which constitutes a novel proposal for the IoT

Platforms Interoperability, reflecting not only architectural elements of the different kind of systems

that can be found in the IoT domain but also canonical interoperability means frequently used to

make heterogeneous systems work together. Thus, a model for the architectural components

specified in the next sections is previously defined.

Section 4 contains the INTER-IoT Reference Architecture which, based on the previously proposed

Reference Model, defines the different relevant architectural views for the INTER-IoT project and

concerning the cases under study. This chapter is divided in 3 subsections: the functional view

specification, which reviews the IOT-A definition of this view, analyses this perspective in 15 selected

existing platforms and finally proposes a functional view for INTER-IoT, which is a base for the

INTER-LAYER and INTER-FW specifications. Relation with solutions proposed in D3.1 is also

discussed in this subsection. Additionally, it contains a subsection for other relevant view such as

the information view. A third subsection is devoted for the different architectural perspectives, which

will be better defined during the second year of the project and consequently reported in D4.2, the

final version planned for this document.

The section 5 analyses and relates the resulting reference architecture with the INTER-LAYER

solution, specified in D3.1. It shows the relation with the model and the actual mapping of the

components with the functional components identified in previous sections.

Finally, sections 6 and 7 contains references and bibliography of the whole document and annexes

to improve the understanding and to give further information in some specific areas.

The contents of this document set up a baseline for the works of tasks T4.3, T4,4 and T4.5 related

to the design and implementation of the INTER-FW and its API.

The D4.1 has revision planned for month 24 (D4.2) which will revise and expand the contents of this

document as well as report about the works performed in the second year particularly in the tasks

mentioned in the previous paragraph.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

4 / 191

List of Authors

Organisation Authors

Universitat Politécnica de

València
Jara Suarez, Andreu Belsa, Regel Usach, Eneko Olivares,

Carlos Palau

Universita’ Della Calabria Raffaele Gravina, Giancarlo Fortino

Prodevelop Miguel Montesinos, Miguel A. Llorente, Alberto Romeu

Tesnishe Universiteit

Eindhoven
Geogios Exarchakos

Valencia Port Foundation Pablo Gimenez, Miguel Llop

Rinicom Eric David Carlson

AFT Moncef Semichi

Noatum Francisco Blanquer

XLAB Flavio Fuart, Matevz Markovic

SRIPAS
Pawel Szmeja, Katarzyna Wasielewska-Michniewska, Marcin

Paprzyck

ASL TO5 Anna Dott

ABC Alessandro Bassi

Neways Johan Schabbink

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

5 / 191

Change control datasheet

Version Changes Chapters Pages

0.1
First full draft with main

contributions from all partners
1-4 + Appendixes

Made in Google

Doc (no page #

valida)

0.2
Syntax and light content

review (SRIPAS)
Id. Id.

0.3

Content update for different

sections after content review

by PRO

Id. Id.

0.4 Section 5 added 5 Id.

0.5 Consolidated MS Word format All Id.

0.6
First review for Word

document from UNICAL
All Id.

0.7
Fixes for sections and general

review by PRO
All Id.

0.8
Executive summary,

Introduction
1 Chapter 1

1.0 Final fixes by UPV All All

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

6 / 191

Contents

Executive Summary .. 3

List of Authors ... 4

Change control datasheet ... 5

Contents ... 6

List of Figures ... 9

List of Tables .. 12

Acronyms .. 13

1 Introduction .. 16

2 Approach ... 19

2.1 Introduction ... 19

2.2 The IoT-A Architectural Reference Model ... 20

2.2.1 IoT-A Background .. 20

2.2.2 Basic Usage of the IoT-A ARM .. 21

2.2.3 Architecture concepts .. 23

2.3 Domain Model... 24

2.4 Information Model and Meta Data Model .. 25

2.4.1 Introduction .. 25

2.4.2 The INTER-IoT reference meta-data model creation process 26

2.5 Functional Model .. 31

2.6 Communication Model .. 32

2.7 Functional View .. 38

3 INTER-IoT Reference Model and Meta Data Model ... 39

3.1 Introduction ... 39

3.2 Domain Model... 40

3.2.1 Introduction .. 40

3.2.2 IoT-A Domain Model .. 40

3.2.3 INTER-IoT Domain Model .. 42

3.3 Information Model ... 44

3.3.1 Introduction .. 44

3.3.2 Scope of Meta-Data model .. 45

3.3.3 Comparing IoT-related ontologies .. 49

3.3.4 Summary ... 54

3.4 Functional Model .. 56

3.4.1 IoT-A Functional Model .. 56

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

7 / 191

3.4.2 IOT-A based functional analysis of IoT Platforms ... 57

3.4.3 INTER-IoT Functional Model .. 86

3.4.4 Conclusions ... 94

3.5 Communication Model .. 94

3.5.1 Introduction .. 94

3.5.2 Communication Protocols on IoT Platforms ... 95

3.5.3 INTER-IoT Domain Model element communications .. 97

3.5.4 INTER-IoT Channel Model for Interoperability ... 107

4 INTER-IoT Reference Architecture .. 114

4.1 Functional View .. 114

4.1.1 IoT-A’s Functional View ... 114

4.1.2 IoT Functional View Platform Analysis ... 115

4.1.3 INTER-IoT Functional View.. 124

4.1.4 Interactions of the Functional View .. 131

4.2 Other views ... 134

4.2.1 Information View .. 135

4.3 IoT Architecture Perspective: Non-Functional Properties .. 138

5 Relationship with INTER-IoT Architecture .. 143

5.1 Introduction ... 143

5.2 Mapping of the Functional View with the multi-layered interoperability approach 144

5.3 Instantiation of the INTER-IoT RA to INTER-LAYER ... 148

5.3.1 Device to Device Interoperability .. 148

5.3.2 Network to Network Interoperability ... 152

5.3.3 Middleware to Middleware Interoperability ... 153

5.3.4 Application&Services to Application&Services Interoperability 155

5.3.5 Data&Semantics to Data&Semantics Interoperability ... 157

6 Appendices .. 160

6.1 Appendix 1 - INTER-IoT requirements relevant to meta-data .. 160

6.2 Appendix 2 - IoT ontologies .. 166

6.3 Appendix 3 - Functional view study dataset .. 180

6.3.1 Applications ... 180

6.3.2 Management .. 181

6.3.3 Service Organization ... 182

6.3.4 IoT Process Management .. 183

6.3.5 Virtual Entity .. 184

6.3.6 IoT Service .. 185

6.3.7 Security ... 186

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

8 / 191

6.3.8 Communication .. 187

6.3.9 Devices .. 188

7 References .. 189

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

9 / 191

List of Figures

Figure 1 Structure of the document ... 17
Figure 2 Relation with other documents and artefacts ... 18
Figure 3 Relation between different IoT Architectures ... 19
Figure 4 The IOT-A tree .. 21
Figure 5 IoT Domain Model ... 26
Figure 6 Creation of initial reference meta-data mode ... 27
Figure 7 Model of ontology .. 28
Figure 8 Merging modules (Adding an ontology, or an ontological module, to the reference meta-

data model) ... 30
Figure 9 Creation of final reference meta-data model ... 31
Figure 10 List of platforms analysed.. 32
Figure 11 Interoperability aspects of the IoT Communication model compared to the ISO/OSI

communication stack .. 33
Figure 12 Gateway configuration for multiple protocol stacks .. 35
Figure 13 Virtual configuration for multiple protocol stacks .. 35
Figure 14: IOT-A’s Domain Model with entity classification ... 42
Figure 15: INTER-IoT generic domain model .. 43
Figure 16: Example of functional model: IOT-A’s functional model .. 57
Figure 17: FIWARE architecture with the main Generic Enablers ... 59
Figure 18 FIWARE IoT stack components .. 60
Figure 19: Context broker and IoT agents ... 60
Figure 20: Relation of FIWARE with IOT-A functional model ... 61
Figure 21: Relationship of OpenIoT with IOT-A functional model .. 63
Figure 22: Relationship of UniversAAL with IOT-A Functional Model .. 64
Figure 23: Eclipse OM2M Building Blocks ... 65
Figure 24: Relationship of OM2M and IOT-A Functional Model ... 66
Figure 25: Amazon AWS IoT main architecture .. 68
Figure 26: Relationship of Amazon AWS IoT .. 69
Figure 27: Relationship of AllJoyn with IOT-A functional model ... 70
Figure 28: Butler generic architecture ... 71
Figure 29: Relationship of BUTLER with IOT-A functional model .. 72
Figure 30: i-Core generic architecture ... 73
Figure 31: Relationship of i-Core with IOT-A functional model .. 74
Figure 32: SOFIA2's conceptual blocks... 75
Figure 33: Relationship of Sofia2 with IOT-A functional model .. 76
Figure 34: Architecture of ThingSpeak .. 77
Figure 35: Relationship of ThingSpeak platform with IOT-A functional model 78
Figure 36 Contiki architecture ... 81
Figure 37 Relationship of IBM Watson with IOT-A reference model .. 82
Figure 38: Relationship of IBM Watson with IOT-A reference model ... 83
Figure 39: WSO2 components and generic architecture ... 85
Figure 40: Relationship of WSO2 with IOT-A reference model .. 86
Figure 41: Functional Model of INTER-IoT Reference Model .. 87
Figure 42: Relationship among main entities about devices in the physical and virtual plane 91
Figure 43: Example of relationship among main entities about devices ... 91
Figure 44: Comparison between traditional OSI model, IoT stack and INTER-IoT stack 94

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

10 / 191

Figure 45: Comparison between traditional Internet stack and the IoT network stack. [32] 96
Figure 46: Domain Model entities involved in Device-to-Device communication when the device

communicates through the physical gateway Device communicates through the virtual gateway . 98
Figure 47: Domain Model entities involved in Device-to-Device communication when the device

communicates through the virtual gateway ... 99
Figure 48: Domain Model entities involved in Network-to-Network communication when the device

communicates with resource in the network .. 100
Figure 49: Domain Model entities involved in Device-to-Device communication when platform

communicates with another resource in network ... 101
Figure 50: Domain Model entities involved in Middleware-to-Middleware communication when the

user communicates with an IoT Platform .. 102
Figure 51: Domain Model entities involved in Middleware-to-Middleware communication when the

user configures a Middleware to Middleware communication between two IoT Platforms 103
Figure 52: Domain Model entities involved in a direct Middleware-to-Middleware communication

between IoT Platforms .. 104
Figure 53: Domain Model entities involved in Application&Services-to-Application&Services

communication when the user creates a compound service ... 105
Figure 54: Domain Model entities involved in Application&Services-to-Application&Services

communication when the compound service communicates with a Service from another IoT

Platform .. 106
Figure 55: Domain Model entities involved in Data&Semantics Interactions 106
Figure 56 Device-to-Device interactions with location of Rules Engine 108
Figure 57 Communication diagram in device-to-device interoperability 109
Figure 58 Communication diagram in device-to-device interoperability with virtual gateway 109
Figure 59 Communication diagram in network-to-network interoperability (SDN) 110
Figure 60 Communication diagram in SDR .. 110
Figure 61: Communication diagram in middleware-to-middleware interoperability 111
Figure 62: Communication diagram in AS-to-AS interoperability ... 111
Figure 63 Interaction between source artefact, IPSM and target artefacts 112
Figure 64: IOT-A functional components ... 114
Figure 65 Domain prevalence in studied platforms .. 116
Figure 68 Management FCs prevalence in 15 platforms study .. 116
Figure 69 Management FCs prevalence in INTER-IoT initial platforms 117
Figure 68: Service organisation FCs prevalence in 15 platforms study 117
Figure 71 Service organisation FCs prevalence in INTER-IoT intial platforms 117
Figure 72 IoT process management FCs prevalence in 16 platforms study 118
Figure 73 IoT process management FCs prevalence in INTER-IoT initial platforms 118
Figure 74 Virtual Entity FCs prevalence in 15 platforms study... 118
Figure 75 Virtual Entity FCs prevalence in the INTER-IoT initial platforms 119
Figure 76 IoT Service FCs prevalence in 15 platforms study .. 120
Figure 77 IoT Service FCs prevalence in INTER-IoT initial platforms .. 120
Figure 76: IoT services implemented in the studied IoT platforms ... 121
Figure 77: IoT service resolution policies in the studied IoT platforms ... 121
Figure 80 Security FCs prevalence in 15 platforms study .. 122
Figure 81 Security FCs prevalence in INTER-IoT intial study .. 122
Figure 80: Communication FCs prevalence in 15 platforms study ... 123
Figure 81: Communication FCs prevalence in INTER-IoT initial platforms 123
Figure 82: Communication protocols at different layers supported by the platforms studied 123
Figure 83: Type of devices aimed by the platforms studied ... 124
Figure 84: Functional-decomposition viewpoint of the INTER-IoT Reference Architecture 125
Figure 85: Service Interoperability ... 126

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

11 / 191

Figure 86: Semantics .. 127
Figure 87: Platform Interoperability ... 128
Figure 88: Device Interoperability .. 129
Figure 89: Device Access ... 130
Figure 90: Functional View interaction for subscription to 2 IoT Platforms 132
Figure 91: Functional View interaction of device to device interoperability 133
Figure 92: Functional View interaction of service composition (service to service interoperability)

 ... 134
Figure 93 Availability and resilience requirements ... 141
Figure 94 Trust, security and privacy requirements ... 142
Figure 95: Process for generating D3.1 and D4.1 ... 143
Figure 96: INTER-IoT approach abstract schema ... 145
Figure 97: Mapping the functional View with the Device-to-Device Interoperability 146
Figure 98: Mapping the Functional View with the Network-to-Network Interoperability 146
Figure 99: Mapping the Functional View with the Middleware-to-Middleware Interoperability 147
Figure 100: Mapping the Functional View with the Application Service-to Application Service

Interoperability .. 148
Figure 101: Mapping the Functional View with the Data&Semantics-to-Data&Semantics

Interoperability .. 148
Figure 102: Alignment of the INTER-IoT Functional Groups with the D2D Interoperability layer of

the INTER-LAYER. ... 149
Figure 103: Mapping of the Functional Components of the INTER-IoT RA with the components of

the D2D interoperability layer of the INTER-LAYER. ... 151
Figure 104: Functional Components for Network Interoperability. ... 153
Figure 105: Functional Components of the INTER-IoT RA with the components of the INTER-MW

interoperability layer of the INTER-LAYER. ... 154
Figure 106: Functional Components of the INTER-IoT RA with the components of the

Application&Service interoperability layer of the INTER-LAYER. .. 156
Figure 107: Functional Components of the INTER-IoT RA with the components of the

Data&Semantics interoperability layer of the INTER-LAYER. ... 158

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

12 / 191

List of Tables

Table 1 Relation between the IoT-A Reference Model and Reference Architecture 24
Table 2: Summary of meta-data requirements .. 49
Table 3: Ontology classification ... 52
Table 4: Summary of most used communication protocols in IoT Platforms. 96
Table 5: Interoperability requirements ... 140
Table 6 Alignment of INTER-IoT FGs and D2D Layer Ineroperabilty Infrastructure 149
Table 7 Mapping of INTER-IoT FGs and D2D Layer Interoperabilty Infrastructure 151
Table 8 Mapping of INTER-IoT FGs and MW2MW Layer Interoperability Infrastructure 155
Table 9 Mapping of INTER-IoT FGs and AS2AS Layer Interoperability Infrastructure 157
Table 10 Mapping of INTER-IoT FGs and DS2DS Layer Interoperability Infrastructure 158

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

13 / 191

Acronyms

6LoWPAN IPv6 over Low Power Wireless Personal Area Networks

AAL Ambient Assisted Living

AIOTI Alliance for Internet of Things Innovation

AMQP Advanced Messaging Queuing Protocol

API Application Programming Interface

ARM Architectural Reference Model

AS2AS Application&Services-to-Application&Services

BO Base Ontology

CEP Complex Event Processing

CM Communication Model

CoAP Constrained Application Protocol

CRM Customer Relationship Management

D2D Device-to-Device

DDoS Distributed Denial of Service

DERI Digital Enterprise Research Institute

DM Domain Model

DS2DS Data&Semantics-to-Data&Semantics

DUL DOLCE+DNS Ultralite

EPL Eclipse Public License

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

EXI Efficient XML Interchange

FC Functional Component

FD Functional Decomposition

FG Functional Group

FPAI Flexible Power Application Infrastructure

GE Generic Enabler (FIWARE)

GSN Global Sensor Network

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technologies

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

INTER-FW Inter Framework

INTER-FW INTER-IoT Interoperable IoT Framework

INTER-LAYER INTER-IoT Layer integration tools

IoT Internet of Things

IOT-A Internet of Things - Architecture

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

14 / 191

IPSM Inter Platform Semantic Mediator

ISO International Organization for Standarization

ITU International Communications Union

JSON JavaScript Object Notation

KNX Konnex

LSM Linked Stream Middleware

LWM2M Lightweight M2M

M2M Machine-to-Machine

MAC Media Access Control address

MQTT Message Queuing Telemetry Transport

MW2MW Middleware-to-Middleware

N2N Network-to-Network

NGSI Next Generation Service Interface

OASIS
Organization for the Advancement of Structured Information

Standards

OGC Open Geospatial Consortium

OMA Open Mobile Alliance

OPC OLE for Process Control

OSGi Open Services Gateway initiative

OSI Open Systems Interconnection

OWL Web Ontology Language

PHY Physical OSI Layer

RA Reference Architecture

RDF Resource Description Framework

RM Reference Model

SAML Security Assertion Markup Language

SAREF Smart Appliances Reference

SDK Software Development Kit

SDN Software Defined Networking

SDO Standard Development Organisation

SDR Software Defined Radio

SE Specific enabler (FIWARE)

SIOC Semantically Interlinked Online Communities

SOA Service Oriented Architecture

SOTA State of the Art

SSL Secure Sockets Layer

SSN Semantic Sensor Network

TLS Transport Layer Security

UDP User Datagram Protocol

W3C World Wide Web Consortium

WGS84 World Geodetic System 84

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

15 / 191

X-GSN Extended Global Sensor Network

XML Extensible Markup Language

XSD XML Schema Definition

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

16 / 191

1 Introduction

Interoperability is a big challenge identified recurrently by stakeholders concerning the IoT

ecosystems and the future internet trends. The value of making software systems compatible and

future proof is undeniable. However, the actual market shows that the number of solutions grows

quickly, and none standard and/or generic platform seems to be dominant, stimulating the

development of new systems in an, at least for now, unstoppable process. The reasons of the

increasing number of IoT oriented solutions are not exclusively limited to the lack of predominance

of standards or products, there are also other likeable reasons, such as the relative novelty of the

IoT systems, especially for the consumer market and in some industrial environments; or simply the

distributed and multi-domain nature of these systems, which allows a plethora of use cases and

scenarios difficult to harmonize under a single specification.

On the other hand, the open IoT platforms are emerging slowly and most of those which are publicly

available and usable, are close to the prototyping phases. This prevents to show a clear prevalence

of solutions in the open segment and also discourages the massive adoption of open solutions in

the IoT ecosystems.

INTER-IoT is initially intended to close the gap between open IoT platforms and make them fully

interoperable at different levels. However, given the huge fragmentation in the existing market and

being a project with real applications planned in a short term, the inclusion of commercial platforms

was recommended since the very beginning, allowing to cover the theoretical and academic aspects

of the solutions and, on the other hand, work with production systems, tying the results of the project

to commercial solutions and to real scenarios with clear and tangible economic value. INTER-IoT, in

other words, brings to the open IoT platforms scene the benefits of working with proven business

models, and to the commercial/legacy systems the possibility of being flexible or leveraging the open

source communities to innovate and improve the current applications.

In such as fragmented ecosystem, modelling is a valuable mechanism to abstract commonalities of

existing platforms, to extract the main features that define the IoT domain and to build general

approaches to face the interoperability in a universal way.

For this reason, INTER-IoT has defined a Reference Model (or “meta-model”) for IoT Platforms

Interoperability, a Reference Architecture defined based on this model and a complete

interoperability system.

A reference model is, according to OASIS1 definition:

1 http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

A reference model is an abstract framework for understanding significant relationships among

the entities of some environment. It enables the development of specific reference or concrete

architectures using consistent standards or specifications supporting that environment. A

reference model consists of a minimal set of unifying concepts, axioms and relationships within

a particular problem domain, and is independent of specific standards, technologies,

implementations, or other concrete details. A reference model may be used as a basis for

education and explaining standards to non-specialists.

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

17 / 191

While, an architectural reference model is a term extensively used in IOT-A and defined in this

document as an architectural pattern in [2]:

Finally, the definition of reference architecture used in this document is the following (also taken from

[2]):

In this document, a full description of the Reference Model (RM) and the Reference Architecture

(RA) is given, in its initial model2. In addition, several relevant concepts for the architectural definition,

such as the domain model or the information model, are also specified.

2 Please note that a final versión of this deliverable is planned for the end of 2017.

Architectural reference model is a description of elements and relation types together with a set

of constraints on how they may be used.

A reference architecture is a reference model mapped onto software elements (that

cooperatively implement the functionality defined in the reference model) and the data flows

between them.

Approach (Section 2)

INTER-IoT Reference

Models and Meta Data

Model

(Section 3)

Domain Information

 Functional Communication M
o

d
e

ls

INTER-IoT Reference

Architecture

(Section 4)

Functional View

 Perspectives Other views

Relationship with

INTER-IoT Software

Architecture

(Section 5)

Mapping to INTER-Layer

 Instantiation

Platform

Analysis

D2D, N2N, MW2MW,

DS2DS, AS2AS

Figure 1 Structure of the document

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

18 / 191

Other relevant perspectives and views are slightly defined or even omitted due to the initial phase of

execution of the project. This is the case, for example, of the deployment view which will be defined

near to the pilots’ deployment, by the end of the second year of the project execution.

The use of a RM and an ARM to create a RA to instantiate a software architecture in the domain of

IoT is described in IOT-A [30] and appears previously in [2]. Section 5 (See Figure 95) describes

how this process has been put into practice in INTER-IoT.

The interoperability system (INTER-Layer) is thoroughly described in INTER-IoT Deliverable D3.1

and its specification is, therefore, out of the scope of this document. The design and specification of

the INTER-Framework will be started after the submission of this deliverable, and is also out of the

scope of this document.

This document has a strong basis on the works done in IOT-A EU Project and a deep analysis of 16

heterogeneous IoT platforms carried out in the INTER-IoT project. The results of the latter are also

reported in this document under the Functional View section and the actual data gathered is available

in Annexes.

Reference

Model

Architectural

Reference

Model

Reference

architecture

Software

architecture

D4.1, D4.2 D3.1

INTER

LAYER

INTER

FRAMEWORK

M12

M24

Figure 2 Relation with other documents and artefacts

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

19 / 191

2 Approach

2.1 Introduction

There is currently a plethora of

organizations trying to develop

the ultimate reference models

for IoT systems. It's possible to

enumerate several efforts such

as IoT-A3, IEEE P24134, ITU-T5,

IIC6, oneM2M7, just to name a

few.

It must be noticed, though, that

despite a very diverse

vocabulary, most concepts are

more or less the same. For

instance, in figure 1 it is

possible to notice the fact that

IoT-A functional model, ITU-T

reference architecture and

oneM2M functional architecture

are quite equivalent.

The IoT-A Architectural

Reference Model has been

chosen as a reference for the

work performed in INTER-IoT.

Reasons for this choice are:

1) IoT-A is a complete and

mature solution that

allows to go from a use

case and a number of

requirements to a

concrete architecture,

taking into

considerations different

factors such as

communication between devices, security, information flow, ...

2) As all architectural approaches are somehow similar, it's not time-consuming or complex to

map different efforts into the IoT-A concepts.

3) As IoT-A is used as a base by most EU projects, it provides a common ground with other

results in the EPI cluster.

3 http://www.iot-a.eu/public
4 https://standards.ieee.org/develop/project/2413.html
5 http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
6 http://www.iiconsortium.org/
7 http://www.onem2m.org/

Figure 3 Relation between different IoT Architectures

http://www.iot-a.eu/public
https://standards.ieee.org/develop/project/2413.html
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
http://www.iiconsortium.org/
http://www.onem2m.org/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

20 / 191

The IoT-A provides a complete methodology for creating IoT platforms based on a reference

architecture and using the characteristics of the use cases and requirements of a determined

application. INTER-IoT, however, is intended to provide tools and mechanisms to achieve

interoperability among existing IoT platforms. This INTER-IoT interoperability must be built as much

generic as possible to provide global solutions regardless the technologies or instances (platform

independency) or the field of application (domain independency). Then, while the problem domain

(IoT) and a lot of concepts of IoT-A are valid and applicable to INTER-IoT, the approach is different

and new meta-models must be developed. Accordingly, this document follows the terminology and

the general methodology approach described in IoT-A, to define an architecture reference model

and a reference architecture to create interoperability mechanisms among IoT platforms. INTER-IoT

will use this framework to instantiate several mechanisms (so-called Layer Interoperability

Infrastructures, LIIs) and thus validate the RA developed. However, as for its generic approach, the

RA and/or the ARM could be used to generate new solutions for different interoperability problems

in the future.

In the subsequent sections, the approach used to generate each of the models and views that

eventually define the INTER-IoT ARM and RA is detailed.

2.2 The IoT-A8 Architectural Reference Model

2.2.1 IoT-A Background

IoT-A [25][30] was a lighthouse EU-funded project that established an Architectural Reference Model

for the Internet of Things domain. The project ran from 2010 until 2013, and can be considered the

foundation for all the EU efforts done in this area since then.

IoT-A main goal was to promote a high level of interoperability between different IoT systems. This

interoperability had to be developed from the communication level as well as at the service and

knowledge levels across different platforms established on a common grounding. The IoT-A project

developed common tools and methodologies to achieve this. While existing literature like [3] provide

methodologies for dealing with system architectures (hereafter called concrete architectures) based

on Views and Perspectives for instance, establishing a reference architecture is a quite different

business, at least as far as describing Views and Perspectives is concerned.

An Architectural Reference Model (ARM) can be visualised therefore as the matrix that eventually

derives into a large set of concrete IoT architectures. For establishing such a matrix, based on a

strong and exhaustive analysis of the state of the art (SOTA), a super-set of all possible

functionalities, mechanisms and protocols that can be used for building concrete architectures must

be identified. Providing such a technical foundation along with a set of design choices, based on the

characteristics of the targeted system based on different dimensions like distribution, security, or

response time, we can then select the baseline technologies, such as protocols, functional

components, or architectural options, that we need to build our INTER-LAYER / INTER-FW

solutions. A usual representation of IoT-A is the "famous" IoT-A tree.

8 http://www.iot-a.eu/public

http://www.iot-a.eu/public

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

21 / 191

Figure 4 The IOT-A tree

The basic concept of the picture is that IoT-A connects several baseline technologies, such as

communication protocols (6lowpan, ZigBee, IPv6…) and device technologies (sensors, actuators,

tags…) with an almost infinite number of application and services. The trunk of the tree represents

the Architectural Reference Model, composed by the Reference Model and the Reference

Architectures: the set of models, guidelines, views, perspectives, and design choices that can be

used for building fully interoperable concrete domain-specific IoT architectures (and therefore

systems).

2.2.2 Basic Usage of the IoT-A ARM

The ARM can be used for several purposes, from more abstract ones to more concrete

developments.

2.2.2.1 Cognitive aid

At a more abstract level, such as product conception and development, an ARM can be used for

different purposes.

First, it provides a roadmap for discussions, since it defines a clear language and grammar that

everyone involved in the creative process can use, and which is intimately linked to the architecture,

the system, the usage domain. As well, the high-level view provided in such a model is of high

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

22 / 191

educational value, since it provides a comprehensive and at the same time abstract view of the

domain, helping non-technical people (or simply, people new to the IoT field) in understanding the

particularities and intricacies of IoT.

Furthermore, the ARM can assist IoT project leaders in planning the work and organizing the teams

needed. For instance, the Functionality Groups identified in the Functional View of the IoT system

can also be a list of independent teams working on an IoT system implementation.

The ARM provides a clear guidance as well in identifying independent building blocks for IoT

systems. This constitutes very valuable information when dealing with questions like system

modularity, processor architectures, third-vendor options, or re-use of already developed

components.

All these points show that establishing a common ground for any field is not an easy task. In this

field, a common ground would encompass the definition of IoT entities and the description of their

basic interactions and relationships with each other, which is the main objective of the IoT-A effort.

2.2.2.2 Generation of architectures

A major benefit of the IoT-A ARM is the capability of generating architectures for specific systems.

This architecture generation is done by providing best practices and guidance for helping translating

the ARM into concrete architectures. The benefit of such a generation scheme for IoT architectures

is not only a certain degree of automatism of this process, and thus the saved R&D efforts, but also

that the decisions made follow a clear, documented pattern.

2.2.2.3 Identifying differences in derived architectures

When using the IoT ARM-guided architecture process any differences in the derived architectures

can be attributed to the particularities of the pertinent use case and the thereto related design choices

[4]. When applying the IoT ARM, a list of system function blocks and data models, together with

predictions of system complexity, can be derived for the generated architecture. Furthermore, the

IoT ARM defines a set of tactics and design choices for meeting qualitative system requirements. All

these facts can be used to predict whether two derived architectures will differ and where.

The IoT ARM can also be used in a ''reverse mapping'' fashion. System architectures can be cast in

the IoT-A ARM language; this is what we will do in this document, analysing the different platforms

and translating the different system architectures into a common language and mapping.

2.2.2.4 Achieving interoperability

While developing a concrete architecture, fulfilling a set of qualitative requirements inevitably leads

to design challenges. Since there is usually more than one solution for each of the design challenges

(we refer to these solutions as design choices), the IoT-A ARM cannot guarantee interoperability

between any two concrete architectures a priori, even if they have been derived from the same

requirement set. Nevertheless, the IoT-A ARM is an important tool in helping to achieve

interoperability between IoT systems. This is facilitated by the ''design choice'' process itself. During

this process, it's possible to identify the design choices made; comparing two different architectures,

it should be clear what architecture measures must be taken to achieve interoperability and at which

point in the respective systems this can best be done. Interoperability might be achieved a posteriori

by integrating one IoT system as subsystem in the other system, or by building a bridge through

which key functionalities of the respective other IoT system can be used. Notice though that these

workarounds often fall short of achieving full interoperability. Nevertheless, building bridges between

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

23 / 191

such systems is typically much more straightforward than completely re-designing either system;

usually doing so, a fair level of interoperability can be achieved.

2.2.3 Architecture concepts

Architectural views provide a standardized way for structuring architectural descriptions [3]. As

demonstrated by [4], views can also be used for structuring reference architecture descriptions.

Choosing architectural views for the development of a coherent IoT Reference Architecture showed

to be instrumental for the success of the IoT ARM, as they provide an intuitive delineation of each

addressed aspect.

There is not a single, commonly accepted list of architectural views; the chosen ones for this work

are:

● Context view;

● Functional view;

● Information view;

● Deployment view;

As discussed in detail in [3], views do address technical aspects, while stakeholder requirements are

often formulated as qualitative requirements. Their solution to this issue, which we adopt in this

document, is to introduce architectural perspectives. These perspectives cut across the views. In

other words, they do not replace views but provide an abstraction layer above the views.

The table summarises how the models in the IoT Reference Model relate to the views and

perspectives featured in the IoT Reference Architecture.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

24 / 191

IoT Reference Model

IoT Reference Architecture

IoT Domain Model

IoT Information Model

Information view

IoT Functional Model

Functional View

IoT Communication Model

Communication Functionality
Group (part of the functional
view)

Table 1 Relation between the IoT-A Reference Model and Reference Architecture

2.3 Domain Model

The Domain Model(DM) is the first step in the creation of the reference model. In the IoT realm, the

creation of a Domain Model is carried out starting from the analysis of the concepts used in the

Internet of Things, like devices, things, services and so on. IoT-A’s DM is a good example of this.

INTER-IoT, aims at building a reference model on the foundations defined by IoT-A, leveraging

terminology and representation methodology to solve the problem of interoperability in existing IoT

platforms. The reason is that traditional IoT models focus on designing a system around the Internet

of Things concept, whereas in INTER-IoT we deal with making a set of IoT Platforms interoperable.

This means that, although all the IoT concepts and models are valid, we need to extend them to

consider the existence of different platforms.

As a matter of fact, this could be seen as a system of systems approach, with multiple platforms and

an upper actor configuring an overall system, but also as a mesh of platforms that need to

interchange content through a multilayer mediator. INTER-IoT allows both approaches.

Taking all that into account, we have analysed the IoT-A’s Domain Model, and have checked it

against the most common sensor ontologies (W3C SSN9, IETF SAREF10, One M2M11, OGC Sensor

Things12…) to check its validity.

9 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
10 https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
11 http://www.onem2m.org/
12 http://ogc-iot.github.io/ogc-iot-api/

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
http://www.onem2m.org/
http://ogc-iot.github.io/ogc-iot-api/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

25 / 191

Once we have ensured that the IoT-A’s Domain Model is valid for the INTER-IoT objectives, we have

extended it to include new concepts necessary for the INTER-IoT, mainly related to its multi-platform

approach.

For achieving this, we have performed several steps. First, we have reviewed the requirements of

the project. Next, we have made an analysis of various IoT platforms. We have been collaborating

in parallel with several IoT platform analysis tasks that have been conducted in the project. The result

is a Domain Model aimed at the interoperability of IoT Platforms, suited to INTER-IoT goals.

2.4 Information Model and Meta Data Model

2.4.1 Introduction

IoT-A defines a generic model of information that passes through any IoT system. The central

element of this model is a VirtualEntity (see Figure 5 IoT Domain Model) that has some Attributes

with MetaData attached. An IoT-A VirtualEntity needs to have two special data elements that

describe it: an identifier, and a type (entityType). Additionally, Virtual Entities may have multiple

attributes, each with a name, type, and annotated values. The description of an entity, in this model,

allows for multiple values of attributes, each of which may be annotated with meta-data. The

annotations may go deeper, with meta-data about meta-data and so on. This description is realized

in the IoT-A information model through a ValueContainer, an instance of which combines an attribute

value and its meta-data annotations. Additionally, IoT-A defines generic classes for Service,

Resource and Device descriptions.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

26 / 191

Figure 5 IoT Domain Model

This generic model can be used to model a wide variety of information. In particular, in the

implementations of IoT systems there is a need to have a specific definition of what meta-data items,

attributes and virtual entities, a given system operates on. In fact, the IoT-A methodology itself

suggests that the definition of, for instance, what entity types are available, is left to the implementer.

Following the IoT-A suggestion, of using specific schemas and models to describe available types

of virtual entities, attributes and meta-data, INTER-IoT uses ontologies and semantic vocabularies

to augment the information model.

The INTER-IoT reference meta-data model is a set of ontologies and documentation that is used to

define specific implementations of IoT-A information model. The INTER-IoT model, in particular,

describes the types of VirtualEntities, Attributes and MetaData for INTER-IoT understanding, and

includes descriptions of Services, Resources and Devices, which are included, but not expanded

upon in the IoT-A model. The process of creation of the INTER-IoT reference meta-data model is

described in the following subsections.

2.4.2 The INTER-IoT reference meta-data model creation process

A reference meta-data model describes concepts, structures and relationships between meta-data

items (i.e. data that provides information about other data). In the context of INTER-IoT the reference

meta-data model describes meta-data about any entities that appear in the context of interoperable

IoT platforms.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

27 / 191

Features of meta-data include:

● Enabling data identification

● Enabling data search and retrieval

● Description of links (relationships) between objects

● managing and organizing data

Note that it is not the role of the reference meta-data model to implement any of the described

mechanisms. For instance, if the model contains information about authentication mechanisms, it

may inform a reader about types of authentication mechanisms and data required for authentication

in each of them (e.g. user ID, email, password, checksum, or encrypted key file). It does not

implement any mechanism of processing this data, or the actual authentication mechanism.

The process of defining the meta-data reference model is described in Figure 6:

Figure 6 Creation of initial reference meta-data mode

2.4.2.1 Meta-data language

As a preliminary step, we have chosen Web Ontology Language13 (OWL) [31] as the language for

definition of meta-data items. Thus, the final model will consist of a set of OWL ontologies with

supporting documentation.

OWL is a formal ontology language rooted in description logic. It is currently the de facto standard

ontology language for all kinds of resources, including Linked Data14. OWL supports definitions of

13 https://www.w3.org/TR/owl-features/
14 https://www.w3.org/standards/semanticweb/data

https://www.w3.org/TR/owl-features/
https://www.w3.org/standards/semanticweb/data

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

28 / 191

rich taxonomies and complicated properties and relationships between entities. It is an extension of

RDF15 (Resource Description Framework) and is directly compatible with RDF processing tools and

technologies.

Since OWL ontologies are machine-processable, they enable understanding in communication

between both people and machines. OWL is an ontology specification language that supports

multiple file formats (i.e. its semantics are independent of file format). It does not define any canonical

way of implementation of models in software solutions, thus being technology agnostic and

implementation-independent. Using OWL one can describe concepts and their properties, as well

as concrete entities (instances). OWL ontologies are directly extendable and may be combined to

form new ontologies to capture knowledge from many different domains and perspectives. In short,

OWL meets the requirements of a language for the reference meta-data model specification.

OWL can be used in a technology-agnostic way. OWL files can also be used with OWL or RDF

specific technologies, such as semantic reasoners, triple-stores, ontology editors, ontology

alignment tools, ontology viewers, semantic IoT middleware (e.g. OpenIoT16, UniversAAL17 and

others).

Summary of OWL features:

● Structured data description

● Easy Linked Data integration

● RDF compatibility

● Rich semantics

● Most popular ontology language

● Format and technology independent

OWL ontologies vary in size, scope, and level of detail. Some ontologies contain specialized domain-

specific knowledge and, because they describe one specific issue in great detail, they are useful is

specialized applications. Other ontologies are very general and inform about very basic concepts

that refer to a wide range of domains. This variety is summarized in a general model of ontology

modularity, and expanded upon in the specific model of ontology modularity.

Figure 7 Model of ontology

The general model of ontology modularity (see Figure 7), proposed in [5] defines four types of

ontologies and a partial ordering defined by inheritance. The most general type of ontologies, the

15 https://www.w3.org/RDF/
16 http://www.openiot.eu/
17 http://www.universaal.info/

https://www.w3.org/RDF/
http://www.openiot.eu/
http://www.universaal.info/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

29 / 191

Core ontology (also called Upper) contains very general terms without specific details. It is meant to

have a high level of abstraction and, thus, be reusable and widely applicable. Domain and Task

ontologies inherit from the Upper ontologies and describe domain-specific knowledge (e.g. in

medical domain) and specific actions (e.g. assembly of parts), respectively. These two types of

ontologies combine to form description of domain specific tasks (e.g. assembly of a medical

equipment). Finally, an Application ontology inherits from all the other types of ontologies to provide

knowledge that stems from applying higher-level ontologies to a particular application (e.g. a

deployment of a medical system). INTER-IoT reference meta-data model focuses on upper

ontologies and domain ontologies specific to internet of things.

The specific model of ontology modularity expands upon the simple ordering of four types of

ontologies and proposes that any ontology may be divided into either vertical or horizontal modules.

In general, modules are parts of ontologies that are clearly identifiable and separable. Vertical

modules form a hierarchy of inheritance. In simple terms, we may say that an upper ontology that is

extended by an upper ontology, is its vertical module. A horizontal module is a part of ontology

independent from other parts, except possibly by sharing a common base of inheritance. If and

ontology is made by a combination of task and domain ontologies, then we may say that those are

horizontal modules. Some ontologies explicitly define their modules, while others are monolithic by

design. Modular ontologies encourage using only the modules that are needed. For instance, if a

supply chain ontology defines multiple modules, we may use only the transportation module and

disregard others e.g. one that describes push-pull supply chain characteristics. INTER-IoT reference

meta-data model focuses on analysis and choice of only those modules that are relevant to avoid a

bloated and unmanageable model.

2.4.2.2 Meta-data requirements

The creation of the reference meta-data model for INTER-IoT starts with defining the scope of the

model. This is done in the process of extraction of meta-data requirements from other work done in

INTER-IoT. Meta-data requirements are, essentially, items that together form a loosely-defined

vocabulary of terms. Each item identifies a small part of the scope of the full model. The items are

gathered from the following sources:

● Grant agreement document

● Relevant INTER-IoT requirements (identified in other INTER-IoT work packages)

● Explicit semantic models of IoT platforms

● IoT-EPI Task force

● Partners’ expertise

The details of each source of meta-data requirements as well as its relevance to INTER-IoT is

described in later sections of this document.

2.4.2.3 Available Ontologies

The second preliminary action done is the identification of state of the art when it comes to available

OWL ontologies. Only ontologies relevant to IoT are considered, including those implemented in

working IoT systems (e.g. OpenIoT18), but also ontologies that are not IoT specific, such as units of

measurement ontologies. The list of identified ontologies can be found in Appendix 2.

18 http://www.openiot.eu/

http://www.openiot.eu/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

30 / 191

2.4.2.4 Requirements filtering

The construction of the initial INTER-IoT reference meta-data model is performed in a process called

“requirements filtering” (See Figure 8). This process takes as input, previously identified meta-data

requirements, and selects existing ontologies (from IoT ontologies SOTA analysis) that fulfil those

requirements. The initial choice of ontologies is supported by in-depth analysis of ontologies (see

section 3.3) and contains ontologies most relevant to the IoT space. The relevance was decided

through analysis of requirements. Because a smart device is the central entity in IoT, ontologies that

describe devices were deemed as the most important and relevant.

Figure 8 Merging modules (Adding an ontology, or an ontological module, to the reference meta-data model)

The final INTER-IoT reference meta-data model will be constructed in an iterative process (see

Figure 9) that builds upon the initial model. Identified ontologies will be analysed and added to the

model (possibly replacing ontologies already in the model) if they cover entities identified in meta-

data requirements. The requirements may be modified as other INTER-IoT tasks progress and the

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

31 / 191

changes will be propagated to meta-data requirements, which in turn will prompt an augmentation

of the model.

Figure 9 Creation of final reference meta-data model

2.5 Functional Model

The Functional Model, according to MacKenzie et al.[1], is defined as “an abstract framework for

understanding the main Functional Groups (FG) and their interactions”. This framework defines the

common semantics of the main functionalities, and will be used for the development of Functional

Views.

The Functional Model is designed upon the results of the Domain Model and the Information Model.

Nevertheless, we are not designing the Reference Model from scratch. It is based on the previous

work done in IoT-A. The functional decomposition, made in IoT-A, generated the Functional Model

and the Functional View. This means that we have reviewed the Functional Model of IoT-A. Next,

we have performed an analysis of a set of IoT Platforms, from the Functional Model point of view.

For doing this, we have matched the functional features of each platform against the IoT-A’s

Functional Model, using the Functional Model diagram as an enabler, and we have generated a

diagram for each platform. Once we collected all the diagrams, we have analysed them, detecting

very different compliances that are due to the different nature of te existing platforms.

The set of IoT Platforms to be analysed was gathered from the output of the stakeholder’s analysis

and the partner’s expertise. Based on this input, it was decided that a set of 16 IoT platforms was to

be analysed.

Within these 16 IoT Platforms, 5 of them have been selected as the 5 IoT Platform that INTER-IoT

will give support to, keeping in mind that platform support must be easily extensible. The reasons to

have this initial choice are a combination of market presence, open / commercial balance, suitability

for the pilot cases (considering especially the feedback of the pilot owners), completeness of the

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

32 / 191

platforms (coverage of all functional groups expected in IoT stacks) and partners’ expertise. As it

was previously stated, the initial support does not mean exclusive support, given the fact that the

results of INTER-LAYER, INTER-FW and INTER-METH are domain agnostic by definition and

intended to be extensible and scalable.

The list of IoT Platforms analysed is as follows:

IoT Platform

FIWARE

Open IoT

UniversAAL

OneM2M

Microsoft Azure

Amazon AWS IoT

All-Joyn

Butler

i-Core

Sofia 2

ThingSpeak

GE Predix

IBM Watson IoT

Contiki

eCare

WSO2

Figure 10 List of platforms analysed

Initially supported platforms are highlighted in the figure above.

Once we know the functional model capabilities of the selected set of IoT Platforms, we have been

able to design a brand new Functional Model with INTER-IoT’s vision for making IoT Platforms

interoperable. This Functional Model has been based on some of the concepts defined by the IoT-

A, but has been designed with the aim of dealing with the problem of interoperability among

heterogeneous platforms.

2.6 Communication Model

The Communication Model aims at defining the communication paradigms for connecting the

elements that compose the IoT system, previously defined by the Domain Model(DM). Also, this

model is certainly less critical in some application scenarios than in others, and thus, not strictly

mandatory.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

33 / 191

Being an IoT system sustained on a network, this model leverages on the ISO OSI 7-layer model,

but it highlights those peculiar aspects inherent to the interoperation among different stacks, which

we will call, in what follows, interoperability features.

To create this model, it is important to identify the communication system elements and/or the

communication Users (Human Users, Services or Digital Artefacts) among those defined in the DM.

The communication among these Users, needs to support different paradigms:

● Unicast: as mandatory solution for one-to-one communication.

● Multicast and anycast: for fulfilling many other IoT-application requirements (data collection,

information dissemination, etc.)

Normally, most of communication between Users and Services can be established using standard

Internet Protocols but, there are two main exceptions to this approach when two services

communicate with each other and:

● One belongs to a constrained network: a gateway and/or proxy must be deployed for ensuring

successful communication

● Both belong to a constrained network: then a constrained communication protocol has to be

used (e.g., 6LoWPAN, UDP, CoAP, etc.).

Instead of focusing on a specific realization of the communication stack, the Communication Model

(CM) provides a transversal approach, from which one or more communication stacks can be

derived. As a matter of fact, a single interoperability aspect can be used to describe the interactions

of stacks belonging to different communicating systems. Once a system is modelled according to

the CM it is easy to derive a set of ISO/OSI interoperable stacks in order to provide the needed

interoperability features (see Figure 11).

Figure 11 Interoperability aspects of the IoT Communication model compared to the ISO/OSI communication stack

Below, the different interoperability aspects are described:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

34 / 191

● Physical aspect: similar to OSI PHY layer, it does not enforce the adoption of any specific

technology but it uses the adopted technologies as a base to model the remaining aspects

of the system.

● Link aspect: most networks implement similar, but customized communication solutions. This

layer must support solution diversity to achieve full interoperability and support heterogeneity.

Additionally, it needs to provide upper layers standardized capabilities and interfaces. As this

layer needs to abstract a large variety of functionalities, enabling direct communication, IoT

systems do not have to restrict the selection among data link layers but must enable

coexistence.

● Network and ID aspect: this section combines two aspects; networking, same capabilities as

the OSI layer, and identifiers, resolution functionalities between locators and IDs. The

difference between identifiers (unique descriptors of the Digital Artefact; either active or

passive), and locators (descriptors of the position of a given IoT element in the network), is

the first convergence point in the CM. The interoperability aspect oversees making any two

systems addressable independently of the technology adopted.

● End-to-End aspect: this involves reliability, transport, translation, proxies/gateways support

and parameter configuration between different networking environments. It provides

interoperability aspects on top of Network and ID ones to obtain the final component for

achieving a global ThingsToThings (T2T) Communication Model. Connections are also part

of this scope. Also, Application Layer aspects are addressed here. Moreover, Application

Protocols, in the trend to embed confirmation messages and congestion control techniques,

require being more complex than what is achievable in the OSI Transport Layer.

● Data aspect: related with data definition and transfer. Its purpose is to model data exchange

between any two actors in the IoT system. This exchange can adopt many different

representations, ranging from raw data to complex structures where meta-data information

is added to provide context specific links. Additionally, the data aspect needs to model the

following characteristics:

1.- Capability of providing structured attributes for data description;

2.- Capability of being translated (possibly by compression/decompression) the one

to each other (e.g. CoAP to HTTP by decompression or XML to EXI by compression

or IPv4 to IPv6 by mapping, etc).

3.- Constrained device support.

In the Communication model, we define the connection between two or more elements in the model,

maybe using a single communication stack. For that reason, there are two options to model a

composed communication according to the IoT Communication Model. These options are the

configuration with a Gateway that involves the composition of two or more protocol stacks located

across different network or a Virtual configuration that implies the composition of two or more protocol

stacks, one on top of the other.

Within the composed modelling option, it is known:

● Gateway configuration as the composition of two or more protocol stacks that are placed side

by side across different media so that they can be seen seamlessly connected.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

35 / 191

Figure 12 Gateway configuration for multiple protocol stacks

In Figure 12, we can observe the communication between two application layers through two

gateways. The first one (left) bridges between Ethernet and WiFi networks, and the second

one (right) additionally includes a translation functionality between WiFi and ZigBee, and also

the translation between IP to 6LoWPAN, TCP to UDP, HTTP to CoAP and vice versa.

● Virtual configuration as the composition of two or more protocol stacks, one on top of the

other, where the actual communication path is virtualized by tunnelling the communication

using a second protocol stack.

In Figure 13, we can observe an inner communication path composed of an Ethernet network

and a WiFi network using a bridging block and an outer communication path that is

independent of the inner path and which allows for the two application layers to communicate.

Such a scheme is usually achieved using virtual private network solutions.

Figure 13 Virtual configuration for multiple protocol stacks

Additionally, we can find a channel model. This describes the content of the channel in the Shannon-

Weaver model19, but in context of the IoT domain. The main objective is not capturing every possible

19 http://communicationtheory.org/shannon-and-weaver-model-of-communication/

GW1 GW2 AP1 AP2

N1 ROUTER AP1 AP2 N2

http://communicationtheory.org/shannon-and-weaver-model-of-communication/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

36 / 191

characteristic of IoT technologies, but to provide a common ground to be used to compute overall

system performance and benchmarking. To understand this channel modelling we must define:

● Unconstrained networks as a high-speed communication link (as wired Internet). Here, link-

level transfer latencies are also small and mainly impacted by congestion events in the

network, rather than by the physical transmission technology.

● Constrained networks as communications with relatively low transfer rates (typically smaller

than 1Mbit/s) and large latencies. These are due to several factors; the involved low-bitrate

physical layer technology and the power-saving policy of the nodes (with periodic radio

power-offs).

According to this, heterogeneous networks can be seen as the combination of constrained and

unconstrained networks linked together via gateways and/or proxies. In the IoT case, it could be a

single constrained network, several constrained networks over different technologies, or even two

constrained networks joint by an unconstrained one (as two WSN communicating by Internet).

Additionally, the nature of the constrained networks relies on constrained devices. The

communication between these can:

1. Be based on different protocols;

2. Require additional processing in the gateways.

It is important to point out that the characteristics of each network can have a noticeable impact on

the overall end-to-end communication [25].

As we can notice following the IoT ARM Reference Manual [33], there are some steps for modelling

our systems. These steps involve four usages; the usage of the IoT Domain Model, IoT Information

Model, IoT Communication Model and Perspectives.

Within the first Usage, the instantiation of the Domain Model to a particular case is discussed. The

main identified concept instances are: Physical Entities and related with Virtual Entities, Resources,

Device, Services and User. (As is explained in Section 3.2)

Once this instance has been identified, we can proceed with the first steps of modelling, that includes,

for the Domain Model, the first three rules as:

These are applied when we model the IoT Domain Model of our specific use case, and later one the

rest of the rules are used for each one of the other usages.

In this case, for the usage of Communication Model that define the architectural process as:

1. Identify homogeneous sub-systems and their capabilities and constraints.

Rule 1 Model as precisely as possible based on the domain model concepts at the time

of modelling. Use the more concrete, more fine-granular concepts and instances

whenever possible, but only to the granularity that appears reasonable for the given

purpose.

Rule 2 When modelling an autonomous object, an Augmented Entity is used, consisting

of a device (Physical Entity) and its software controller (Virtual Entity).

Rule 3 Only model something as a Physical Entity if it is relevant in the IoT system so

that the representing Virtual Entity is also modelled.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

37 / 191

2. Identify suitable protocol stacks and network topologies to be merged in a common system

view.

3. Define gateways and other bridging solutions

With this picture in mind, the IoT-A ARM provides different guidelines for using the CM to provide an

overall framework for communication within the IoT systems, previously defined the domain and

information models. This is carried out following these rules:

Following, we can analyse the communication requirements coming from services in the domain

model, and interaction patterns from the information model. So, we obtain a set of interoperable

protocol stacks and topologies with the following characteristics:

1. Each stack must grow from a specific communication technology.

2. Interoperability shall be enforced in the lowest possible layer of stack.

3. The combination of identified stacks and topologies must satisfy all the requirements.

This Rule is applied for technological optimizations. This Rule enhance the communications and

ensures feasibility in all sub-systems by the re-use of the same protocols between as many

components as possible.

Enforcing simplicity, and avoiding stack duplication and also reusing protocols horizontally in the

system. Usually, the most effective interoperability point is the Network & ID aspect of CM as is the

lowest common point not technology specific, so could be the same across different sub-systems.

Finally, the Data Interoperability aspect of the CM considers the remaining aspects of data exchange,

compression and representation. Most often, adopting a compressed format which fits constrained

network capabilities, provides simpler network interactions, and lower traffic [25].

Rule 4: Identify homogeneous sub-systems (as a set of elements with the same

communication technology and similar hardware capabilities) from the complete domain

model and determine their capabilities and constraints. Analysing these capabilities and

constraints to understand the communication specific parameters (data rate, delays,

reliability) and technology specific parameters (memory, computational power and

supported functionalities).

Rule 5: Use existing standard communication mechanisms and related protocols

whenever possible. If this is not possible then each of the sub-systems is the starting

point for building a protocol stack which is botch technology specific and interoperability

prone.

Rule 6: Interoperability shall be enforced in the lowest possible layer.

Rule 7: In order to allow seamless interaction between sub-systems, gateway and

proxies shall be designed for the whole system.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

38 / 191

2.7 Functional View

For the creation of the INTER-IOT functional view, the following steps have been followed:

1) Analysis of the functional aspects of the existing platforms according to the IoT-A Functional

Model

2) Review of the Functional Model.

3) Analysis of the project requirements and use cases.

4) Generation of a new functional view with the conclusions of the previous steps.

For the analysis (also referred in this document as platform study), a set of 16 platforms was

selected, based on the following criteria: partners’ expertise, market relevance and current adoption

and support (in industry or in open source communities). Some constraints were added to prioritize

promising platforms and to ensure a proper balance between private and open software. The

methodology to gather this information was to let all the partners report about a set of question

related to these platforms. Finally, a list was made and prioritized, resulting in a list of 16 platforms

that is extensively used in this document.

Each platform in the list was carefully analysed with the scope of the IoT-A ARM, with particular

attention to the functional view. Data and statistics about the functional components of each platform

offer important conclusions about the degree of coverage of the components, and where the

interoperability mechanism can be more effective.

Next, the Functional Model was reviewed taking into account the previous analysis of the selected

IoT Platforms.

The project requirements and the use cases were analysed to identify the features that the

Functional View should accomplish.

Finally, with the knowledge gained in the platform study and the conclusions obtained in the previous

steps, a novel Functional View for platform interoperability was developed, accordingly with the

functional model (see section 2.4). It is firstly proposed in this document.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

39 / 191

3 INTER-IoT Reference Model and Meta

Data Model

3.1 Introduction

The IoT-A project used the OASIS definition for describing the reference model. OASIS

(Organization for the Advancement of Structured Information Standards) gives the following

definition of a reference model:

Central features that a reference model needs to exhibit are:

● Clearly defined concepts

● Clearly defined concept relationships

● Clearly defined concept properties

● Does not describe concrete entities (instances)

● Restricted to a specific problem space

● Promotes understanding of the problem space

● Technology agnostic and implementation independent

● Used as reference for implementation

● Enables understanding (i.e. common semantics) in communication

The Reference Model is composed by 5 different models that fully encompass the IoT modelling and

are the base for the development of the architectural view and perspectives. The first model is the

IoT Domain Model, which describes all the concepts that are relevant in an Internet of Things

scenario. All other models and the IoT Reference Architecture are based on the concepts introduced

in the IoT Domain Model. The Communication Model is very relevant as describes the different

communication that happens in the IoT domain, namely, between constrained and unconstrained

networks. The Information model shows how the information flows between entities. The IoT Trust,

Security, and Privacy Model shows the importance of dealing with Privacy and Security issues from

the very modelling part. Finally, the Functional Model introduces the concepts and the modularity

between functional parts that will be key in building a concrete architecture.

Following IoT-A methodology, in INTER-IoT we have developed the following models for the initial

Reference Model described in this document:

[Reference model is] an abstract framework for understanding significant relationships

among the entities of some environment, and for the development of consistent

standards or specifications supporting that environment. A reference model is based on

a small number of unifying concepts and may be used as a basis for education and

explaining standards to a non-specialist. A reference model is not directly tied to any

standards, technologies or other concrete implementation details, but it does seek to

provide a common semantics that can be used unambiguously across and between

different implementations.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

40 / 191

 Domain Model.

 Communication Model.

 Information Model.

 Functional Model.

3.2 Domain Model

3.2.1 Introduction

In general, a Domain model20 is a class diagram that is used to describe specific aspects of a set of

knowledge or activities. The main use for it is to represent use cases and real-world concepts in a

way that can then be used by the technical people to develop a service, application or a product.

The main purpose of a generic domain model is to generate a common understanding of the target

domain in question. Such a common understanding is important, not only within a specific project,

but also to be able to discuss with stakeholders and external parties. Only with a common

understanding of the main concepts it is possible to choose between different architectural solutions

and to evaluate them.

3.2.2 IoT-A Domain Model

The IoT-A project defines a domain model as a description of concepts belonging to a specific area

of interest. The domain model also defines basic attributes of these concepts, such as name and

identifier, and relationships between concepts, for instance “Services expose Resources”. The IoT-

A domain model also provides a common lexicon and taxonomy that can be used in the IoT domain.

[6]. The IoT-A Domain Model extends two previous models in this specific domain, namely [7].

In a IoT domain, the most generic scenario is that of a generic User who needs to interact with a

Physical Entity (PE) in the physical world. Here we can already see two of the main entities in IoT:

● a User which can be a human person or a Digital Artefact (e.g., a Service, an application, or

a software agent) that needs to interact with

● a Physical Entity, which is an object that is under observation and can be modified by

automatic means. Physical Entities can be almost any object or environment; from humans

or animals to cars; from store or logistics chain items to computers; from electronic

appliances to jewellery or clothes.

While in a physical environment, interactions can only happen directly (for instance, by moving a

pallet from location X to Y manually), within the IoT world it’s possible to interact indirectly or

mediated, by calling a Service that will either provide information about the Physical Entity or act on

it. When a Human User is accessing a service, he does so through a service client, a User Interface

for instance. For the scope of the IoT Domain Model, the interaction is usually characterised by a

goal that the User pursues.

Physical Entities are represented in the digital world by a Virtual Entity, which can be seen as a

“virtual counterpart “. There are many kinds of digital representations of Physical Entities: 3D models,

avatars, database entries, objects (or instances of a class in an object-oriented programming

language). Virtual Entities are associated to a single Physical Entity and the Virtual Entity represents

this very Physical Entity. While there is generally only one Physical Entity for each Virtual Entity, it is

possible that the same Physical Entity can be associated to several Virtual Entities. Each Virtual

20 https://msdn.microsoft.com/en-us/library/bb126581(v=vs.90).aspx

https://msdn.microsoft.com/en-us/library/bb126581(v=vs.90).aspx

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

41 / 191

Entity must have one and only one ID that identifies it univocally. Virtual Entities are Digital Artefacts

that can be classified as either active or passive. Active Digital Artefacts (ADA) are running software

applications, agents or Services that may access other Services or Resources. Passive Digital

Artefacts (PDA) are passive software elements such as database entries that can be digital

representations of the Physical Entity. Please note that all Digital Artefacts can be classified as either

Active or Passive Digital Artefacts.

As well, Virtual Entities are synchronised representations of a given set of aspects (or properties) of

the Physical Entity. This means that relevant digital parameters representing the characteristics of

the Physical Entity are updated upon any change of the former. In the same way, changes that affect

the Virtual Entity could manifest themselves in the Physical Entity. For instance, manually locking a

door might result in changing the state of the door in home automation software, and

correspondingly, setting the door to “locked” in the software might result in triggering an electric lock

in the physical world.

The Augmented Entity is what enables everyday objects to become part of digital processes. In

technical terms, the Augmented Entity is a composition of Physical and Virtual Entities.

The relation between Virtual Entity and Physical Entity is usually achieved by embedding into, by

attaching to, or by simply placing in close vicinity of the Physical Entity, one or more ICT Devices

that provide the technological interface for interacting with, or gaining information about the Physical

Entity. A Device thus mediates the interactions between Physical Entities (that have no projections

in the digital world) and Virtual Entities (which have no projections in the physical world), generating

a paired couple that can be seen as an extension of either one; in other words, the Augmented Entity.

Devices are thus bridging the real world of Physical Entities with the digital world of the Internet. This

is done by providing monitoring, sensing, actuation, computation, storage and processing

capabilities. A Device can also be a Physical Entity: an example for such an application is Device

management, whose main concern is the Devices themselves and not the entities or environments

that these Devices monitor.

Resources are software components that provide data from or are used in the actuation on Physical

Entities. Resources may be On-Device and Network. As the name suggests, On-Device Resources

are hosted on Devices, while Network Resources are Resources available somewhere in the

network, such as back-end or cloud-based databases. A Virtual Entity can also be associated with

Resources that enable interaction with the Physical Entity that the Virtual Entity represents.

In contrast to heterogeneous Resources implementations of which can be highly dependent on the

underlying hardware of the Device, a Service provides an open and standardised interface, offering

all necessary functionalities for interacting with the Resources / Devices associated with Physical

Entities. Interaction with the Service is done via the network. On the lowest level the one interfacing

with the Resource and closer to the actual Device hardware, Services expose the functionality of a

Device through its hosted Resources. Other Services may invoke such low-level Services for

providing higher-level functionalities, for instance executing an activity of a business process.

Since it is the Service that makes a Resource accessible, the above-mentioned relations between

Resources and Virtual Entities are modelled as associations between Virtual Entities and Services.

For each Virtual Entity there can be associations with different Services that may provide different

functionalities, like retrieving information or enabling the execution of actuation tasks. Services can

also be redundant, i.e., the same type of Service may be provided by different instances (e.g.

redundant temperature Services provided by different Devices). In this case, there could be multiple

associations of the same kind for the same Virtual Entity.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

42 / 191

Figure 14: IOT-A’s Domain Model with entity classification

3.2.3 INTER-IoT Domain Model

We have extended IoT-A Domain Model to include new entities inherent to IoT platform

interoperability.

The clearest entity is an IoT Platform itself. In any IoT Domain Model, the platform is intrinsically

implicit, as it is really “the whole model”. When dealing with platform interoperability, different IoT

Platforms appear, thus need arises to model them independently.

Any IoT Platform relates with the underlying entities, like Services, Things or Physical Entities, and

so on. Therefore, an IoT Platform can be modelled as a set of composed entities, the entities the

platform manages.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

43 / 191

Figure 15: INTER-IoT generic domain model

An IoT Platform is comprised of several collections of entities:

● IoT Service: An IoT Service is what was called a Service in the IoT-A. It provides an open

and standardised interface, offering all necessary functionalities for interacting with the

Resources / Devices associated with Physical Entities. We understand an IoT Service as a

mechanism to interact with specific Resources related to Virtual Entities. They are Active

Digital Artefacts that usually are available in IoT Platforms exposing capabilities like query,

update, subscribe.

● Platform Service. A Platform Service is also an Active Digital Artefact that exposes

functionality about Resources related to Virtual Entities. However, rather than being attached

to specific Physical Entities (and its related Virtual Entities), they offer more elaborated

services that internally make use of IoT Services. They are usually placed in an upper layer

of IoT architectures, allowing more complex processing, like CEP (Complex Event

Processing), Stream Processing, Historical Data Management, Monitoring, etc. They are like

the IoT processes of IoT-A, but we think of them not as placed close to enterprise systems,

but as derived services that can be used as building blocks for creating more complex

interoperability services among different IoT platforms.

● Virtual Entity. A Virtual Entity is a representation of a Physical Entity in the digital world. IoT

platforms tend to use this digital representation, especially those based on cloud platforms.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

44 / 191

An IoT Platform utilizes a set of Virtual Entities for managing a thing status regardless of

whether the thing is connected to the Internet or not.

● Physical Entity. A Physical Entity is an object or environment that is of interest to an external

user, application, or service. It’s something that can be observed and connected to one or

more IoT Platforms to interact with it.

● Augmented Entity. As of IoT-A definition, an Augmented Entity is “the composition of one

Virtual Entity and the Physical Entity it is associated to, in order to highlight the fact that these

two concepts belong together. The Augmented Entity is what actually enables everyday

objects to become part of digital processes, thus, the Augmented Entity can be regarded as

constituting the “thing” in the Internet of Things.”. So, we can refer to it as a Thing, and later

we will see the ontology modelling for things (meta-data model).

A new concept we introduce for the Domain Model is the Platform Ontology. The Platform Ontology

is conceived to store the definition concerning the ontology used by the platform to define its inner

structure and components (devices, sensors…). The Platform Ontology defines also the ontology

used for modelling the observations made by each sensor, in our case available from the Virtual

Entities. These ontologies will usually be different for each Physical Entity type (and its related Virtual

Entity). This entity is thus, the one that is responsible for handling the corresponding semantics.

Once we have modelled the different entities of the platforms and the platform itself, we have added

two entities related, specifically, to defining the interoperability services that can be created at

different layers.

The Platform Interoperability Service handles the definition of new compound services that appear

as a consequence of using, and mixing in any way, Platform Services from one or more IoT

platforms. An example of this would be the creation of an alert service that may throw an event when

weather sensors from platform A exceed predefined thresholds using a rule engine service at

platform A, or when weather sensors from platform B send an alert using a CEP (Complex Event

Processing) within platform B.

So, the Platform Interoperability Service is linked with the different Platform Services it uses. Used

Platform Services are just part of IoT Platforms. From the interoperability point of view, they are the

building blocks of more complex interoperability services among different IoT platforms: Platform

Interoperability Services.

The VE Interoperability Service has a similar role as the Platform Interoperability Service, but it

defines interoperability services among devices rather than platform services. It is responsible for

defining the interoperability at the device layer, what we call D2D (Device to Device) interoperability

at INTER-IoT.

The VE Interoperability Service can handle the rules for performing the D2D interoperability. For

instance, it could have the definition of a rule triggered when a proximity sensor detects presence,

switching a light on.

3.3 Information Model

3.3.1 Introduction

The Information Model is one of the 5 Models composing the IoT-A Reference Model. The main
aspects are represented by the elements VirtualEntity, ServiceDescription and Association. As a
Virtual Entity models a Physical Entity, a ServiceDescription describes a Service that provides
information about the Physical Entity itself or the environment. Through an Association, the

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

45 / 191

connection between an Attribute of a Virtual Entity and the ServiceDescription is modelled; in other
words, the Service acts as a “get” function for an Attribute value.

Every Virtual Entity needs to have a unique identifier (identifier) or entity type (entityType), defining
the type of the Virtual Entity representation, for instance, a human, a car or a temperature sensor.
Furthermore, a Virtual Entity can have any number of different attributes (Attribute class). The
entityType of the VirtualEntity class may refer to concepts in an ontology that defines what attributes
a Virtual Entity of this type has. Each Attribute has a name (attributeName), a type (attributeType),
and one to many values (ValueContainer). The attributeType specifies the semantic type of an
attribute, for example, that the value represents temperature. It can reference an ontology-concepts.
This way, it is possible to model an attribute or a list of values, which itself has several values. Each
ValueContainer groups one Value and zero to many metadata information units belonging to the
given Value. The metadata can, for instance, be used to save the timestamp of the Value, or other
quality parameters, such as accuracy or the unit of measurement. The Virtual Entity (Virtual Entity)
is also connected to the ServiceDescription via the <Service Description / Virtual Entity> Association.

A ServiceDescription describes the relevant aspects of a Service, including its interface. Additionally,
it may contain one (or more) ResourceDescription(s) describing a Resource whose functionality is
exposed by the Service. The ResourceDescription in turn may contain information about the Device
on which the Resource is hosted.

According to the IoT-A [25] the IoT Information Model defines the structure of all the information for
Virtual Entities on a conceptual level (cf. Section 2.3). This description utilizes meta-data coming
from appropriate ontologies. The INTER-IoT project uses semantic technologies to deal with meta-
level interoperability. Specifically, the semantic interoperability will be established through the use of
a modular ontology, ontology alignments, and semantic transformations.

The Inter-IoT reference meta-data model is a set of ontologies, that can also be viewed as one
modular ontology, with both horizontal and vertical modules. Following the process described in
Section 2.4 this ontology needs to cover fundamental concepts in IoT, such as thing, device,
observation and deployment.

The meta-data model needs to conform to OASIS guidelines enumerated in section 3.1. OWL

ontologies naturally exhibit some of those, such as: clear (and formal) descriptions of concepts and

relationships between them; independence of implementation technology; and enabling common

semantics. Other than that, the reference meta-data model does not contain references to any

specific instances, and is limited to the scope defined by meta-data requirements, described in

following sections[17].

3.3.2 Scope of Meta-Data model

The scope of the Inter-IoT reference meta-data model is defined in a process outlined in section 2.4

The process relies on defining meta-data items (entities) that need to be included in the model.

Simple examples of meta-data entities are Service, Device (with sub-types Actuator, Tag and

Sensor) that are declared in the IoT-A domain model. The meta-data reference model expands those

declarations into definitions by defining properties, class attributes, taxonomy and other elements

structuring the meta-data entities. Once the scope (defined by the entities) is prepared, the reference

model is constructed by choosing and adjusting (expanding or reducing) modular ontologies.

Subsections that follow contain analysis of sources of meta-data items defined in section 2.4.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

46 / 191

3.3.2.1 INTER-IoT Grant Agreement

The grant agreement document, along with its amendments, contains broad descriptions of Inter-

IoT tasks and work packages. Semantic entities can be identified and extracted from task and work

package descriptions. The description of task 4.2 - creation of reference meta-data model - gives

the following summary (meta-data entities are underlined):

3.3.2.2 Inter-IoT project requirements

In the first few months of Inter-IoT, requirements for the whole project (and for each part of it

separately) were identified and stored and numbered in a project management software. Some of

them contain (explicit or implicit) references to data entities. Each project requirement was analysed

with respect to meta-data requirements. The results of this analysis are contained in the table in

Appendix 1. Some project requirements were redacted from the appendix, if the information relevant

to meta-data they provided was overlapping with information from other requirements already on the

list. This was done for the sake of clarity. Note that the reference meta-data model itself should not

contain domain-specific entities for the pilot implementations of Inter-IoT. Because of that

requirements that relate to domain knowledge (eHealth, transportation & logistics; e.g. INTERIOT-

641 to 645) were redacted or interpreted with disregard for the domain-specific metadata.

3.3.2.3 IoT Platforms

Some IoT platforms, like OpenIoT or UniversAAL provide explicit ontologies that model the meta-

data used within those platforms. The knowledge contained within those models is an indirect source

of meta-data entities. Since INTER-IoT is a set of tools for interoperability between platforms, rather

than a platform itself, the models of platforms should not simply be copied. That being said, the

analysis of existing platform ontologies provides valuable insight that augments explicit meta-data

requirements from other sources, and puts them in context. Section 3.3.3 contains an in-depth

analysis of selected ontologies, that, apart from being standards for IoT, are actually used in existing

platforms.

3.3.2.4 IoT EPI Task Force on Interoperability

The IoT-EPI task force on semantic interoperability can provide useful considerations when it comes

to use of ontologies in all participating projects. If any ontology is going to be used in multiple projects,

it should be given special importance when considering our reference meta-data model. Projects

involved in IoT-EPI may also have a different perspective on IoT landscape, which partially stems

 IoT Device/Smart Object metadata will basically include identity, type,

physical characteristics, location, embedded devices, and provided

services.

 Middleware metadata will basically contain communication service type,

access protocol, URI, supported data / object domains.

 Application Services metadata will basically include service identifier, type,

access protocol, device/smart objects supported, input data and output

data.

 Application Data metadata will basically include time, value structure,

security features and domain-specific characteristics.

 User Data metadata will basically include identifier, role, personal data,

and security/privacy/trust policy information.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

47 / 191

from the fact that they each have different problems to solve. For instance, in IoT-EPI three software

artefact levels are delimited: Cloud platforms, IoT Gateways and IoT Device, which is a slightly

different division of IoT space than that proposed by INTER-IoT internally. Different perspectives can

potentially bring useful conclusions about interoperability mechanisms. Documents produced by IoT-

EPI will be studied in search of meta-data requirements and ontology modules that could be

incorporated into Inter-IoT. At this point in time, the IoT EPI participants do not have meta-data

models defined yet. Once they are ready and available (shared), INTER-IoT will analyse them and

communicate with the rest of the partners to make semantic interoperability between projects as

easy as possible. The focus of the reference meta-data model, however, is and will always be on

the INTER-IoT.

3.3.2.5 Summary

The table below contains a concise summary of meta-data requirements gathered from all the

sources described in section 3.3.2.

Category Details

Device Identifier (URI, RFID tags),

Systems and subsystems of devices,

Type (sensor, actuator, human interface),

Capability (actuation, sensing; active or passive),

Supported communication protocols,

Status and performance information (energy consumption, battery level,

usage mode),

Device capabilities, stack number,

Environmental impact (gas emission levels, heat emission, noise level

energy requirements),

Location of the thing/device (where the thing is located e.g. thermostat over

a door),

Feature of interest being measured (where the feature being measured is

located, e.g. room being measured by a thermostat)

Middleware Identifier (name)

Communication and access protocols,

Protocol type (publish-subscribe, ...),

Supported object and data domain,

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

48 / 191

Authorization, accounting and authentication credentials and methods (user

ID, email, password, checksum, encrypted key file, authentication device,

authentication token)

Service Identifier,

Type,

Access protocol,

input and output data,

Supported objects (e.g. devices, platforms),

service provider

User Identifier,

Role,

Privileges,

Personal data (names, location),

security/privacy/trust policy information

Application Security features,

Security policy,

Extendable domain characteristics (out of scope for the reference model),

Event,

Access log, system event, event log (out of scope),

content type (document – report; image – graph, chart, diagram),

data access policy – when, who (user, role, device, platform),

Communication protocol features (multicast, single cast, broadcast),

read, write, share privileges

Network Address (MAC, IP),

Protocol and communication method (6LoWPAN, RoLL, ZigBee, Bluetooth,

Wi-Fi, ethernet, DSL, PSTN, GSM, 3G, LTE, Satellite), Security method

(SSH, SSL, TLS).

Location and distance, network coverage

other Message / device priority

and importance

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

49 / 191

Provenance Ownership, Current assigned entity

(current owner, current caretaker, current

responsible entity),

creation,

responsibility,

source,

provider,

physical or virtual location of data storage

Data Time (including duration),

geolocation,

location of the sensing device,

feature of interest being measured (can be

different)

location (address),

Data stream,

Measures and units,

Attribute ranges,

energy,

temperature,

Quality/accuracy

Table 2: Summary of meta-data requirements

3.3.3 Comparing IoT-related ontologies

The space of ontologies is fragmented, regardless of the domain of interest. The richer an ontology

is, the larger area it spans. Hence, uniqueness and intersections with other ontologies become more

intricate and complex. Internet of Things spans enormous number of domains, and rapidly expands

with the growing popularity of “smart devices”. Use of ontologies in the IoT mimics this

expansiveness. There are many ontologies that represent models relevant to the IoT, including, but

not limited to, devices, units of measurement, data streams, data processing, geolocation, data

provenance, computer hardware, methods of communication, etc. We assume that the centrepiece

of the IoT is a smart device capable of communication. Therefore, the first iteration of the reference

meta-data model is in the form of a device ontology and forms a cornerstone for other ontology

modules (that cover other meta-data requirements). The list of identified and analysed ontologies

(including the device ontologies) can be found in Appendix 2, along with a short description. The

ontologies were selected for analysis based on a simple criterion that they describe some (at least

one) of the meta-data requirements summarized in Section 3.3.2.

From this perspective, from the identified ones, we have selected ontologies that capture the idea of

a device, and are well established in the IoT space: SSN, SAREF, oneM2M Base Ontology, IoT-Lite,

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

50 / 191

and OpenIoT. Each of them takes a different approach to modelling the IoT space but, despite the

differences in conceptualization, they cover intersecting fragments of the IoT landscape. Below, we

discuss divergence, contrariness and similarities between these ontologies.

SSN, or "Semantic Sensor Network'' [11,15] is an ontology cantered around sensors and

observations. It is a de-facto extension of the SensorML language. SSN focuses on measurements

and observations, disregarding hardware information about the device. Specifically, it describes

sensors in terms of capabilities, performance, usage conditions, observations, measurement

processes, and deployments. It is highly modular and extendable. In fact, it depends on other

ontologies in key areas (e.g. time, location, units) and, for all practical purposes, needs to be

extended before actual implementation of an SSN-based IoT system. SSN, formulated on top of

DUL21, is an ontological basis for the IoT, as it tries to cover any application of sensors in the IoT.

SAREF [16], or “The Smart Appliances REFerence” ontology covers the area of smart devices in

houses, offices, public places, etc. It does not focus on any industrial or scientific implementation.

The devices are characterized predominantly by the function(s) they perform, commands they

accept, and states they can be in. Those three categories serve as building blocks of the semantic

description in SAREF. Elements from each can be combined to produce complex descriptions of

multi-functional devices. The description is complemented by device services that offer functions. A

noteworthy module of SAREF is the energy and power profile that received considerable attention,

shortly after its inception22. SAREF uses WGS84 for geolocation and defines its own measurement

units.

oneM2M Base Ontology (oneM2M BO; [10,13]) is a recently created ontology, with first non-draft

release in August 2016. It is relatively small, prepared for the release 2.0 of oneM2M specifications,

and designed with the intention of providing a shared ontological base, to which other ontologies

would align. It is similar to the SSN, since any concrete system necessarily needs to extend it before

implementation. It describes devices in a very broad scope, enabling (in a very general sense)

specification of device functionality, networking properties, operation and services. The philosophy

behind this approach was to enable discovery of semantically demarcated resources using a minimal

set of concepts. It is a base ontology, as it does not extend any other base models (such as

DOLCE+DnS Ultralite DUL or Dublin Core). However, alignments to other ontologies are known [19].

IoT-Lite [14] is an instantiation of the SSN, i.e. a direct extension of some of its modules. It is a

minimal ontology, to which most of the caveats of the SSN apply. Specifically: focus on sensors and

observations, reliance on other ontologies (e.g. time or unit ontologies), high modularity and

extendibility. The idea behind the IoT-Lite was to create a small/light semantic model that would be

less taxing (than other, more verbose and broader models) on devices that process it. At the same

time, it needed to cover enough concepts to be useful. The ontology describes devices, objects,

systems and services. The main extension of the SSN, in the IoT-Lite, lies in addition of actuators

(to complement sensors, as a device type) and a coverage property. It explicitly uses concepts from

a geolocation ontology [8] to demarcate device coverage and deployment location.

OpenIoT [22, 23] ontology was developed within the OpenIoT project. However, here, we use the

term “OpenIoT” to refer to the ontology. It is a comparatively big model that (re)uses and combines

other ontologies. Those include all modules of the SSN (the main basis for the OpenIoT), SPITFIRE

(including sensor networks), Event Model-F, PROV-O, LinkedGeoData, WGS84, CloudDomain,

SIOC, Association Ontology and others, including smaller ontologies developed at the DERI

(currently, Insight Centre). It also makes use of ontologies that provide basis for those enumerated

21 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

22 https://goo.gl/1OXTJb, https://goo.gl/ZaGjCJ

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
https://goo.gl/1OXTJb
https://goo.gl/ZaGjCJ

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

51 / 191

earlier, e.g. DUL. Other than concepts from the SSN, OpenIoT, uses a large number of SPITFIRE

concepts, e.g. network and sensor network descriptions. While some mentioned ontologies are not

imported by the OpenIoT explicitly, they appear in all examples, documentation, and project

deliverables. Therefore, one can treat OpenIoT as a combination of parts of all of those. Similar to

the SSN, OpenIoT does not define its own location concepts and does not explicitly import

geolocation ontologies. It relies on other ontologies for that but, in contrast to the SSN, it clearly

indicates LinkedGeoData and WGS84 as sources of geolocation descriptions. It defines a limited set

of units of measure (e.g. temperature, wind speed), but only when they were relevant to the OpenIoT

project pilot implementation.

The rich suite of used ontologies means that OpenIoT provides a very extensive description of

devices, their functionalities, capabilities, provenance, measurements, deployments and position,

energy, relevant events, users and many others. Interestingly enough, it does not explicitly describe

actuators or actuating properties/functions. It can be observed that the broad scope of the ontology

makes it rather complicated. This is also because, it is not documented well-enough, i.e. the detail

level and ease-of-access of the documentation do not match the range of coverage of concepts in

the model. Moreover, it is not clearly and explicitly modularized, despite being an extension of the

SSN.

Let us note that, while there are other IoT models of potential interest (such as OGC Sensor Things,

UniversAAL ontologies, FAN FPAI, IoT Ontology23, M3 Vocabulary), we have decided that they are

of less importance or relevance to INTER-IoT. This was either because they have generated much

less “general interest”, or had scope well outside that of the project.

3.3.3.1 In-depth analysis

Let us now compare the selected ontologies side-by-side. To do this, we have selected key aspects,

or categories, directly pertaining to the IoT; placed in the first column of Table 1. However, because

of intricacies and disparate philosophies behind compared ontologies (see, above), each category

needs to be further investigated. In other words, proposed categorization is a tentative way of

visualizing and analysing similarities and differences between ontologies of choice. Here, we follow

an approach proposed by Raúl García-Castro during June 2016 European Platform Initiative (IOT

EPI24) meeting.

Before proceeding it should be noted that there are numerous approaches to ontology evaluation,

e.g. [24,21]. We have, however, found that applying them would not help in the context of specific,

project-related, problem. Specifically, we were more interested in capturing and comparing details

of each area that the selected ontologies cover, rather than their overall evaluation by some

standard. In other words, we are primarily interested in how well the ontologies can help us solve

the problem at hand.

Category (Subdomain) SSN
SAREF oneM2M

BO

IoT-

Lite†

OpenIoT†

Thing ✓ ✓ ✓ ✓ ✓

23 http://ai-group.ds.unipi.gr/kotis/ontologies/IoT-ontology

24 http://iot-epi.eu/

http://ai-group.ds.unipi.gr/kotis/ontologies/IoT-ontology
http://iot-epi.eu/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

52 / 191

Device ✓ ✓ ✓ ✓ ✓

Device Deployment ✓α ✓ ✓α, ∅ ✓ ✓

Device Properties and

Capabilities

✓ ✓

Device Energy ✓ ✓ε ✓

Function and Service ✓ ✓ ✓S

Sensing and Sensor

Properties

✓ ✓β ✓∅ ✓

Observation ✓α ✓ ✓ ✓

Actuating and Actuator

Properties

 ✓β ✓∅

Conditionals ✓

Table 3: Ontology classification

†
 Extends modules of SSN

 α No time or location

β Implicit, implied by device functions

ε Rich energy model

S Service only

∅ Only small or provisional description, or a stub

In what follows, we discuss selected categories from Table 1. While, we have selected only some

categories, this discussion provides a valuable insight to key aspects of use of semantic technologies

in the IoT.

3.3.3.1.1 Thing

This category describes the general approach and provision of properties to any class of an ontology.

All considered ontologies are, understandably, generic in this regard. Each contains only a handful

of relevant properties that pertain to the very generic concepts. SSN's Things can have

FeatureOfInterest (an abstraction of a real-world phenomenon, such as person, event or, literally,

anything) and display Properties (a specification of DUL Quality; needs to be observable and

inseparable from the SSN thing). SAREF defines a, similarly general, Property (specifying anything

that can be sensed, measured or controlled). IoT-Lite extends the SSN with an Object (any physical

entity) and its Attribute (any property exhibited by the Object that can be exposed by a Service).

OpenIoT does not provide independent extensions or departures from the approach taken by the

SSN. Instead, it provides subclasses for the SSN Property, mostly to describe entities needed in

pilots of the project (e.g. WindSpeed, AtmospherePressure).

OneM2M BO is unique in its description of things, because the entire ontology is very general. It

defines its own Thing class that captures, quite literally, any entity identifiable in a oneM2M system.

OneM2M BO does not extend any upper ontologies, and its Thing is a direct subclass of owl:Thing.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

53 / 191

Here, a Thing can have ThingProperty (which has a self-explanatory, all-encompassing definition).

In this way, oneM2M BO displays characteristics of an upper ontology.

3.3.3.1.2 Device

Devices are at the core of the IoT. This is reflected in all ontologies. OneM2M BO proposes the

simplest structure of a Device class that uses a written description, instead of rich ontological

relations. Device has a single subclass of InterworkedDevice (one that does not directly implement

oneM2M interfaces). A Device can consist of a number of other Devices.

In the SSN, the central taxonomy subtree consists of Device, Sensor, and SensingDevice subsuming

both previous classes. An SSN System can represent any part of an infrastructure of devices

connected in some way. In particular, it can be any Device in the System. Any System is comprised

of subsystems (also of class System). IoT-Lite expands this structure with the addition of an

ActuatingDevice and a (passive) TagDevice. Strangely, there is no definition of an Actuator. OpenIoT

does not expand the basic structure of the SSN.

SAREF borrows from both, oneM2M and SSN. SAREF Device consistsOf any number of Devices,

and has a DeviceCategory that, in turn, has its own subclass structure (which starts with

FunctionRelated, EnergyRelated and BuildingRelated categories). It is meant to represent a given

perspective (point of view) on a device (e.g. of user, administrator, manufacturer, etc.). On top of

that, the ontology defines a couple of subclasses of the Device class, which range from general,

such as a Sensor, to quite specific, like a WashingMachine (with classes, such as Switch, in

between). Interestingly, Sensor and Actuator are not neighbours (the first being a subclass of a

Device, and the latter of a DeviceFunction).

3.3.3.1.3 Observation

The second crucial element of any IoT ontology is the way that observations are modelled. They are

fundamental data items, and their description very strongly affects possible use of a model and

functionality of a concrete systems. In oneM2M BO, observations revolve around three general

classes: Variable, Aspect and Metadata. Variable class encompasses input and output variables, as

well as a ThingProperty, that pertains to any entity and can have additional Metadata. The latter

class is a catch-all way of annotating observations (e.g. with units or precision), which lacks

specification, i.e. any property structure is permissible under the BO Metadata. Aspects describe

functionality as well as input or output Variables. This simplistic, high-level model of observations

allows for great flexibility. On the other hand, there are no examples, and the intended use is very

tersely explained. Lack of documentation, combined with elasticity of interpretation, may lead to

systems being barely interoperable, despite using the same base ontology.

SSN proceeds differently, by extending the general model proposed by DUL. It introduces the

Observation class. Each Observation results in a SensorOutput, a class with relations with other

relevant information, such as ObservationValue, or the Sensor that saw the Observation.

Observations have FeatureOfInterest that describes their characteristics, e.g. precision, latency,

range, response time, etc. In general, the SSN Observation is a record of an occurrence of

measurement, along with structured meta-data about the observation value, its properties, as well

as the process leading to the Observation. Since the SSN lacks explicit units or time definitions, it

needs to be complemented with relevant ontologies.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

54 / 191

IoT-Lite does not extend the SSN Observation related modules. Instead, it proposes a vast

simplification by introducing a Metadata class, similarly to the oneM2M BO. It is a generic class,

intended to model any entity that does not fit the Unit or QuantityKind classes (a separate ontology

is needed to describe the actual quantities). Observed values are not stored in the structure of the

IoT-Lite. Instead, sensors are described in terms of types/kinds of observations made by them. For

instance, one can construct a full description of a temperature sensor with meta-data of precision,

unit, etc. However, within IoT-Lite, a series of concrete observations cannot be described.

OpenIoT extends the SSN Observation model by providing a Context, however, because of lack of

documentation, the intended usage of this class is not clear. Nevertheless, it preserves the SSN

Observation structure.

Finally, SAREF observations are described in terms of device Functions (in particular,

SensingFunction and MeteringFunction). While lacking an explicit observation class, Functions have

a number of properties that pertain to concrete values of measurements. Every relevant Function

has a time value (e.g. hasMeterReadingTime) and an “observation” value (e.g.

hasMeterReadingValue). These values are described in terms of Properties, which have concrete

values alongside the UnitsOfMeasure. SAREF proposes its own taxonomy of units of measurements

(currency, power, temperature…). Other than the values of concrete measurements, Functions have

“reading types” (e.g. gas, pressure, energy…), which are implied to be relatively constant, vis-a-vis,

for instance, meter readings of time and value. Compared to the SSN, the observation model in

SAREF is simpler, and more focused on devices and their functions. It does not treat observations

as pieces of data with their own structure and place in the system, which enables advanced data

processing, e.g. analysis of historical data (within the structure given by the ontology). Instead, the

SAREF model presents observations as tentative “outputs” of a function.

3.3.3.1.4 Device Deployment

A deployment description is a very important information in any system with multiple distributed

devices. OneM2M BO interprets this category as a basic information about a network environment

(AreaNetwork), but only if the device is proxied (InterworkedDevice). There is no standard way to

model deployment information for any oneM2M BO Device.

SSN describes device deployment in terms of Platform(s) a Device is on, and System(s) it is part of.

Even though the SSN itself does not define time or location properties, it is strongly implied that

Devices, Systems and Platforms should be annotated with such information (no specific ontology to

fulfill that function is suggested). SSN also defines a Deployment, a process with subprocesses

(DeploymentRelatedProcess) that lead to the device becoming deployed. IoT-Lite extends the

deployment aspect of the SSN by explicit use of geolocation from the WGS84 model. OpenIoT, on

the other hand, provides a very peculiar extension of the SSN, namely it adds an OperatingProperty

of Device, named EaseOfDeployment. No further description or explanation of its usage is provided.

In SAREF, deployment is understood in terms of physical space, in which a device is deployed, i.e.

BuildingSpace, annotated with geolocation data from the WGS84. This is an interesting design

decision, as it restricts SAREF Devices to be deployed only in buildings. It seems to contradict the

design-time assumption that SAREF devices, i.e. smart appliances, can be located also in public

spaces.

3.3.4 Summary

Each of considered ontologies proposes a different approach to modelling the IoT space. The biggest

differences are in the details.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

55 / 191

a) OneM2M BO proposes a small base ontology, similar to upper ontologies that provides

only a minimal set of highly abstract entities. This allows for a very broad set of domain ontologies

to be easily aligned with it. It also means that the BO itself is not enough to model any concrete

problem (or solution) in the IoT. Furthermore, it does not capture some aspects (device, sensor and

actuator properties) that are very common in other ontologies.

b) OpenIoT contrasts the oneM2M BO philosophy by providing a detailed model for a specific

problem (i.e. pilot implementations from the OpenIoT project) that can be also be applied in a more

general case, or in other solutions. Its heavy usage of external ontologies provides high semantic

interoperability by design.

c) SSN is a developed model of the IoT in general, but with strong focus on sensor networks.

It is based on DUL, and is clearly modularized, which makes it a good candidate for extensions into

concrete systems and implementations. This is evidenced by the fact that other ontologies, evaluated

here, make good use of it. When it comes to specificity, it places itself in the middle between oneM2M

BO and OpenIoT.

d) IoT-Lite is an extension of selected SSN modules, mainly to include actuators. Rather than

focusing on providing a detailed description of a delimited problem space within the IoT, it

approaches the modelling problem from the perspective of an implementation device. It aims to

deliver a small, but complete, model in order to simplify processing of semantic information. This is

also its distinctive characteristics.

e) SAREF is a model with a strong focus on its own area—of smart appliances. Even though

mappings to other standards exist, SAREF was developed from scratch to represent a specific area

of application of the IoT. In this area, it delivers a strong and detailed base, that is also clear and

easy to understand. At the same time, it is general enough to be used when extended to other

domains, or solutions. Interestingly, all these ontologies almost completely disregard hardware

specifications. It seems that the “place” of a device in an IoT system is much more important to

ontology engineers than its hardware specification and resulting capabilities.

Results of our investigations show how different the existing conceptualizations of the same domain

can be, depending on the context of the approach, and the applied ontology engineering

methodology. Separately, we conclude that, while each considered ontology has its uses and

caveats, two of them stand out in the context of the INTER-IoT project. These are SSN and SAREF.

The first presents a model focused on sensors, but still robust enough, and with strong ontological

basis. Those features make it a good choice in terms of interoperability (which is the focus of the

project). In addition, the SSN is modular, extendable, and has been actually implemented and

extended in other systems and ontologies (e.g. IoT-Lite and OpenIoT). SAREF, on the other hand,

is a thoroughly modern ontology with many recommendations and relatively large scope, despite

targeting only smart appliances. It already has alignments with other models, thus improving its

interoperability.

In light of the facts and analysis presented in this section, the SSN ontology will be used as the basis

of INTER-IoT reference meta-data model. We have found that it covers many meta-data

requirements identified in INTER-IoT and is designed to be modular and extendible. It is also a core

ontology, with many implementations in already deployed and well-tested systems. This makes it, in

our view, the best currently available core IoT ontology for INTER-IoT.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

56 / 191

3.4 Functional Model

The main purpose of functional decomposition25 is to break up the complexity of the systems, under

investigation, into smaller and more manageable parts, and to understand and illustrate their

relationships to each other. Additionally, this produces a superset of functionalities that can be used

to build any IoT system. The functional model is not directly tied to technology, application domain,

or implementation. It contains both the Functionality Groups and the interaction between parts as a

list of the Functionality Groups alone would not be enough to make up the Functional Model.

3.4.1 IoT-A Functional Model

The IoT-A project defines a Functional Model as

 This framework defines the common semantics of the main functionalities of a system and is used

for the development of the Functional Views. 

The Functional Model, together with the Unified Requirements, is the base for the Functional View,

which describes the system runtime Functional Components, including the responsibilities of

components, their default functions, their interfaces, and their primary interactions. Various

Functional Views could be derived from the same Functional Model.

Another concept that is very important in the IoT-A Functional Model is the Functional Decomposition

(FD), that refers to the process by which the different Functional Components (FC) composing a

specific service or application are identified and related to one another. The main purpose of

Functional Decomposition is, on the one hand, to break up the complexity of a system compliant to

the IoT ARM in smaller and more manageable parts, and to understand and illustrate their

relationship on the other hand.

The IoT Functional Model diagram was derived from the main abstractions identified in the Domain

Model, such as Virtual Entities, Devices, Resources and Users. Therefore, the “Application”, “Virtual

Entity”, “IoT Service” and “Device” FGs are directly linked to the Domain Model parts. Considering

the plethora of communication technologies that IoT needs to support, the need for a

“Communication” FG is identified.

Furthermore, requirements expressed by stakeholders regarding the possibility to build services and

applications on top of connected objects are covered by the “IoT Process Management” and “Service

Organisation” FGs. To address consistently the concern expressed about IoT Trust, Security and

Privacy, the need for a “Security” transversal FG is identified. Finally, the “Management” transversal

FG is required for the management of and/or interaction between the functionality groups.

All in all, the IoT Functional Model contains seven longitudinal Functionality Groups complemented

by two transversal Functionality Groups (as shown in Figure 16). These transversal groups provide

functionalities that are required by each of the longitudinal groups. The policies governing the

transversal groups will not only be applied to the groups themselves, but do also pertain to the

longitudinal groups. As an example: for a security policy to be effective, it must ensure that there is

no functionality provided by a component that would circumvent the policy and provide unauthorised

access.

25 http://soapatterns.org/design_patterns/functional_decomposition

an abstract framework for understanding the main Functionality Groups (FG) and their

interactions

http://soapatterns.org/design_patterns/functional_decomposition

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

57 / 191

Figure 16: Example of functional model: IOT-A’s functional model

3.4.2 IOT-A based functional analysis of IoT Platforms

We have performed an analysis of a set of IoT Platforms from the functional model point of view,

matching the functional features of each platform against IoT-A’s Functional Model. The aim of this

analysis is to better understand the reality of the IoT Platforms, and don’t make assumptions that

could be erroneous, which could lead to disastrous results when trying to apply INTER-IoT results.

The analysis has also been useful for assessing the way that different IoT Platforms solve similar

problems, helping in the design of the Functional Model of INTER-IoT.

Next, a brief description and a Functional Model analysis of each IoT Platform is shown. The list of

IoT Platforms is depicted in Figure 10.

3.4.2.1 FIWARE

FIWARE26 is a middleware platform, driven by the European Union under the Future Internet Public

Private Partnership Programme27, for the development and global deployment of Smart Applications

for Future Internet in multiple vertical sectors.

The FIWARE platform provides a rather simple yet powerful set of APIs (Application Programming

Interfaces) that ease the development of Smart Applications in multiple vertical sectors. The

specifications of these APIs are public and royalty-free. Besides, an open source reference

implementation of each of the FIWARE components is publicly available so that multiple FIWARE

providers can emerge faster in the market with a low-cost proposition.

26 https://www.fiware.org/

27 https://www.fi-ppp.eu/

https://www.fiware.org/
https://www.fi-ppp.eu/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

58 / 191

The key deliverables of FIWARE will be an open architecture and a reference implementation of a

novel service infrastructure, building upon generic and reusable building blocks developed in earlier

research projects.

FIWARE is based on the following main foundations:

● Service Delivery Framework – the infrastructure to create, publish, manage and consume FI

services across their life cycle, addressing all technical and business aspects.

● Cloud Hosting – the fundamental layer which provides the computation, storage and network

resources, upon which services are provisioned and managed.

● Support Services – the facilities for effective accessing, processing, and analyzing massive

streams of data, and semantically classifying them into valuable knowledge.

● IoT Enablement – the bridge whereby FI services interface and leverage the ubiquity of

heterogeneous, resource-constrained devices in the Internet of Things.

● Interface to Networks – open interfaces to networks and devices, providing the connectivity

needs of services delivered across the platform.

● Security – the mechanisms which ensure that the delivery and usage of services is

trustworthy and meets security and privacy requirements.

FIWARE GEs are grouped and organized in chapters. Each chapter provides a set of GEs that work

and communicate together to give support the following areas (see FIWARE catalogue28):

● Data/Context

● IoT

● Advanced UI

● Security

● Interface to Networks and Devices (I2ND)

● Apps

● Cloud

FIWARE also provide Domain Specific Enablers (SE) aimed at provide functionality and APIs for

these domains:

● Manufacturing

● Transport, logistics and agrifood

● Personal mobility

● Social connected TV, mobile city services and video games

● Smart cities and public security

● eHealth

● Smart energy

● Environment

Usually SEs depend on other SEs and GEs to provide a specific functionality.

28 http://catalogue.fiware.org/

http://catalogue.fiware.org/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

59 / 191

Figure 17: FIWARE architecture with the main Generic Enablers

FIWARE IoT

One of the most successful applications of the FIWARE initiative in real scenarios comprises the

usage of its Data/Context Management enablers and infrastructure to build IoT ready scenarios with

open source in a reliable way. As shown in the previous picture, FIWARE has a specific area devoted

to IoT, separated from the Data Enablers. Since they both are extremely coupled in the domain of

INTER-IoT (and IoT in general) they are treated jointly, as suggested in the officially maintained

documentation page of the IoT Stack29. This IoT Stack is one of the latest association of GEs and

definitions within a common domain and purpose30.

29 http://fiware-iot-stack.readthedocs.io

30 Other similar set are also called bundles and those officially supported can be found in
https://catalogue.fiware.org/bundles

http://fiware-iot-stack.readthedocs.io/
https://catalogue.fiware.org/bundles

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

60 / 191

Figure 18 FIWARE IoT stack components

The IoT Stack groups the following FIWARE APIs:

● Authentication API

● Device API

● Data API

● Complex Event Processing API

● Management API

Figure 19: Context broker and IoT agents

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

61 / 191

Figure 20: Relation of FIWARE with IOT-A functional model

3.4.2.2 OpenIoT

OpenIoT is open source middleware and development platform infrastructure that aims at:

● Collecting and processing data from virtually sensors, including physical devices, sensor

processing algorithms, social media processing algorithms and more. (In OpenIoT the term

sensor refers to any components that can provide observations)

● Semantically annotating sensor data, according to the W3C Semantic Sensor Networks

(SSN) specifications.

● Streaming the data of the various sensors to a cloud computing infrastructure.

● Dynamically discovering/querying sensors and their data.

● Composing and delivering IoT services that comprise data from multiple sensors.

● Visualizing IoT data based on appropriate mashups (charts, graphs, maps etc.)

● Optimizing resources within the OpenIoT middleware and cloud computing infrastructure.

To achieve this architecture is divided in seven main elements divided in three planes;

Physical Plane

1. The Sensor Middleware (Extended Global Sensor Network, X-GSN), collects, filters,

combines, and semantically annotates data streams from virtual sensors or physical

devices. Acts as a hub between the OpenIoT platform and the physical world. The Sensor

Middleware is deployed on the basis of one or more distributed instances (nodes), which

may belong to different administrative entities. The prototype implementation of the

OpenIoT platform uses the GSN sensor middleware that has been extended and called

X-GSN (Extended GSN).

Virtualized Plane

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

62 / 191

2. The Cloud Data Storage.(Linked Stream Middleware Light,LSM-Light), enables the

storage of data streams stemming from the sensor middleware thereby acting as a cloud

database. Also, stores the metadata required for the operation of the OpenIoT platform

(functional data). The prototype implementation of the OpenIoT platform uses a re-designed

LSM Middleware, with push-pull data functionalities and cloud interfaces for enabling

additional cloud-based streaming processing.

3. the Scheduler together with the Discovery Services functionality, processes all the

requests for services from the Request Definition and ensures their proper access to the

resources (e.g., data streams) that they require. This component undertakes the following

tasks: it discovers the sensors and the associated data streams that can contribute to service

setup; it manages a service and selects/enables the resources involved in service provision.

4. the Service Delivery and Utility manager, performs a dual role: combines the data

streams as indicated by service workflows within the OpenIoT system in order to deliver the

requested service (with the help of the SPARQL query provided by the Scheduler) either to

the Request presentation or a third-party application (using the service description and

resources identified and reserved by the Scheduler component) and acts as a service

metering facility, keeping track of utility metrics for each individual service. This metering

functionality will be used to drive functionalities as accounting, billing, and utility-driven

resource optimization.

Utility/Application Plane

5. the Request Definition, selects mashups from a library in order to make a service

presentation in a Web interface. Communicates with the Service Delivery & Utility Manager

to visualize these services, obtaining the relevant data.

6. the Request Presentation , component enables specification of service requests to

the OpenIoT platform providing a Web interface. It a set of services for specifying and

formulating requests, while also submitting them to the Global Scheduler.

7. the Configuration/Monitoring, enables the management and configuration of

functionalities over the sensors and the (OpenIoT) services that are deployed within the

platform. Also enables the user to monitor the status of the different deployed modules31.

Everything is running at the top of a JBoss application server, and it provides User Interfaces that

include:

● IDE Core

● Request Definition

● Request-Presentation

● Virtual Sensor Schema Editor and

● Management, Monitoring and Editors

The following picture depicts the architecture in the IOT-A functional model to observe how the

physical plane is in charge of the parts related with communication and devices (also with application

if we take in account that for OpenIoT Twitter could provide data as a device), the green ones, and

the virtualized plane and utility/management plane are in charge of the organisation, management

and processing parts, the red and blue ones.

31 OpenIoT draft http://cordis.europa.eu/docs/projects/cnect/5/287305/080/deliverables/001-OpenIoTD431Draft.pdf

https://www.google.com/url?q=http://cordis.europa.eu/docs/projects/cnect/5/287305/080/deliverables/001-OpenIoTD431Draft.pdf&sa=D&ust=1484397798701000&usg=AFQjCNFsDu5f0Z73N8httrBgRgXFBg0oGg

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

63 / 191

Figure 21: Relationship of OpenIoT with IOT-A functional model

3.4.2.3 UniversAAL

UniversAAL is the result of the homonymous FP7-ICT project UNIVERSAAL: UNIVERsal open

platform and reference Specification for Ambient Assisted Living, coordinated by SINTEF32 and

developed by a consortium of 19 partners. Currently is maintained by some of their creators, who

are creating the UniversAAL Coalition, expected to be officially announced during the first quarter of

2017.

UniversAAL is defined as an independent (funded publicly so far) IoT platform that provides a

service-oriented environment – via an Enterprise Service Bus (ESB) model – enabling developers

to utilize the cumulative potential of the sum of capabilities in the environment and compose their

software applications over all verticals. This becomes possible through an implementation of

semantic interoperability for SOA at the level of communication protocols (existing since 2008); this

way, universAAL avoids domain-specific APIs by reducing syntactical dependencies to one single

brokerage API, allows dynamic evolution of arbitrary constellations based on loose coupling, and

enables integration and interoperability in a domain- and vendor-independent way.

UniversAAL communication protocols hide distribution and heterogeneity, currently with Java based

implementations for the OSGi and Android runtime environments. It supports different types of

targets, including mobile, embedded, and server- / Cloud-based.

The main features of universAAL are:

● 100% Semantic: it brings a list of extendable ontologies to define every communication that

is produced within the system.

32 https://www.sintef.no/en/

https://www.sintef.no/en/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

64 / 191

● Context bus: a single channel to publish and consume the context information produced by

the attached entities.

● Service bus: a single channel to share the service-related information, defined in a semantic

way.

● UI bus (optional): a single channel to transport all the UI interactions produced an requested.

It implements multi-modality, so the interactions are adapted to the context and the end-user

leveraging the semantic capacity of the system.

● Ontology management: it allows the extension of the existing ontologies and provides tools

to support the basic operations with ontologies.

● Remote interoperability among universAAL instance: includes mechanisms to allow the

coexistence and collaboration of multiple universAAL instances in a single network.

● Compatibility with some hardware technologies (Continua Alliance, ZigBee): provides

adapters to a set of technologies for physical devices attachment.

● Semantic reasoner: includes a semantic reasoner to set triggers according to situations and

thresholds in a semantic way.

UniversAAL is publicly available in github33 under the Apache Software License 2.0.

Figure 22: Relationship of UniversAAL with IOT-A Functional Model

3.4.2.4 OM2M

OM2M34 is an open source project created by Eclipse under EPL license that implements the

specification of oneM2M and SmartM2M standards.

33 https://github.com/universAAL

34 https://wiki.eclipse.org/OM2M/one

https://github.com/universAAL
https://www.google.com/url?q=https://wiki.eclipse.org/OM2M/one&sa=D&ust=1484255088810000&usg=AFQjCNGHeHBSwXrvySLA5BWqCAav_sUJdg

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

65 / 191

The main characteristic is that it implements a Service Common Entity (CSE), which is similar to a

service layer, that can be deployed on a M2M server (CSE-IN) a gateway (CSE-MN) or a device

(CSE-AE).

The features that the CSE offers are:

● Application Enablement

● Security

● Triggering

● Notification

● Persistency

● Device Interworking

● Remote Entity Management

● Routing

● and Communication

Is created in Java and runs at the top of an OSGi Framework called Equinox, so is modular and can

be extended by plugins (OSGi Bundles). For building it uses Maven and Tyco. Each bundle offers

specific functionalities and can be remotely installed, started, stopped, updated or uninstalled without

reboot.

Figure 23: Eclipse OM2M Building Blocks

Additionally, it provides a RESTful API with primitive procedures for machines as:

● Authentication

● Resource Discovery,

● Application registration,

● Containers management

● Synchronous and Asynchronous communication

● Access right authorization

● Groups organization

● And re-targeting.

This API operates on the following primary resource types:

● CseBase: describes the hosting CSE, and is the root for all other resources within the hosting

CSE.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

66 / 191

● remoteCse: stores information related to M2M CSEs residing on other M2M machines after

successful mutual authentication. It enables Cses interactions using retargeting operations

● AE: stores information about the Application Entity after a successful registration on the

hosting CSE.

● Container: acts as a mediator for data buffering to enable data exchange between

applications and CSEs

● AccessControlPolicies: manages permissions and permissions holders to limit and protect

the access to the resource tree structure.

● Group: enhances resources tree operations and simplifying the interactions on the API

interfaces by adding the grouping feature. It enables an issuer to send one request to a set

of receivers instead of sending requests one by one.

● Subscription: stores information related to subscriptions for some resources. It allow

subscribers to receive asynchronous notification when an event happens such as the

reception of new sensor event or the creation, update, or delete of a resource.

This helps to develop services and applications independently of the underlying network. Also, It

supports multiple protocol bindings such as HTTP and CoAP. Various interworking proxies are

provided to enable seamless communication with vendor-specific technologies such as Zigbee and

Phidgets devices.

We can apply the ARM FM to the OM2M obtaining a comparative very significant and relevant as

we can see in the following figure[27].

Figure 24: Relationship of OM2M and IOT-A Functional Model

3.4.2.5 Microsoft Azure

Azure IoT Hub is an extension towards the IoT domain that is integrated into Microsoft Azure cloud

offering. Its main purpose is to enable reliable and secure bidirectional communications between a

large number of IoT devices and a back-end engine, typically cloud-hosted. The Azure IoT Hub

provides reliable device-to-cloud and cloud-to-device messaging, secure communications using per-

device security credentials and access control. It offers extensive monitoring for device connectivity

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

67 / 191

and device identity management events and includes device libraries for the most popular languages

and platforms. It also provides an IoT gateway SDK for the development processing and application

logic at the edge.

The Microsoft Azure IoT platform is composed of core platform services and application-level

components to facilitate the processing needs across three major areas of a typical IoT solution.

This includes

1. device connectivity 

2. data processing, analytics, and management and

3. presentation and business connectivity.

Devices can be connected directly or indirectly via a gateway, and both may implement edge

intelligence with different levels of processing capabilities. A cloud gateway provides endpoints for

device connectivity and facilitates bidirectional communication with the backend system. The back

end comprises multiple components to provide device registration and discovery, data collection,

transformation, and analytics, as well as business logic and visualizations. The business integration

and presentation layer is responsible for the integration of the IoT environment into the business

processes of an enterprise.

For what concerns connectivity, Microsoft Azure Hub supports different connectivity options in order

to integrate IoT resources, that can be connected directly or indirectly via so called field gateways.

The main integration point towards the devices provides is the Azure IoT hub which offers support

for three protocols:

● AMQP (with optional WebSocket support)

● MQTT and 

● HTTP 1.1 over TLS protocols

The Azure IoT device SDK can be used to simplify the development of IoT clients that can connect

to the Azure IoT hub via the options above. More constrained devices require a field gateway

implementation to translate from protocols such as CoAP, OMA LWM2M, OPC, Bluetooth or ZigBee.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

68 / 191

3.4.2.6 Amazon AWS IoT

AWS IoT is a managed cloud platform that lets connected devices easily and securely interact with

cloud applications and other devices. It provides services hosted in the leading cloud services AWS

(standing for Amazon Web Services) and leverages most of the services/modules on that to facilitate

some of the most common processes such as

● AWS Lambda (serverless cloud computing)

● Kinesis (streaming data operations)

● S3 (cloud storage)

● Machine Learning

● DynamoDB (NoSQL database)

● CloudWatch (monitoring of cloud applications)

● CloudTrail (API calls logging)

● Elasticsearch Service with built-in Kibana integration (data visualization)

The AWS IoT module covers exclusively those aspects that are exclusive (or highly bound to) of the

IoT domain (see the available documentation)35:

● Device management

● Device SDK connectors

● Message Broker

● Virtual entities (device shadows)

● Rules engine

Figure 25: Amazon AWS IoT main architecture

35 http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

69 / 191

Figure 26: Relationship of Amazon AWS IoT

3.4.2.7 AllJoyn

AllJoyn is a collaborative open source software framework, that has since October 2016 been
merged into IoTivity36. It is flexible, it promotes proximal network and it has an optional cloud
connection. Being an open source project, it is licensed under the Creative Commons License and
developed by the AllSeen Alliance37 (including, among others, Qualcomm, Foxconn, Technicolor,
LG-Innotek, LeTV, Microsoft and Xiaomi) and in collaboration with the Linux Foundation.

AllJoyn provides a universal software framework and core set of system services, which enabled
interoperability among connected products and software applications. This is achieved by creating
dynamic proximal networks using the D-Bus message bus. Compatible devices and applications
could find each other and communicate in a client-server model across the boundaries of product
categories, platforms, brands and connection types – including fields such as Connected Home,
Smart TV, Smart Audio and Broadband Gateways. This is made possible by usage of introspection
XML files, which are owned by each device on the network and they advertise device's abilities.
AllJoyn is a core component in Windows 10.

The framework of AllJoyn has both routers and apps; communication between the latter always goes
through the former. The AllJoyn application advertises its services, and when a neighbouring
application discovers the application that does the advertising, it can create a session by connection
to a specific port. Sessions between applications can be either point-to-point or multi-point.

Apps and routers can run on the same physical device. In the case that the app uses its own router,
the router is called bundled router. If all apps on the device share a common router, then this router
is called a standalone router. This is common on Linux systems where router runs as a daemon

36 https://www.iotivity.org/
37 https://allseenalliance.org/

https://www.iotivity.org/
https://allseenalliance.org/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

70 / 191

process. However, if an app uses a router on a different device, which is common on embedded
devices, we use for it the term thin app.

To facilitate interoperability between apps, AllJoyn implements service frameworks, which implement
a set of common services, like onboarding, notification and control panel. These are divided into
AllSeen working groups, such as:

● Onboarding - to provide a consistent way to bring a new device onto the wi-fi network,
● Configuration - to allow one to configure certain attributes of an application or device, such

as its name,
● Notifications - applications can send and receive text-based, as well as audio and image

messages directly or via URLs,
● Control panel - to allow remote access to a virtual control panel for the device.

AllJoyn apps can communicate with one another through wi-fi, Ethernet, serial or Power Line (PLC).

Figure 27: Relationship of AllJoyn with IOT-A functional model

3.4.2.8 Butler

BUTLER (uBiquitous, secUre inTernet-of-things with Location and contEx-awaReness) is a FP7-ICT

project ended in 2014 and involved 17 partners (6 academic institutions and 11 companies),

coordinated by INNO. Leveraging on a context and location aware, pervasive information system,

BUTLER aimed at the development of inherently secure (from physical to application layer), energy-

efficient and optimized applications spreading across different scenarios (Home, Office,

Transportation, Health, etc.). Indeed, BUTLER provides a horizontal platform where IoT devices can

be reused by various applications from different domains via intermediate value added services such

as localization, context capturing, behaviour capturing, security management, etc.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

71 / 191

Figure 28: Butler generic architecture

To such purpose, BUTLER presents a smartDevice-centric network architecture where smartObject

(sensors, actuators), smartMobile (user’s personal device) and smartServers (providers of contents

and services) are interconnected directly over IPv6 or by means of a SmartGateway (for devices

adopting CoAP, ZigBee, BT, NFC, etc.). Just the Butler SmartGateway plays a crucial role for the

integration of heterogeneous SmartObjects by representing different devices in a homogeneous way

through a Service-Oriented approach and through several IoT Protocol Adapters. In particular,

BUTLER layered architecture (Communications Layer, Data/Context Management Layer,

System/Device Management Layer, Service Layer) is modular, extensible and domain independent

since it implements a set of principles and guidelines that can be used to build any kind of IoT

systems. Indeed, integrates existing and develops new technologies to form a “bundle” of

applications, platform features and services that will bring IoT to life.

BUTLER has taken advantage of existing efforts, either within the framework of the research-related

EU initiatives (e.g., especially IoT-A for the Butler Information Model definition and FIWARE for the

context abstraction), or supported by other industry standards body (e.g., OMA, OAuth, SAML 2.0

or OSGi). All the components developed in the project, integrated demo (e.g. with iCore platform)

and trials are available on the IOT OPEN PLATFORMS portal.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

72 / 191

Figure 29: Relationship of BUTLER with IOT-A functional model

3.4.2.9 i-Core

iCore is a FP7-ICT project ended in 2014 and involved 19 partners from industry, research and

academia, coordinated by CREATE-NET. The iCore proposed solution for addressing the

heterogeneity of objects and the need for resilience in very large IoT scenarios is a cognitive

application domain neutral management framework. Although most of the iCore concepts have been

inherited by the IoT-A (Internet of Thing- Architecture), iCore building blocks refer to four specific

concepts (virtualization, composition, cognition and proximity) spread among a three-layered (VO

Level, CVO Level, Service Level) architecture.

At the first level the focus is on the virtualization activity, that allows linking every real-world object

(RWO) with a digital always-on alter ego, called virtual object (VO). VOs reflect RWOs status and

capabilities, and can be dynamically created, destroyed or changed. At the second level, the focus

in on the composition activity, since VOs are aggregated in more sophisticated entities, called

composite virtual objects (CVOs). CVOs are cognitive mashup of semantically interoperable VOs

aiming at rendering services in accordance with both the application and user requirements. At the

third and last level, the Service one, mechanisms related to User Characterization, Situation

Awareness and Intent Recognition support the Service Request Analysis, whose output provides the

input parameters for the composition processes of CVO Level. Learning mechanisms, Semantic

Query Matchers, and RDF Rules Inference Engines are the enabling supports for the Service

Execution Request process, in accordance to the stored policies.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

73 / 191

Figure 30: i-Core generic architecture

Cognition spreads in all the three aforementioned architectural levels, under different forms

(optimization techniques, learning mechanism, ontology, etc.). In detail, at VO Level cognition needs

for VOs self-management and self-configuration in order to handle data flows, to optimize resources,

to monitor relevant RWOs. At CVO Level, cognition needs for meeting the application requirements

and the VOs/CVOs capabilities, choosing between VOs/CVOs candidates, recognizing already

faced scenarios (pattern recognition and machine learning techniques) and reuse or adapt already

built solutions. Finally, at Service Level cognition is used as semantic reasoning in order to capture

the application requirements, translate them into appropriate request service format and so guide

the selection process at the lower levels.

The proximity concept instead expresses the level of relatedness/usefulness between any IoT

user/application and any object in order to achieve more and more automation and scalability in the

cognitive selection of VOs/CVOs.

Several iCore trials and integrated demo (e.g. with Butler platform) related to different application

domains (home automation, logistics, security, etc.) have been realized as proof-of-concept. iCore

resources are subject to different licenses.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

74 / 191

Figure 31: Relationship of i-Core with IOT-A functional model

3.4.2.10 Sofia 2

SOFIA238 IoT is a Platform created by the union of an Open Source project called SOFIA (Smart

Objects For Intelligent Applications), which is a middleware, and the Indra company effort.

SOFIA was a middleware architecture that allowed the interoperability of several systems and

devices. It allowed making real information available for intelligent. This interoperability was achieved

using different applications that share semantic concepts.

Some of its main advantages are:

● Open-source

● Multi-platform: Available for MS Windows, Android, Linux, iOS…

● Multi-language: It has libraries in Java, JavaScript, C++, Arduino…

● Communication agnostic: With implementations for TCP, MQTT, HTTP (REST and

WebServices), Ajax Push, …

Late on, Indra company kept evolving the original SOFIA project, creating a platform that focuses on

enterprise use. The current version of the Platform is called SOFIA2.

This platform allows the interoperability between multiples IT systems and IoT devices, joining the

aforementioned middleware with a repository capable of processing thousands of events per second,

with huge storage and Big Data analytics and additionally offers:

● Real time interoperability between systems, networks, devices and sensors in a feasible and

secure way.

● Design of actuation rules from data received and learning through Big Data Advanced

Analytics

38 http://sofia2.com/

https://www.google.com/url?q=http://sofia2.com/&sa=D&ust=1484255088788000&usg=AFQjCNGkgH5yJ0NSavkNSbUq2_Z0iM3GRg

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

75 / 191

● Incorporation of georeferenced visualization tools, integrating information from several

sources and synoptics about the operation.

Even though it’s not Open Source, it provides an Open API and client to access its services.

Furthermore, SOFIA2 is focused on these areas:

● Adapting it to the enterprise environment: High availability operation with distributed data

centres.

● Working with the Platform was simplified, particularly in the following areas:

○ Ontology development (ontologies became lightweight)

○ Query language

○ Smart Space Access Protocol: With a JSON implementation besides the XML one.

● Big Data Interfaces (Hadoop) to host huge amounts of data and data warehouse.

● Integration capacities with back-ends using standard protocols, e.g. Web Services.

● Plug-in concept to expand the Semantic Information Broker

● Integrated storage and GIS queries

● Addition of pluggable security mechanisms.

● REST interfaces to connect easily from smart phones, devices, RIA applications, …

To better understand the architecture of the platform, SOFIA2 can be conceptualized through these

concepts:

Figure 32: SOFIA2's conceptual blocks

o Ontology: The entities handled inside the Smart Space and exchanged between the

Things and the SIB.

o Smart Space: is the virtual environment where different devices and applications

interoperate with each other to provide a complex functionality.

o Semantic Information Broker (SIB): core of the Platform. It receives, processes and

stores all the information of applications connected to the SOFIA Platform, thus acting as

the Interoperability Bus. All the existing concepts in the domain (reflected in the

ontologies) and their current states (specific instants of the ontologies) are reflected on it.

o Knowledge Processor (KP): Represents each element which communicates with a

Smart Space by producing and/or consuming information.

o Smart Space Access Protocol (SSAP): This is the standard messaging language to

communicate between the SIBs and the KPs. There are two implementations: XML or

JSON.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

76 / 191

It can be appreciated that the main field of work is on the Ontologies, and the interoperability in this

area. Thus, applications sharing classes (commonly called concepts) from the same ontology can

easily exchange information using specific instances of those common classes. Sofia2 represents

ontologies in JSON format to be used by the KP, representing determined data[28].

Figure 33: Relationship of Sofia2 with IOT-A functional model

3.4.2.11 ThingSpeak

Attending to the description of its developers; “ThingSpeak39 is an open source IoT application and

API to store and retrieve data from things using HTTP over the Internet or via a Local Area

Network.”[29]

So is not properly said a platform but an application to support and build IoT information ecosystem

on the application and service level. The main characteristics it that you can create sensor logging

applications, location tracking applications, and a social network of things with status updates to

have a handler application for data.

Between its functionalities, ThingSpeak allow to storing and retrieving numeric and alphanumeric

data, the API allows numeric data processing such as time-scaling, averaging, median, summing,

and rounding.

Also, there are the called Channels, which are the main build block of the system and store all the

data that a ThingSpeak application collects, and supports data entries of up to 8 fields that can hold

any type of data, plus three fields for location data and one for status data (latitude, longitude,

elevation, and status). The channel feeds support the following formats: JSON, XML, and CSV.

One can get data into a channel from a device, website, or another ThingSpeak channel. Once one

collects data in a channel, you can use ThingSpeak Apps to analyze and visualize it. Also it supports

39 https://thingspeak.com/

https://thingspeak.com/
https://thingspeak.com/

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

77 / 191

time zone management, read/write API key management and JavaScript-based charts from

Highslide Software / Torstein Hønsi.

Figure 34: Architecture of ThingSpeak

Detailed study of channels allows one to obtain the settings or parameters needed to create the

communication and to start to retrieve data from the devices to the ThingSpeak applications.

Channel Settings

● Channel Name: Enter a unique name for the ThingSpeak channel.

● Description: Enter a description of the ThingSpeak channel.

● Field#: Check the box to enable the field, and enter a field name. Each ThingSpeak channel

can have up to 8 fields.

● Metadata: Enter information about channel data, including JSON, XML, or CSV data.

● Tags: Enter keywords that identify the channel. Separate tags with commas.

● Latitude: Specify the position of the sensor or thing that collects data in decimal degrees.

For example, the latitude of the city of London is 51.5072.

● Longitude: Specify the position of the sensor or thing that collects data in decimal degrees.

For example, the longitude of the city of London is -0.1275.

● Elevation: Specify the position of the sensor or thing that collects data in meters. For

example, the elevation of the city of London is 35.052.

● Make Public: If you want to make the channel publicly available, check this box.

● URL: If you have a website that contains information about your ThingSpeak channel, specify

the URL.

● Video ID: If you have a YouTube or Vimeo video that displays your channel information,

specify the full path of the video URL.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

78 / 191

Figure 35: Relationship of ThingSpeak platform with IOT-A functional model

3.4.2.12 GE Predix

Predix is the key product from GE in the IoT Platform field, and it is targeted for the Industrial Internet.

According to GE, this platform should help Business in creating different innovative solutions based

on Predix capability of handling real-time operational data and transform this into valuable

knowledge. The platform should be a one-stop shop allowing users to have secure, fast and effective

deployments for industrial apps.

Clearly, GE has a very large industrial know-how and this can help companies transform themselves.

Predix is used first and foremost within GE business, and this knowledge and experience based on

GE manufacturing operations, securing and monitoring the approximately $1 trillion GE industrial

assets deployed worldwide, is for sure a unique asset to this tool.

GE decided on a platform because it offers a standardized way to enable an entire business to

quickly take advantage of operational and business innovations. By using a platform that is designed

around a reusable building block approach, developers can:

 build apps quickly,  

 leverage work elsewhere,

 reduce sources of error,

 develop and share best practices,

 lower risk of cost and time overruns,

 future-proof their initial investments .

Independent third parties can also build apps and services on the platform, allowing businesses to

extend capabilities easily by tapping the industrial ecosystem. The cloud model allows businesses

to take advantage of key capabilities including:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

79 / 191

● economics of a centrally managed and shared infrastructure in a pay-as-you-go subscription

model,

● scale to meet different business and application workloads by easily adjusting capacity on-

demand,

● assets can be connected across the entire business so data can be captured,

● analytics can be developed and run to deliver insights at all levels of the organization.

A common cloud architecture also enables improved system governance, standardized security

vulnerability assessments, and release management control and consistency

By combining cutting-edge IT with leading-edge OT, Predix brings world-class software innovation

to your assets and operations, while integrating within your organization’s existing IT systems. Predix

is the only platform designed to:

● address the key challenges that prevent growth and market competitiveness,  

● capture and analyse the velocity, volume, variety, and complexity of industrial data,  

● meet the demanding needs for industrial grade, end-to-end cyber, informational, and

operational security.  

● innovate faster by eliminating the barriers to entry to develop industrial apps for new business

outcomes,

● take advantage of an industry-wide ecosystem of partners to extend capabilities through

integrated software, hardware, and services.  

Predix provides fast access to data and timely analytics while minimizing storage and compute costs

It offers a secure, multi-tenancy model that includes network-level data isolation and encrypted key-

management capabilities It also supports the ability to plug in analytic engines and languages to

interact and process the data. There are four key components:

1. Connection to the source: Connections are established with GE and non-GE machine

sensors, controllers, gateways, enterprise databases, historians, at les, and cloud-based

applications.

2. Data ingestion: Data is ingested from the source in real time, and by bulk upload Workflow

tools allow the user to identify specific sources and to create default data flows for all—or

specific—data sets and data types, including unstructured, semi-structured, and structured

These tools speed the design, testing, and generation of code, making it easier to manage

and monitor simple, one- time projects to complex, ongoing data synchronization project.

3. Pipeline processing: The ingestion pipeline can efficiently ingest massive amounts of

data from millions of assets However, data can be messy, arrive in different formats, and

come from multiple sources, all of which make running predictive analytics di cult Pipeline

processing allows the data to be converted to the correct format so that predictive analysis

and data modelling can be done in real time The pipeline policy framework provides

governance and catalogue services, allowing users to perform data cleansing, increase data

quality, data enrichment (for example, merging with location or weather data), data tagging,

and real-time data processing.

4. Data management: Data needs to be stored in the appropriate data store, whether it be

time series for machine sensor data, Binary Large.

Object (BLOB) (for example, MRI images), or an RDBMS This allows use of the data for both

operational and analytical purposes It also provides data blending capabilities, where users can

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

80 / 191

deploy tools to extract value from these data sources to patterns and process complex events (i.e.,

look for a combination of certain types of events to create a higher-level business event)

To take advantage of the Industrial Internet, integration with existing—and future—equipment, data,

and analytics is critical, especially in brownfield sites Predix achieves this at a number of levels:

● Machines: Connect machines of any vendor or vintage Predix machine supports a number

of protocols, including OPC-UA, DDS, and MODBUS, as well as TCP-based sockets

communication.

● Data: Standard connectors are included for time series, location, ERP, and CRM

systems Custom connectors can also be built to incorporate proprietary data schemas.

● Programming languages / tools: Support is provided for Java, Node js, Python, Artefactory,

GitHub, JaCoCo, and Ruby on Rails  

● Analytics: Support is provided for Java, Matlab, and Python  

● Mobile devices: By supporting HTML5, existing desktop browsers, smartphones, and tablets

can be used across the business.

3.4.2.13 Contiki

Contiki is a highly portable operating system for constrained systems with a focus on low-power

wireless IoT devices. While there are many similar OS such as TinyOS, what makes Contiki different

is the completeness and flexibility it offers to the programmers.

Contiki can fit into 10kB of RAM and 100kB of ROM. It runs on small microcontroller architectures

such as Atmel AVR, 8051 SoC, ARM-powered and MSP430 devices and includes a very light

implementation of IP called uIP. uIP otherwise known as “micro IP”, was designed to incorporate

minimal set of components, that are necessary for a full TCP/IP stack. It was meant for tiny 8 and

16 Bit microcontrollers, and this stack includes TCP, UDP, and ICMP protocols along with an

implementation of IPv6, called uIPv6. uIPv6 is claimed to be the world’s smallest certified IPv6 stack

for low-cost networked device such as sensors and actuators.

Operating system features include:

● Multitasking kernel

● A Graphical User Interface

● Process and memory management (The 'protothreads' allow memory-efficient concurrent

programming on constrained devices)

● Communication management (Contiki supports both IPv4 and IPv6 stack implementations,

which include TCP, UDP and HTTP protocols with the smallest footprints)

LoWPAN (IEEE 802.15.4) and 6LoWPAN are supported by Contiki OS. Low-power wireless

personal area networks have the characteristics of small packet sizes, low data rates, low-power

devices and large number of devices.

Contiki is a completely open source software, distributed using the 3-clause BSD-style licence. The

complete code is available on github for use or further development. The software was created by

Adam Dunkels in 2002 for Cisco and has been further developed by a worldwide team of developers

from Texas Instruments, ST Microelectronics, and many others. Contiki comes with much

documentation apart from well documented code. There are also community forums where active

discussions happen.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

81 / 191

Figure 36 Contiki architecture

3.4.2.14 eCare

The e-Care Telecom Italia Lab (Tilab) Platform is an innovative cloud based platform and an

evolution of the commercial service “Nuvola It Home Doctor”, the distance monitoring system,

developed by TI for the prevention and cure environment. It is composed of two modules: quantitative

measurement management (collection and analysis of physiological parameters), and qualitative

measure management (health status analysis through questionnaires).

The e-Care Tilab is focused on non-mobile remote monitoring based on nonwearable measurement

devices. It is based on Cloud infrastructures to enable data storing, off-line analysis, and data

visualization through a remote services.

During the pilot the e-Care platform consists of a solution used to monitoring Lifestyles at subject’s

home, recording periodically weight, blood pressure, eating habits and physical activity practice

through use of electromedical devices interconnected to the same platform. In particular, during the

experimental nutritional counselling (m-Health) will be carried out: - Recordings weight at home by

electromedical devices (weekly) - Recordings blood pressure at home, only for subjects with

borderline blood pressure values (daily). - Real-time recordings of eating habits and physical activity

practice through computerized questionnaires on e-Care platform (Twice a month). The

Electromedical devices used are equipped with wireless bluetooth interface, which allows the

transmission of the detected physiological parameters automatically and wireless from medical

Devices to Smartphone / Tablet. The electro-medical devices used have the CE mark according to

Directive 93/42 / CEE certifying that the device respects the Operators and Patients Minimum

Essential Safety Requirements. It is required the Smartphone / Tablet, appropriately equipped with

a special application software, so they can to connect to Electromedical Devices During the

measurement of the subject's parameters, using Bluetooth wireless technology. The gateway

receives the measurements from devices and sends them to the platform via 2G/3G/4G/Wi-Fi/ADSL

connectivity. The measurements detected by Electromedical Devices and received on Smartphone

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

82 / 191

/ Tablet are transferred in real time or deferred, via GPRS or UMTS, to the Collection Center (back

end portal of Central Platform) for next web consultation on web by the health operator and by the

subject.

The measurements make by the subject are also stored on their smartphone. Accessing to the tele-

monitoring application the subject can consult all the values: a different graphic connotation of

measurement also allows to distinguish between measurements already sent to the Platform and

the measurements still to send. Doctors have at their disposal the instruments to evaluate the results

(by web access to the medical platform) and, on the basis of patients’ condition, are able to interact

with them through the available means (SMS, telephone, videocalling) and modify their treatments.

The Smartphones compatible with the tele-monitoring application must to have Android operating

system.

The e-Care Tilab Platform is made of basic components used as middleware: (i) THP (telemedicine

horizontal platform) that works like a hub to exchange data between other systems; it combines

multiple frameworks (such as Liferay, Hibernate, etc.) to perform its tasks, and (ii) SH (service

module) to receive measurements from gateways/devices and send configuration parameters to

gateways.

The e-Care Tilab Platform provides different web services and an API through which offers the

possibility for other applications to use basic services like Calendar, Forum, Rating, etc. Data is

stored in Oracle databases: one standard that records directory and personal user information, and

one custom for recording measurements and vertical health information. Data is stored in a cloud

architecture and could stay on virtual machines different from the application server.

Figure 37 Relationship of IBM Watson with IOT-A reference model

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

83 / 191

3.4.2.15 IBM Watson

The internet of things on Bluemix utilizes the IBM Watson IoT Platform. Generally, Bluemix functions

as a cloud platform as a service (PaaS) powered by open source projects and developed by IBM. It

supports multiple programming languages such as Java, Node.js, Go, PHP, Python, Ruby Sinatra,

Ruby on Rails and can be extended to support other languages such as Scala using buildpacks. It

also supports multiple services as well as integrated DevOps to build, run, deploy and manage

applications on the cloud. Bluemix is based on Cloud Foundry open technology and runs on

SoftLayer infrastructure. There are initial free plans that include up to 20 devices, 10 applications

bindings and 100MB of data exchange. Additional usage is billed at a per MB rate.

Besides common IoT services, Bluemix provides extensions for Business Rules, Hadoop

processing, Cloudant and MongoDB NoSQL database layer, different DevOps tools, Messaging,

GeoSpatial analysis, and access to the Watson services, particularly for Natural Language

Processing.

Connecting to the platform is possible for devices and gateways. The data is secured in the cloud

by connecting using MQTT messaging protocol or HTTP. Watson is the hub allowing set up and

management of connected devices and applications allowing access to live and historical data. Rest

and real-time APIs are available to facilitate connections between devices and applications.

Figure 38: Relationship of IBM Watson with IOT-A reference model

3.4.2.16 WSO2

WSO2 is an open source service-oriented architecture (SOA) middleware. It is designed with

independent components, so it can be adapted for a lean targeted solution to enterprise applications.

The entire WSO2 middleware stack works seamlessly across private, public, WSO2 managed and

hybrid clouds, as well as on-premise.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

84 / 191

To completely protect from lock-in, all WSO2 products are 100% Open Source and based on Open

Standards. Furthermore, WSO2 products released under the Apache License Version 2.0. WSO2

it’s open to anyone who is interested in their products to get involved in the WSO2 community.

Developers can extend the platform, customize code and use any programming model they like,

report bugs or security vulnerabilities, prepare training materials, participate in forums and events,

subscribe to public mailing lists, etc.

WSO2 products make heavy use of Java technology and are built on top of WSO2 Carbon, the

company's SOA middleware platform. Carbon makes use of Apache Axis2 and encapsulates SOA

functionality such as data services, business process management, ESB routing/transformation,

rules, security, throttling, caching, logging and monitoring.

Not all components are used as stand-alone implementations. Many of them are used to supplement

the capabilities or add functionality to an implementation of the Enterprise Service Bus. The main

components that can be used in the WSO2 middleware are:

API Management

API Manager: API management platform for creating, deploying and managing APIs to expose data

and functionality of backend systems.

API Cloud: Hosted API management service.

Integration

Enterprise Service Bus: Allows developers to connect and manage systems and software in

accordance with SOA Governance principles.

Data Services Server: Provides a Web service interface for data stores.

Message Broker: Translates, validates and routes messages between systems.

Business Process Server: A graphical console to manage business processes and human tasks.

Analytics

Data Analytics Server: Real-time, batch, interactive and predictive analytics using enterprise data.

Complex Event Processor: Real-time event processing and detection. Identify patterns from multiple

data sources, analyse their impacts. Uses WSO2 Siddhi and Apache Storm.

Machine Learner: Explorative data analysis using models to generate predictions. Uses Apache

Spark.

Identity Management and Security

Identity Server: Connects and manages multiple identities across applications, APIs, the cloud,

mobile, and Internet of Things devices.

Services and App Dev

Application server: Allows share business logic, data, and process across the entire IT ecosystem.

It provides hosting shared, multi-tenant, elastically scaling SaaS applications.

App Cloud: Provides a comprehensive cloud ecosystem that evolves to enable easy and efficient

integration, identity and API management for your digital enterprise.

Microservices Framework for Java: Allow to create microservices in Java with container-based

deployment.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

85 / 191

Figure 39: WSO2 components and generic architecture

Management and Governance

App Manager: Facilitates the process of creating, deploying and managing applications.

Governance Registry: Storage, cataloguing, indexing, managing and governing metadata related to

enterprise assets.

Mobile and IoT

IoT Server: Internet of things platform for device management.

Enterprise Mobility Manager: Device management and business policy enforcement for mobile

devices.

The following picture depicts how these components are related to the IOT-A model:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

86 / 191

Figure 40: Relationship of WSO2 with IOT-A reference model

3.4.3 INTER-IoT Functional Model

Once we learned the functional model capabilities of the selected set of IoT Platforms (see, sections

3.4.2), we have been able to design a brand new Functional Model with INTER-IoT’s vision for

making IoT Platforms interoperable. This Functional Model is based on some concepts defined by

the IoT-A, but is designed with the aim of dealing with the problem of interoperability among

platforms.

The Functional Model to be used in the INTER-IoT has been generated taking in mind that the

interoperability among IoT Platforms can be done at different layers, as we stated in the Description

of Work of the INTER-IoT proposal. Therefore, the Functional Model of INTER-IoT is not an IoT

system model, but a model to enable interoperability among platforms, each of which may follow the

IoT-A Functional model. The Functional Model is comprised of a set of Functional Groups (FG) of

INTER-IoT, which have been derived as follows:

● From some of the main abstractions identified in the Domain Model (IoT Platform, Platform

Interoperability Services, Platform Ontologies, VE Interoperability Services), the “IoT

Platform”, “Service Interoperability”, “Semantics” and “Device Interoperability” FGs are

derived (see 3.2).

● From some other of the main abstractions identified in the Domain Model related to offering

access and interactions with devices, which already existed in the IoT-A Domain Model

(Virtual Entities, IoT Services, Resources), the “Device Access” FGs is derived.

● From the abstraction identified in the Domain Model related to the physical devices that

already existed in the IoT-A Domain Model (Device, Sensor, Actuator, Tag), the “Device” FGs

is derived.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

87 / 191

● As defined in the requirements, there is a need to access different IoT Platforms to make

them interoperable at several layers. To address this, the “Platform Interoperability” FG has

been identified.

● As defined in the requirements, the users of INTER-IoT will be also applications or systems

willing to access the different platforms, so an Application FG has been identified for this

purpose.

● To address consistently the concern expressed about IoT Trust, Security and

Privacy in the interoperability realm, the need for a transversal “Security” FG is identified.

● Finally, the transversal “Management” FG is required for the management of

and/or interaction between the functionality groups.

We have generated a novel Functional Model for the INTER-IoT Reference Model that is depicted

in the figure below. This new Functional Model is fully oriented to the interoperability among IoT

Platforms. It contains eight longitudinal Functionality Groups (light blue) complemented by two

transversal Functionality Groups (Management and Security, dark blue). These transversal groups

provide functionalities that are required by any of the longitudinal groups.

Figure 41: Functional Model of INTER-IoT Reference Model

The interactions among the different FGs has also been included. Depicted with orange arrows in

Figure X, is the interaction between two FGs. As it can be seen, the layout of the interaction among

FGs is quite vertical between the Application FG and the Device/IoT Platform Interoperability FGs.

The Management FG and the Security FG interact with almost all the FGs in the model, so we have

decided not to include them in the diagram, being considered these FGs as transversal ones.

Talking about interoperability, three FGs are out of the scope of this nature of solutions. The

Application FG is responsible for using the underlying FGs to make use of the interoperability

features through INTER-IoT. The Device FG can be considered a legacy FG to be integrated, thus

being too generic and diverse. The IoT Platform Interoperability FG represents external existing IoT

Platforms that are going to be interconnected or accessed through the INTER-IoT. The Application

FG, the Device FG, and the IoT Platform Interoperability FG have been excluded from the description

of FGs as their description won’t add any value from the interoperability point of view.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

88 / 191

Hereafter, the different five interoperability-oriented FGs (Service Interoperability, Semantics,

Platform Interoperability and Device Access) are described in detail.

3.4.3.1 Service Interoperability

The Service Interoperability FG relates to the need to interoperate different IoT Platforms at the

Service layers. Interoperability between IoT Platforms can be handled at different layers (e.g. device,

middleware, service, etc.). The Service Interoperability FG works at the service layer of each

platform, regardless of their underlying infrastructure.

The overall goal of the Service Interoperability FG is to provide “compound” services to the

Application FG, which are comprised of existing services that different IoT Platforms expose. An

example of this would be a service aimed at offering access to historical data about traffic intensity

in a region, when that service needs to access a historical data service from different government

organizations (e.g. National Roads, Regional Road and Local Road Agencies).

Therefore, the Service Interoperability FG is responsible for accessing and using services that

already exist in heterogeneous IoT Platforms. It also needs to provide a means to design the new

“compound” services where some components are the services that exist in the concerning IoT

Platforms to be interoperated.

Those new services were done using existing IoT Platform’s services need to be stored. A client of

this FG will usually be an actor at the Application Layer, who will define new services and will manage

them. Later, these new services will be executed when requested by the Application FG. The Service

Interoperability FG will be responsible for executing them, accessing IoT Platform Services and

providing the results back to the Application FG.

The Service Interoperability FG can also interact with the Semantics FG for requesting semantics

features needed for the execution of the services, like, for instance, aligning different ontologies used

by different IoT Platforms.

3.4.3.2 Semantics

The role of the Semantics FG is to deal with the management of ontologies that are needed for

making IoT Platforms interoperable. Traditional interoperability designs leave semantics tasks to the

Application side, but this approach lacks the necessary interoperability features. For instance, no

common data processing can be made at any component, as data ontologies are unknown.

Compound services are then very limited without semantic support, as the data from different

platforms is not compatible due to the lack of ontology.

We consider semantics essential for interoperating IoT Platforms without transferring responsibilities

to the end user. The Semantics FG is the responsible for providing support to all the management

of ontologies needed at INTER-IoT. It defines the core ontology used for interoperating a specific set

of IoT Platforms, each with its own ontology. It is also able to identify the ontologies used at the

different platforms interoperated for the different devices or services providing information.

One of the main functions of the Semantics FG is to perform, so called, ontology alignment, which

means to perform the translation from an origin ontology (maybe from an IoT Platform) to a target

ontology (maybe needed by a destination IoT Platform). This ontology alignment process is just a

step needed to perform the semantic translation of content among IoT Platforms, which is the final

goal of the Semantics FG. The semantic translation among platforms, provided by the Semantics

FG offers the following functions:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

89 / 191

● Identify or define the origin or destination ontologies of the data involved in a data

communication between IoT Platforms.

● Perform the ontology alignment from these origin ontologies to a common ontology.

● Perform the ontology alignment from the common ontology to the destination ontology.

The Semantics FG can provide its capabilities to several FGs with different purposes:

● Service Interoperability FG. It allows the Service Interoperability FG to perform alignment of

data ontologies from different IoT Platform services so that common service processing can

be done.

● Platform Interoperability FG. The Platform Interoperability FG can use this FG when particular

services need to translate ontologies from data flowing from heterogeneous IoT Platforms

with its own ontology into a common one to be provided to a user at the Application FG or,

for instance, to interconnect sensor data from one to another platform each one of them

having different ontologies.

● Device Interoperability FG. It allows this layer to perform ontology translation of data between

devices, when making Device to Device interconnections, if data format or data ontology is

different.

● Application FG. Although users, at the Application FG, will usually need to use the Service

Interoperability FG, Platform Interoperability FG or Device Interoperability FG to make IoT

Platforms interoperable in different ways, there is a possibility that the services provided by

the Semantics FG can be of high value to an external user. This is a secondary functionality

of interoperable IoT Platforms, but it’s considered interesting when, for instance, a user wants

to orchestrate its own services using raw data from different IoT Platforms and this data

needs to be semantically homogenized.

3.4.3.3 Platform Interoperability

The Platform Interoperability FG is a central group that takes place in the most cases of

interoperability between IoT Platforms. Its main goal is to interact with the different IoT Platforms to

be interconnected. This FG abstracts the remaining groups from knowing about the details of the IoT

Platforms, so much in terms of communications as in terms of capabilities, communication, security

and so on.

It’s important to highlight that the Platform Interoperability FG is the responsible for talking with the

IoT Platforms, not for implementing any of the features that the IoT Platforms provide (what, in IoT-

A’s Functional Model, is described in the IoT Process, IoT Service or Virtual Entities FGs).

The Platform Interoperability FG has three main functions:

● To enable the access to different IoT Platforms. This includes the use of the appropriate

protocols and APIs at middleware level that each platform exposes.

● To keep track of the interconnected IoT Platforms and their devices, so that they can easily

be found, when needed. This allows the remaining groups to not to know about the location

of the platforms, or how the devices are connected to them.

● To perform device and platform interactions, like querying data from different devices and

platforms in a common way, mapping sensor data flows from a source to a destination,

offering subscriptions to sensor data, etc.

This FG makes use of the Semantics FG, for instance, to translate ontologies from data flowing from

heterogeneous IoT Platforms with its own ontology, into a common one to be provided to a user at

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

90 / 191

the Application FG. The Platform Interoperability FG talks also with the Service Interoperability FG

to enable the access to services existing in an IoT Platform, or to provide a subscription to a flow of

data coming from any IoT Platform.

The Platform Interoperability FG is the only FG that interacts with the IoT Platform FG. It’s

responsible for the aspects of dealing with these IoT Platforms (protocol communication, APIs,

security features, data access, etc.).

On the device side, the Platform Interoperability FG does not interact directly with devices connected

to the IoT Platforms. Note that, regarding the interoperability at the device layer, the Platform

Interoperability FG can communicate with the Device Interoperability FG for two reasons: to enable

the flow of data coming from devices not connected to an IoT Platform towards an existing IoT

Platform, and for using this very data as another data source to be accessed by the Application or

Service interoperability FGs for interconnection purposes.

3.4.3.4 Device Access

As it has been described in the Document of Work of the project (DoW) and has widely addressed

in D3.1, there is a great need for making legacy sensor systems or disparate devices interoperable,

as those connected to the real IoT Platforms. In order to allow the upper functional groups to be able

to access these devices, this functional group is needed.

The main role of Device Access FG is to provide transparent access to very different devices when

they are not connected to real IoT Platforms.

The main functions of this FG are:

● To enable the communication with the devices, independently of the access protocols, acting

as the edge of the interoperability at low level.

● To abstract the physical entities and their related devices, which work in physical plane, from

the concepts of IoT Service and Virtual Entity. IoT Service and Virtual Entities are closely

related, and provide access to the devices and their resources in the virtual plane. The

relationship between a Virtual Entity FG and an IoT Service reflect the features of the Domain

Model related to the VE, Physical Entity, IoT Service and Resource.

The Virtual Entity and the IoT Service are like the groups described in IoT-A functional model with

the same name. In the figure below, the basic concepts of Virtual Entities, IoT Services, Resources

and Devices are described:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

91 / 191

Figure 42: Relationship among main entities about devices in the physical and virtual plane

To understand the different concepts, an example has been depicted as follows:

Figure 43: Example of relationship among main entities about devices

As of IoT-A: “The Virtual Entity contains functions for interacting with the IoT System on the basis of

VEs, as well as functionalities for discovering and looking up Services that can provide information

about VEs, or which allow the interaction with VEs”. “The IoT Service contains IoT Services as well

as functionalities for discovery, look-up, and name resolution of IoT Services”.

The Device Access FG interacts with the Device FG to interact physically with the devices. It also

interacts with the Device Interoperability FG, to enable the interoperability at device and network

layer and also to integrate with the Platform Interoperability FG as described in section 3.4.3.5.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

92 / 191

3.4.3.5 IoT-A Background

The role of the Device Interoperability FG appears once the Virtual Entities and IoT Services are

available. The Device Interoperability FG addresses the functionalities around making the devices

interoperable.

The Device Interoperability FG is responsible for defining the rules to interconnect devices among

them, achieving the D2D (Device to Device) interoperability. It may enable that, for instance, when

a person leaves a house, its heating system goes in low mode.

This FG is also in charge to perform the Network to Network Interoperability for the networks the

devices are connected to. This implies routing, roaming and off-loading capabilities to enable the

devices to move among different networks.

The Device Interoperability FG can interact with the Platform Interoperability FG in two ways: it can

act as a client of IoT Platforms, for interconnecting legacy or disparate devices to existing IoT

Platforms through the appropriate device register and data retrieval/actuating functions typical these

platforms. It can also act as a kind of IoT Platform for the Platform Interoperability FG, when there is

no IoT Platform where to attach the devices, but an application can access these devices for

interoperating with other IoT Platform information. In this last case, the Platform Interoperability FG

would interact with devices through the Device Interoperability FG.

Semantics can also be a resource to be used for translating sensor data. the Device Interoperability

FG can communicate with the Semantics FG to achieve this.

3.4.3.6 Management

The Management FC considers all the functionalities needed to rule the interoperability among

different IoT Platforms. The Management FC is thus, responsible for initializing, monitoring and

modifying the operation of the interoperability among IoT Platforms.

According to Pras A. [34], the main reasons for needing management fall within the following groups:

Cost Reduction

Users, obviously want to operate a system at the lowest possible cost. This implies that the design

of the solution should satisfy a great number of potential users and situations so that the cost can

be recovered among many users. To achieve this, the design should be as multipurpose as possible.

It means that the system should parametrized to a wide range of scenarios and user needs. The

Management FC will be responsible for setting up these parameters for any final deployment of

INTER-IoT.

Lack of design experience

We cannot assume that users of INTER-IoT will always be high-skilled IT engineers that can easily

understand all the concepts and apply them right, finding good solutions for each and every problem.

Some of the problems that will face our end users will arise during the operation phase of the system,

not during the design phase. For instance, an IoT Platform can decelerate its performance or even

shutdown completely, some devices can have malfunctions overloading with irrelevant data, some

external component can inject too much traffic in form of requests, like a DDoS attack or a service

become unavailable at a certain moment.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

93 / 191

To address this reality, the Management FC will need to include capabilities to mitigate the impact

of these issues without a necessary good design of the interoperability made by an INTER-IoT user.

Some examples of this would be to monitor IoT Platforms state or to handle incoming requests.

Fault Handling

Failures are inherent to any operating system. They can have many causes, not being possible to

prevent all the failures. As the consequences of these failures can be very severe, it’s necessary

that the Management FC includes strategies and actions to control the operation of the

interoperability solution.

Such control implies the monitoring of the whole system, the prediction of potential failures, the

detection of existing failures, the mitigation of their effects and, if possible, to repair them. The

Management FC is responsible for addressing these features, through monitoring capabilities and

the possibility to change operational parameters during run time, such as platform and device

registries, communication channel re-mapping, service catalogue status, etc.

Flexibility

Traditional interoperability design is based on specific user requirements, which drive the design of

a specific solution by, for instance, defining specific communications or translations between two IoT

Platforms. The danger of this approach is that, on one hand, requirements can change in time,

affecting the already deployed solution, and on the other hand, each interoperability scenario may

have its own specific requirements.

Instead of designing a new interoperability solution each time, it is better to include some flexibility

in INTER-IoT, so that the Management FC can adapt to different situations and react to changes

during the operational phase.

Some flexibility features have been included in the requirements. The Management FC is

responsible for supporting these features during the operational phase. Some examples of this is

the ability to use different ontologies for the same iot Platform and change them during runtime, to

be able to define new services and have them available, or to define new rules for making devices

interoperable among them.

3.4.3.7 Security

The Security FG is responsible for ensuring all the security aspects involved in the interoperability of

IoT Platforms. The security in our realm has two faces:

● Management of the security aspects related to the connection with underlying IoT Platforms.

This implies to accomplish with the different security features that the platforms require.

INTER-IoT will need to tackle the user authentication for connecting to a platform, the

authorisation management (e.g. use of authentication tokens) and the encryption of some

communications. Moreover, the access to the different IoT Platforms maybe user-based or

anonymized depending on the decision of platform owners, so it must be handled by INTER-

IoT with flexibility for each scenario.

● Management of the internal security of INTER-IoT. The connection to INTER-IoT must be

secured, with appropriate authentication capabilities, and authorisation management. The

identity of each user must be preserved, so much for keeping the identification until the IoT

Platform, as to keep track of the anonymization when talking with the IoT Platforms. This

internal security also implies the permission assignment to specific IoT Platforms and its

resources (devices, services, etc.) under certain conditions. for instance, a platform owner

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

94 / 191

may will to give access to a subset of devices to a set of user roles, but only within a time

range, or when mobile devices are at a certain location.

The Security FG interacts with all the different groups and will allow that certain accesses are made,

or that certain interconnections between two platforms are authorised or not.

3.4.4 Conclusions

In this section, we analysed the most relevant IoT platforms. Clearly, as the number of them is over

300, this is not a whole comprehensive study, not a taxonomy or a benchmarking, but rather an

understanding of what are the main characteristics of the different efforts in this area, trying to see

through a reverse-mapping on the IoT-A Functional model where it would be possible to find

analogies and similarities to the different IoT Platforms.

Given the work above, it’s then possible to derive the Functional View of the different schemas, as

explained in the introductory section. The Functional View will allow us to assess the different

functional features of the platforms, and to propose an architecture for our INTER-FW product.

3.5 Communication Model

3.5.1 Introduction

The approach of INTER-IoT to the CM, is the creation of a layered solution that is equivalent to each

of the IoT aspects as is shown in the figure.

Figure 44: Comparison between traditional OSI model, IoT stack and INTER-IoT stack

 D2D: is equivalent to the Physical and Link aspects, due to is in charge of manage the

communication technologies of the low levels of the stack, that includes technologies as WiFi,

Ethernet, Bluetooth, etc. that belongs to these abstraction layers.

 N2N: is equivalent to the Network & ID aspect, due to is in charge of addressing and routing

the information through the nodes of the IoT system as well as the packet filtering and traffic

control.

 MW2MW: is equivalent to End-to-end communication, that involves application protocols to

exchange the information (HTTP, MQTT, CoAP…) and part of the presentation and

accessibility to the data, stored in the IoT platforms.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

95 / 191

 AS2AS: Is in this case equivalent to the Data aspect, due to the interoperability carried out

in this layer is mostly through the translation from one data format to another, (e.g. CoAP is

translatable to HTTP by decompression or XML is translatable to EXI by compression, JSON

is translatable to XML by mapping…).

 DS2DS: involves, for sure, the Data aspect because is in charge to translate semantics of

messages exchanged by IoT Artefacts (platforms, gateways, application, etc) within the

INTER-IoT system.

3.5.2 Communication Protocols on IoT Platforms

 Application Layer Network/Link Layer

HTT

P

MQT

T

CoA

P

LWM2

M

AMQ

P

UPn

P
BLE

(802.15

)

ZigBee

(802.15

)

WiFi

(802.11

) Others

AllJoyn

X X

Ethernet,Serial

, PLC and DNS

AWS X X WebSockets

Azure X X X

Other protocol

as CoaP has to

be adapted

FIWARE X X X X

 IoT-Agents

IBM

Watson X X

OM2M X X X KNX and HUE

OpenIoT X X GSN Wappers

SOFIA2 X X

Through KPs

(Knowledge

Processor

a.k.a.

Gateway)

UniversAA

L X

 X ZWave

BUTLER X X X X X

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

96 / 191

I-CORE X X X X X

Table 4: Summary of most used communication protocols in IoT Platforms.

What is notable in the above table is that, even with the heterogeneity in the IoT environment, some

protocols are winning places between the one most used for this environment. Thus, it can be noticed

that low-level layers (that involve PHY, MAC and network), are implemented mostly in all gateways

or frameworks. Examples of protocols in these are: Bluetooth, WiFi, ZigBee or those covered by the

IEEE 802.15 standard.

 It is true that some other protocols are widely used, by sensor or devices, as LoRa, ANT or cellular

network protocols, but still the most common protocols implemented in the systems analysed are

the ones listed in Table 4

 From the other side, at application level something similar occurs, some protocols are already

widely spread meanwhile others have been appearing with the increasing of smart devices

connected to the network. The most common web service protocol used over the transport layer was

HTTP, over TCP, but with this growth other protocols as CoAP, over UDP, or even AMQP, over TCP,

have been introduced in the frame of communication technologies. So, this, HTTP, MQTT, CoAP

and AMQP are the protocols implemented in most IoT platform with services, normally, web services.

Even if the most suitable protocol for IoT could be CoAP, or even others as LWM2M, for its size,

speediness, low power consumption… yet HTTP, together with REST architecture of web services,

is commonly used for all platforms.

This way, implementing these two protocols, the platform can communicate for one side with

constrained devices to obtain the information using CoAP, and communicates with other less

constrained devices or applications using HTTP or MQTT, creating a trade-off between performance

and complexity.

Figure 45: Comparison between traditional Internet stack and the IoT network stack. [32]

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

97 / 191

For that reason, INTER-IoT implements the most common protocols within each layer to allow the

communication and interoperability between different services and resources that belong to different

devices, platforms, or even in different sub-networks.

3.5.3 INTER-IoT Domain Model element communications

The Communication Model is used to identify the communication system elements and/or Users

among those defined in the Domain Model, but, taking in account that the CM define Users in

different categories as: Human Users, Services or Active digital artefacts.

So that, the INTER-IoT Communication Model explains the interaction between elements on the

INTER-IoT Domain Model, previously identified in Section 3.2.3, and how to communicate two

Entities through its relevant layers.

3.5.3.1 Device to Device Interactions

In Device to Device interactions the Device is composed by a Sensor and Actuator, or both, and with
a unique direction for it to be addressable. Optionally, a Device could be just a simple Tag referencing
this Device. This is the main component for the interaction and with this is representing the Physical
Device in our Domain Model. Most of cases, but not always, the Physical Device is represented or
described in the Virtual plane by the Virtual Device component and together with the Physical Device
counterpoint they conform the Augmented Entity; with the characteristics and features of the Physical
Device and the extra-information Metadata of the Virtual Device.

Additionally, other resources of the D2D gateway, the N2N network or the Platform will appear in the

communication. The implementation of the Domain model in the Device architecture described in

the deliverable D3.1 is as follows: Device (Sensor, Actuator or Tag) represents the objects we desire

to interconnect, Physical and Virtual Entities are concepts implemented by the gateway as well as

the Augmented Entity and the Interoperability resources or Services are provided by the components

within the D2D gateway solution(see next figure).

Examples of interaction:

● A device communicates through the Physical gateway

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

98 / 191

Figure 46: Domain Model entities involved in Device-to-Device communication when the device communicates through
the physical gateway Device communicates through the virtual gateway

The same way, the values obtained by one Device (sensor) could be measured until the virtual part

of the gateway to be forwarded to another device (actuator) connected to the virtual part.

In this interaction, the Virtual Entity located in the gateway takes part on the communication (see

Figure 47).

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

99 / 191

Figure 47: Domain Model entities involved in Device-to-Device communication when the device communicates through
the virtual gateway

In both cases, one of the devices could be another Entity, as a Platform, or another gateway but this

interaction will be contemplated in future sub-sections.

3.5.3.2 Network to Network Interactions

Examples of interaction:

● Device communicates with resource in the network.

In this case, the interaction takes place within the network, when a device or entity interacts with a

resource or service hosted and running in the in the network, or even when one or both element that

want to interact belong to this network (see next figure).

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

100 / 191

Figure 48: Domain Model entities involved in Network-to-Network communication when the device communicates with
resource in the network

● Platform service or a resource communicates with another resource in the network

The domain model element communications affecting the network layer are the IoT Platforms and

Platform services (red) requesting information about the IoT Services (green) available in the

resources specifically network resources (yellow). See Figure 49.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

101 / 191

Figure 49: Domain Model entities involved in Device-to-Device communication when platform communicates with
another resource in network

3.5.3.3 Middleware to Middleware Interactions

In middleware to middleware interactions, Platform Ontology and IoT Platform represent key

components that interact with underlying middleware IoT platforms. Platform Ontology holds the

“knowledge” about how to talk to and understand an IoT middleware implementation, while the IoT

Platform entity “knows” about a specific IoT middleware deployment. Those two components thus

appear in all Middleware to Middleware communication scenarios. In specific cases, they are aided

by the other two additions to the INTER-IoT domain model to the IoT-A model: Platform

Interoperability Service and Platform Service.

The implementation of the domain model in the middleware architecture described in the deliverable

D3.1 is as follows: Platform Ontology and IoT Platform are implemented through the Communication

and control segment (Platform Ontology and IoT Platform) and Bridges segment (IoT Platform), while

Interoperability Service and Platform Service are partially implemented through the MW2MW

services segment.

Examples of interaction between Middleware and Middleware are:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

102 / 191

 User – Middleware of IoT Platform

The interaction between user and middleware entails the usage of the platform’s ontology,

knowledge of which is stored within the Platform Ontology component, as well as the usage of the

IoT platform itself, which is represented with the IoT Platform component. With the aid of these two

components the interaction with specific segments of underlying IoT platforms (marked in yellow) is

made possible (IoT Service, Virtual Entity, Augmented Entity, Physical Entity).

Figure 50: Domain Model entities involved in Middleware-to-Middleware communication when the user communicates
with an IoT Platform

 User configuring a Middleware – Middleware between IoT Platforms

In the case of a user attempting to configure the INTER-IoT middleware, we highlight the component

Platform Ontology, due to the need to understand platform’s specific ontology, as well as the

components IoT Platform (implementation of the platform itself), Platform Service (providing the

support for configuration of a specific platform) and Platform Interoperability Service (providing

support for configuration of interoperability between platforms).

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

103 / 191

Figure 51: Domain Model entities involved in Middleware-to-Middleware communication when the user configures a
Middleware to Middleware communication between two IoT Platforms

 Direct communication Middleware – Middleware between IoT Platforms

Direct communication between two middlewares includes the usage of the Platform Ontology

component (providing the basis for ontology translations between different platforms, operating

under the two middlewares). The IoT Service component of one middleware platform initiates

communication through the IoT Platform component, using the knowledge about the ontology of the

other middleware and accessing the Virtual Entity component (which could be a device, to which it

tries to write data) in the other middleware.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

104 / 191

Figure 52: Domain Model entities involved in a direct Middleware-to-Middleware communication between IoT Platforms

3.5.3.4 Application & Services to Application & Services Interactions

In AS2AS interactions Platform Service, IoT platforms and Platform Interoperability Service

represent the key components that interact with the IoT Platforms.

Platforms Service exposes functionality about Resources related to Virtual Entities, they offer more

elaborated services that internally make use of IoT Services. For that reason, they are placed in the

Application and Service Layer and can be used as building blocks for creating more complex

interoperability services among different IoT platforms.

The Platform Interoperability Service handles the definition of new compound services that appear

as a consequence of using, and mixing in any way the Platform Services from one or more IoT

platforms. So, the Platform Interoperability Service is linked with the different Platform Services it

uses. The used Platform Services are just part of IoT Platforms. In some cases, it would be

necessary the interaction with Platform Ontology, because it holds the information about how to

understand the services from the IoT Platforms.Examples of interaction:

● User creating a Composed Service.

A user wants to create a composite service, he needs to interact with the Platform Service of the IoT

Platforms. He also can use a service that have been already composed communicating with the

Platform Interoperability Service to be possible to compose it with other Platform Services.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

105 / 191

Figure 53: Domain Model entities involved in Application&Services-to-Application&Services communication when the
user creates a compound service

● Service of an Iot Platform communicates with a Service from another IoT Platform

The following interaction takes place when a Service from a platform desires to communicate with

another service from another platform. When two services communicate it is reflected in the Platform

Interoperability Service that indicates which Platforms Services from the IoT Platforms participate in

this composition.

Finally, the Platform Ontology will perform the need of ontology translation between these services,

to understand each other.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

106 / 191

Figure 54: Domain Model entities involved in Application&Services-to-Application&Services communication when the
compound service communicates with a Service from another IoT Platform

3.5.3.5 Data & Semantics Interactions

Figure 55: Domain Model entities involved in Data&Semantics Interactions

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

107 / 191

Interactions between Domain Model elements on DS2DS layer are exclusively between an IoT

artefact (platform) and its ontology. They are two-fold and divided into preparation of ontology and

its usage.

In the INTER-IoT approach, every platform (system, application, etc.), which would voluntarily like to

interoperate with one or more other platforms needs to be prepared and willing, first. In order to

enable semantic interoperability, and explicit ontology is needed. Some platforms, or middlewares

(e.g. UniversAAL, OpenIoT) already need to have OWL ontologies ready before deployment. These

ontologies can be used in INTER-IoT.

In other cases, any semantics present in a platform needs to be extracted and formalized into an

OWL ontology. This process is called “lifting to OWL”, and is described in [1]. In short, lifting to OWL

is a process in which semantics of platforms, sometimes contained in data schemas, are made

explicit and stored in an ontology. The most popular languages that can be used in lifting are: XML,

RDF, JSON LD, but other formalisms are also acceptable. Such formal description must cover all

aspects of data communication that will be needed for interoperability. It must represent entities (and

their properties), which exist “inside” of the artefact. This formal description is to be used in creation

of platform ontology, as well as in instantiation of communication channel(s) needed to send/receive

messages to/from other artefacts (platforms, devices, middleware, services, or applications).

Once a platform has an ontology it is then used to create alignments to and from the GOIoTP, that

later serve as configuration for IPSM. The semantic translation process that takes place inside IPSM

is non-discriminative when it comes to contents or intentions of communication. It simply translates

the meaning of messages, according to configuration of the communication channel that received

the messages. Dynamic creation of communication channels allows DS2DS interactions to serve

multiple purposes and assist in operation of other INTER-IoT components, as well as other artefacts,

if they wish to use IPSM as a “stand-alone” service within INTER-IoT.

It should be stressed that data processing within a single artefact can be represented through more

than one ontology (or, possibly, modules within a single modular ontology). Such situation can

materialize when different ontologies are used in different “conversations” (concerning different

aspects of data, usually with different artefacts). In this way, proposed approach gains flexibility and

addresses the issue of scalability (semantic processing is applied to smaller (sub-)ontologies).

3.5.4 INTER-IoT Channel Model for Interoperability

3.5.4.1 Introduction

The channel model depicted in this section comes from the concepts presented in 7.6.4 of [25]. The

following points aim at explain how are the different layer protocols involved in the interoperability.

This first draft helps on selection the appropriate mechanisms to build an effective software

architecture capable to fulfil the objectives of the project.

Interoperability can only be achieved if every layer can communicate to its counterpart (at the same

layer level) on another device. For this reason, an architecture has been set up in a way that allows

virtualization at low-levels already.

Each paragraph of this section will describe a certain interoperability action. These actions will be

illustrated by both the gateway configuration, as well as the virtual configuration for multiple protocol

stacks.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

108 / 191

3.5.4.2 Device to Device Interactions

Device to device interaction or D2D interoperability will be made possible by the Rules Engine that
is acting on the dispatcher. The image below is a screen-capture given from the upper part of the
device layer. This is where the Rules Engine is located.

Figure 56 Device-to-Device interactions with location of Rules Engine

The Rules Engine will instruct the dispatcher to route a signal not to the MW-layers above, but via

the MW modules and bridges to another device dispatcher to initiate D2D interoperability. Which

bridge is used will be managed by the GW configuration, the Rules Engine will only interfere when

interoperability is needed. When data needs to go up into the higher layers the dispatcher will simply

get the specific bridge information from the GW configuration manager.

The Interoperability actions are programmed into the rules engine through the API. The user must

set up the mapping of the communication in an easy way through a user interface which will be

running on the API to allow the creation of inter-operability communication mapping.

The entire upper part of the gateway as shown in the figure can be implemented in the virtual world

and does not necessarily have to be implemented on the device. When preferred however it can

also be implemented on the device.

Device to device interoperability is possible in two ways. The first way is the simplest way, that is

when the sensor and actuator are both connected to the same gateway. In this case, there is a direct

link inside the gateway. The dispatcher will route the communication via the rules engine to the

correct protocol module which will route it further to the connected access network.

The schematic representation is depicted below.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

109 / 191

Figure 57 Communication diagram in device-to-device interoperability

In this case the gateway is implemented in the physical device. When the gateway is virtual or when

the sensor and actuator are connected to different gateways, a more complex situation occurs.

In case of a virtual gateway and sensor and actuator connected to the same device there is only 1

gateway, in the representation below is the situation given for sensor and actuator on different

gateways.

For this case the communication is going through the physical gateway, which translates it to

Ethernet and sends it to the virtual part. Here the dispatcher will route the communication via the

rules engine, only this time the communication channel is routed to the middleware layer. In this

layer, can, depending on the settings, interconnectivity be created on several levels.

Figure 58 Communication diagram in device-to-device interoperability with virtual gateway

3.5.4.3 Network to Network Interactions

The interaction of a resource from an IoT Device that communicates with other resource from another

IoT Platform will be used as an example of interaction in the N2N layer. This interaction is described

in the image bellow through an example with the protocol stacks that take part in the interaction.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

110 / 191

Figure 59 Communication diagram in network-to-network interoperability (SDN)

A specific resource from an IoT Device located within it wants to communicate among the SDN

network. For that purpose, the Devices connect with the AP or Switch that is connected to the

network as a network gateway. This switch, if needed connects with the SDN controller to updates

the routing information table to know the next hop. Finally, the information arrives until the last switch

to which is connected our IoT Platform destination.

An example of software defined radio communication is indicated in the image below.

In this example, an application on the left side of the image wants to send a message to another
application. The platform supplying the message must first connect to the SDR via Ethernet. The
SDR, functioning as a level 2 bridge, will send the information from the external SDR unit to the SDR
unit connected to the Inter-IoT SDR gateway module. The information is then passed on to the
receiving application. The SDR unit in this example provides an additional entry/exit point to the
Inter-IoT that can operate to meet end user requirements if standard methods are not available.

Figure 60 Communication diagram in SDR

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

111 / 191

3.5.4.4 Middleware to Middleware Interactions

An example of middleware to middleware communication is indicated in the image bellow.

Application on IoT middleware on the left side of the image wants to send a message to another

application on another IoT middleware on the right side. The message must first cross a bridge from

middleware of the sending platform into INTER-IoT middleware, then be semantically translated in

the presentation layer of the INTER-IoT middleware into the format, understood by the target

middleware, only to cross another bridge that is associated with the middleware of the receiving

platform. The second bridge also routes the message to the target middleware through WiFi instead

of Ethernet, demonstrating the technical agnosticism of the INTER-IoT middleware.

Figure 61: Communication diagram in middleware-to-middleware interoperability

3.5.4.5 Application & Services to Application & Services Interactions

The interaction of a Service from an IoT Platform that communicates with a Service from another IoT

Platform will be used as an example of interaction in the AS2AS layer. This communication is

described in the image bellow through an example of stack protocol that takes part in the interaction.

Figure 62: Communication diagram in AS-to-AS interoperability

Application within an IoT Platform on the left side of the image wants to send a message to another

application in another IoT Platform on the right side. It works similarly as in the MW2MW layer.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

112 / 191

The message comes from the Platform X Service to the Orchestrator inside INTER-IoT AS2AS

solution. The orchestration module would be responsible of making calls to IoT Platform Services

and carry out the internal processes necessary to make the composition successful.

If needed, a specific translation of presentation format takes place in the translator component of the

AS2AS. It performs translation of input messages, expressed in source format, to output messages,

expressed in target format.

Later, the parsed message, with the format of the destination platforms, goes from the Orchestrator

to the receiving Platform Y Service.

3.5.4.6 Data & Semantics Interactions

DS2DS layer interactions are limited exclusively to application layer software. In DS2DS a central

component acts as an intermediary in communication, and has its own communication infrastructure.

To achieve interoperability on data and semantics layer, IoT platforms (and other artefacts) use this

central mediation component that acts as a “semantic bridge” between IoT artefacts ((platforms,

gateways, applications, etc.). This mediation component, which can be named IPSM (Inter Platform

Semantic Mediator), performs the semantic translation (configured with ontology alignments) of

incoming messages, representing semantics of artefact P1 to semantics of artefacts e.g. P2, P3.

Figure 1 shows a general view on the sample interaction, whereas Figure 63 shows details of the

interaction between source artefact, IPSM and target artefacts.

Figure 63 Interaction between source artefact, IPSM and target artefacts

IPSM must expose a mechanism for configuration. An additional communication infrastructure is

required to enable communication between IPSM and all other artefacts that are to use its semantic

translation services. Communication infrastructure can be based on communication channels

consisting of a source, sink, and a series of flows between sources and sinks. The IPSM will work

concurrently servicing multiple communication channels each representing a single

“communication”. While each channel will have one input and output, multiple artefacts will be

allowed to use its output, and write to the input. Channels may be combined in the communication

infrastructure to facilitate one-to-many, many-to-one and many-to-many communication.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

113 / 191

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

114 / 191

4 INTER-IoT Reference Architecture

4.1 Functional View

4.1.1 IoT-A’s Functional View

IoT-A’s Functional View has the same nine functional views than the Functional Model:

● Application

● Service Organisation

● IoT Process Management

● Virtual Entity

● IoT Service

● Device

● Management

● Security

The Application FG and the Device FG are considered out of the scope of the IoT-A Reference

Architecture, so they are not described in the Functional View. In IoT-A’s diagram of Functional View,

they are coloured in yellow to indicate they are not described.

The Functional Components of the seven functional groups included in the IoT-A Reference

Architecture are included in the following diagram:

Figure 64: IOT-A functional components

The frames inside each functional group are the Functional Components identified for each

Functional Group. The description of each Functional Group has been done in the Functional Model.

Describing each of the Functional Components of the Functional Groups does not add any value to

this document. If the reader is interested in more details, a read to [25] is recommended.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

115 / 191

4.1.2 IoT Functional View Platform Analysis

Following the functional view proposed in IOT-A, an analysis of the platforms under study has been

done. In the next subsections, commonalities and discrepancies between platforms will be analysed

for each functional group, paying attention to the relevant functional components in IoT-A.

To perform the study, each platform has been studied and determined if they provide at least one

feature to cover partially or completely each of the functional components of the IOT-A. Then, the

number of the FC-compliant has been aggregated, giving an idea of the availability of the features,

also revealing what is considered important in the industry and academia, which has a relevance in

order to prioritize functionalities when a great adoption is intended.

This analysis aims at two main objectives, on one hand, an analysis of the so-identified market and

research relevant platforms, which (as aforementioned) helps to find overall connection between

different solutions and determine which ways of interoperability will be more effective and beneficial

in the long term. On the other hand, the project has a limited scope and it will offer support (at

integration-ready level) to a limited number of platforms as already stated in several points of this

documents. The re-elaboration of the analysis with the initially supported platforms will give also an

idea of which interoperability layers’ mechanisms prioritize in order to provide early results to support

pilots and third parties to join.

Complete dataset with annotations are available in this document in the Annex 3.

4.1.2.1 Application

The application comprises all those features that are domain/application specific and thus, they are

out of the scope of the definition of the platform interoperability, as is defined in INTER-IoT.

While in the study performed some aspects of the application FG were described (such as the

domains where the platform operates or offer specific solutions (see 3.4 and subsections), the

conclusions of them are not relevant for the functional view or the development of a reference

architecture to build interoperability mechanism between IoT platforms.

For completeness, the prevalence of the domain aimed in the platforms under study is shown in the

following histogram:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

116 / 191

Figure 65 Domain prevalence in studied platforms

The analysis reveals that the domains with more support are healthcare, transport, home, city and

parking. This shows the areas where the IoT is expanding faster (such as transport) or it has a

smoother implantation (as in cities).

4.1.2.2 Management

The study of the Management functional components for the set of 16

platforms shows a clear predominance of the Configuration FC (implemented

in 12 out of 16 platforms analysed) and the Reporting FC (10/16).

This shows that system initialization including the attached devices and the

assessment of the overall performed are considered key pieces for an IoT

platform. However, in general, the implementation of the IOT-A FCs of this

group is high in the analysed set, finding only a significant lack of coverage

on the State FC, which can be related to the legacy systems support that

many of the platforms present. The legacy systems coming from home

automation or telemetry often do not support queries or network info

reporting, making virtually impossible to feature the state of the device

networks. As a matter of the facts, those platforms that were born with a

strong support of these communication protocol, do not care much about

those features that were not available for their focus technologies.

In the case of the selected platforms to be natively supported in INTER-IoT

(see Figure 10), all the FC similarly covered, being particularly remarkable,

as in the case of the Configuration, which is implemented by all of them. In

Figure 66 Management
FCs prevalence in 15

platforms study

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

117 / 191

the rest of FCs, the 3/5 platform cover them, a prevalence similar

to the results of the complete study.

For the purpose of the INTER-IoT Project, this means that, at

management level, a common configuration interface could be

implemented for the INTER-IoT user, as part of the framework

planned. Other features would have compatibility with some but not

all the initially supported platforms, so that the feasibility is limited

and the decision of implementation depends strongly on the

requirements of the project and the INTER-FW (see deliverables

D2.3 and D2.4). In general, FIWARE, MS Azure and Open IoT are

the most complete platforms in terms of system management

among the selected platforms, while extending the scope to the

complete study, GE Predix and Sofia2 also have full feature set.

4.1.2.3 Management

The service organisation group, which evaluates the ability to manage

services in the platforms is highly supported by all platforms, presenting

figures of coverage about the 60% ~ 70% of each functional component. In

this case, the degree of implementation is similar in the three components,

being slightly more popular the service orchestration. Service organisation

is a concept highly bound to the service presence itself, so it can be

observed in the detail that is very usual that platform with more upper layers

implement at least two components of this group while more middleware-

centric platforms (such as AllJoyn or OneM2M) do not implement any at all,

since they are device focused in spite of the service focus of the former.

Figure 68: Service organisation FCs prevalence in
15 platforms study

For the selection of platforms initially supported, the situation is

different. OneM2M is a middleware centric platform, so it does not

give support to any kind of service composition, not including

services in its domain model. The rest of platforms have a wider

scope and support in some way operations and combinations with

services. Consequently, it can be observed a coverage of 80% in

orchestration and choreography.

This FG is especially relevant for the AS2AS, as it gives a first idea

of which platforms will be able to connect services and also

provides an idea of the service interoperability mechanisms

supported in the focus group.

Figure 67 Management
FCs prevalence in INTER-

IoT initial platforms

Figure 69 Service
organisation FCs prevalence
in INTER-IoT intial platforms

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

118 / 191

4.1.2.4 IoT Process Management

This group has a significant lower coverage in all platforms, being

present in around the 50% of platforms, regardless if it is analysed

the full set of platforms or the focus group.

The concept of IoT processes in IOT-A is related to the Business

Management and how the IoT specific constraints are mapped there.

As the definition of IoT Process is very specific and new, part of the

platforms does not offer a particular solution for this characteristics,

transferring the responsibility to the end user (using external services

or custom logic). This is particularly true in the device or middleware

centric platforms which provide more

features in the lower layers.

In the case of the focus group the situation is similar. Process

modelling is supported in Azure, Open IoT and UniversAAL (with

limitations in the last two, though) while process execution is

supported only in Azure and OpenIoT.

With the perspective of interoperability, this FG is not very relevant,

since the business processes concerning two or more different

platforms can be modelled (and executed) externally leveraging the

already proposed AS2AS layer.

4.1.2.5 Virtual Entity

The Virtual Entity Functional Group has the

mission of handle the relations between

virtual entities and associated services,

providing the needed mechanisms to

discovering, updating and accessing to entity

level services and features. In the global

study, it has been found that the

accomplishment of these features is high

except for the VE & IoT Service.

Monitoring component, which is probably the

most complex of the three components

identified in IOT-A for this FG. Therefore, it is

declared to be implemented (or partially

covered in less than the 50% of the analysed

platforms (6 out of 16). However, the VE

Resolution and the VE service capabilities

are supported in more than the 70% of

platforms, which shows the relevancy of these

components for the platforms.

Figure 70 IoT process
management FCs prevalence in

16 platforms study

Figure 71 IoT process
management FCs prevalence
in INTER-IoT initial platforms

Figure 72 Virtual Entity FCs prevalence in 15 platforms study

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

119 / 191

For the focus group, the

implementation of these components

reaches higher levels, reaching the

80% in the case of VE Services

component. In this case, the OneM2M

platform makes the difference since it

does not support virtual entity related

components, despite the rest of the

platforms of the subset.

Virtual entities are a key concept in the

INTER-IoT concept, architecture and

framework. It is thanks to the entity

virtualization that heterogeneous data

can be harmonized, stored, transmitted

and even translated into different

ontologies. As explained in previous

sections and in INTER-IOT Deliverable

D3.1, released at the same time of this

document, the concept is largely used at interoperability level, being a keystone for D2D and

MW2MW. The high accomplishment of this functional group in the focus group and in the global

study guarantees the viability of the solutions proposed in the Deliverable D3.1.

4.1.2.6 IoT Service

The IoT Service FG and its components are well covered in the IoT platforms, according to the study

done. In this case, the study was one step further and analysed the prevalence of specific services,

from a set of platform services typically present in sensor-related scenarios:

 Query information

 Update information

 Use resource operation/service

 Subscribe to information

 Subscription with filters

 Registration

 Historic data access

 CEP

 Big data storage

 Others

 IoT Client

While for the IoT Service Resolution, a list of features was also provided, based on the definition of

IOT-A.

 Discovery

 Lookup

 Service Id. Resolution

Figure 73 Virtual Entity FCs prevalence in the INTER-IoT
initial platforms

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

120 / 191

 Service Descr. Mgmt.

 Others

In general terms, the service

implementation levels are high,

reaching the 100% or near in cases as

the registration or the complex event

processing (CEP). This also occurs in

the IoT Service Resolution, which is

supported in the ~70% of platforms on

average for the four specific features

analysed.

For the initially supported platforms, the

conclusions are similar, showing again

the lack of services implemented in

OneM2M, much more centred in

communications than in services. The

IoT Service Resolution is also well

covered by all the platforms with the

known exception of OneM2M.

The following two histograms show the

number of platforms that implement a

version of the listed features for each of

the FC related to IoT Services:

Figure 74 IoT Service FCs prevalence in 15 platforms study

Figure 75 IoT Service FCs prevalence in INTER-IoT initial
platforms

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

121 / 191

Figure 76: IoT services implemented in the studied IoT platforms

Figure 77: IoT service resolution policies in the studied IoT platforms

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

122 / 191

4.1.2.7 Security

The Security FG is a transversal group that applies to all the rest of FGs

per the IOT-A guidelines. With this in mind, a thorough analysis of the

security capabilities was performed, assessing not only if each component

is implemented somehow in every platform but also describing, when

possible, the technologies used and more specific details related to the

implementation of the components (see Annex 3 for further details).

The results show that the security is a common concern in the platforms

analysed. All the analysed platforms implement more than one component

of the identified in the Functional View. However, the strategies to

accomplish the Security related operations differ between platform. While

authorisation and authentication are the preferred mechanisms (present

in ~ 90% of the platforms), trust and reputation is significantly less

prevalent with only the ~ 30% of platforms implementing policies or

components in this way.

For the focus group, results are similar, with a

better support (practically full support) of the

authorisation and authentication components and

a better coverage of the rest of components.

The security FG is a concern of each

interoperability layer and the INTER-IOT

framework, which is in charge to coordinate and

orchestrate all the security policies in order to maintain or improve the

existing security standards in the platforms.

According to the results obtained, the interoperability efforts here should go

on the direction of ensuring and, when possible, centralising the

authentication and authorisation in platforms.

4.1.2.8 Communication

The diversity of the device-to-device or device-to-gateway communications is

one of the reasons of having so heterogeneous platforms. It is usually a starting point for creating a

so-called information silo, since the lack of device interoperability with other devices or, more

important, with other platforms usually ends in a domain/application specific deployment that forgets

completely about interoperability due to the difficulties to achieve it.

This is the closest FG to the physical level, and thus it should better be implemented in the device

and middleware centric platforms. However, probably due to the reasons described previously, the

implementation of the components in this group is still poor in the platforms analysed. The most

spread mechanism of communication supported is the end to end communication, while the network

communication and the hop to hop communications are marginally covered.

Figure 78 Security FCs
prevalence in 15 platforms

study

Figure 79 Security FCs
prevalence in INTER-IoT

intial study

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

123 / 191

Figure 80: Communication FCs prevalence in 15 platforms study

The situation in the general study and in the case of the focus group is similar. With this results, it

keeps clear that further efforts in communication standardization are needed. From the project point

of view, the end to end communication is the best option to implement interoperability mechanisms,

as devised in D2D layer (see Deliverable D3.1).

Figure 81: Communication FCs prevalence in INTER-IoT initial platforms

As mentioned, the range of different communications/standards/protocols to (mostly) physically

transmit information from one device to a gateway, a dongle or another device is vast. The study

considered this and analysed the full set of possible communication in all the platforms reviewed,

whose result is depicted in the following histogram:

Figure 82: Communication protocols at different layers supported by the platforms studied

It is obvious that this chart mixes very different communication modes, some of them compatible

between them (e.g. it is possible to have Bluetooth and MQTT communications at the same time).

The analysis has considered each supported communication regardless the OSI layer which is

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

124 / 191

aimed at, to show on one hand the variety of possibilities and also to find the most popular device to

platform communication methods that are supported in the cohort under study.

4.1.2.9 Device

This group is considered out of the scope of this document and is not included in the analysis.

However, since information about supported devices is offered, there has been created a histogram

with the main groups of device groups and its support in the studied platforms.

Figure 83: Type of devices aimed by the platforms studied

4.1.3 INTER-IoT Functional View

The Functional View of INTER-IoT has been derived from two inputs:

● INTER-IoT Functional Model, as described in section 3.4.3. The Functional Groups and their

relationship were kept for the Functional View.

● The requirements and use cases identified in WP2.

The requirements and use cases have been analysed to group them in clusters of common

functionality. Then these clusters have been reviewed with the technical leaders for the different

interoperability layers and the Software Architect to refine them.

We have elaborated a novel Functional View for the INTER-IoT Reference Architecture that is

depicted in the following figure:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

125 / 191

Figure 84: Functional-decomposition viewpoint of the INTER-IoT Reference Architecture

The Functional View of INTER-IoT is focussed on the challenge of interoperability between IoT

platforms. This has led to manage eleven Functional Groups. Among these, it’s important to remark

that:

● The Application FG, the Device FG and the IoT Platform FG are out-of-scope of the INTER-

IoT Reference Architecture, consequently they have not been described and have been

represented in yellow colour. They are considered out of the scope because they represent

external groups that are going to be interoperated through the INTER-IoT. They already exist,

they are not going to be created in the project, they are just going to be used.

● The remaining five longitudinal Functionality Groups are represented in light blue colour.

● The Management FG and the Security FG are transversal Functionality Groups and are

shown in dark blue colour. These transversal groups provide functionalities that are required

by any of the longitudinal groups.

In the following sections, we describe each of the Functional Components grouped by Functional

Group.

4.1.3.1 Service Interoperability

The role of the Service Interoperability FG is to support the Application & Service to Application &

Service (AS2AS) interoperability through the definition and execution of new compound services that

make use of already existing services in the underlying IoT Platforms. Its goal is to use services from

different IoT and create new services based on them.

The Service Interoperability FG consists of three Functional Components (see figure below):

● Service Resolution;

● Service Composition;

● Service Orchestration.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

126 / 191

Figure 85: Service Interoperability

The Service Resolution FC is responsible for the storage of what we call flows. A flow is a logical

definition of a sequence of steps, each of which can be a service existing in an IoT Platform. The

functions of the Service Resolution FC are three: (1) to resolve the access to IoT Platform services

that can be used in a flow, (2) to store the definition of services and atomic components so that they

can be used by the Service Composition FC and instantiated by the Service Orchestration FC and

(3) to provide storage and access to the logical definition of flows.

The flows that are defined for service interoperability have to be stored by the Service Resolution

FC, also enabling the semantic cataloguing of services and their discovery.

The main role of the Service Composition FC is to design new compound services based on

services that IoT Platforms exposes. These services have been previously defined and catalogued

by the Service Resolution FC. The new services are designed like flows which will be later executed.

The flows that are designed by the Service composition FC are stored by the Service Resolution FC.

Finally, the Service Orchestration FC is responsible for the execution of the flows that are stored

in the catalogue managed by the Service Resolution FC. The execution of these flows are initiated

by triggers (user request, IoT Platform event or alert, data received, etc.) which have been defined

for each flow.

4.1.3.2 Semantics

The Semantics FG is the central Functional Group that addresses the challenges related to

semantic interoperability of IoT Platforms. It provides support for the other FGs dealing with

interoperability about IoT: The Service Interoperability FG, the Platform Interoperability FG and the

Device Interoperability FG.

The Semantics FG consists of two Functional Components (see Figure 86):

● Ontology Resolution;

● Ontology Alignment.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

127 / 191

Figure 86: Semantics

The Ontology Resolution FC is responsible for managing the different ontologies used at the

various IoT Platforms that are connected through INTER-IoT. These ontologies have a double

approach:

● Syntactic knowledge;

● Semantic knowledge.

The syntactic knowledge is about being aware of the syntax that the IoT Platforms uses for

interchanging data, what usually is related to the communication protocol being used or the type of

the API: JSON, XML, etc.

The semantic knowledge is about being aware of the structure and meaning of the data, usually

through OWL or similar definitions (JSON-schema, XSD, etc.).

The Ontology Resolution FC is the component that stores these data descriptions and offers access

to them for the Ontology Alignment FC.

The Ontology Alignment FC is responsible for performing the alignment from a source data with

an ontology to a target data with its own ontology. It makes the data translation between two

ontologies, using the ontology definitions resolved by the Ontology Resolution FC.

4.1.3.3 Platform Interoperability

The overall goal of the Platform Interoperability FG is to interact with the different IoT Platforms to

be interconnected. It is the responsible for accessing the IoT Platforms, not for implementing any of

the features that the IoT Platforms provide.

The Platform Interoperability FG has three Functional Components (see Figure 87):

● Platform Resolution;

● Platform Access;

● Platform Service.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

128 / 191

Figure 87: Platform Interoperability

The Platform Resolution FC is responsible for discovering and cataloguing the IoT Platforms that

are available at a specific deployment of INTER-IoT as well as their devices, capabilities and IoT

Platform Services, so that they can easily be found, when needed. This allows the remaining groups

to not to know about the location of the platforms, or how the devices are connected to them. When

any Functional Component needs to access a specific resource of an IoT Platform, it will use the

Platform Resolution FC to get its identification, location and way of accessing.

The Platform Resolution FC is also responsible for roaming capabilities of mobile devices between

IoT Platforms.

The main role of the Platform Access FC is to implement the functions needed for connecting to an

IoT Platform and accessing their resources (specific discovery, lookup, data query, data subscription,

device registry, etc.). This includes the use of the appropriate protocols and APIs that each platform

exposes.

The Platform Access FC depends on the specific details of implementation for each of the IoT

Platforms supported.

The Platform Service FC is responsible for performing device and platform interactions, like

querying data from different devices and platforms in a common way, mapping sensor data flows

from a source to a destination, offering subscriptions to sensor data, etc.

4.1.3.4 Device Interoperability

The Device Interoperability FG addresses the challenges of making legacy devices and non-real IoT

Platform interoperable with other IoT Platforms and systems.

It consists of three Functional Components (see Figure 88):

● Device to Device Interoperability;

● Network Interoperability;

● IoT Platform Interoperability.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

129 / 191

Figure 88: Device Interoperability

The three identified Functional Components deal only with interoperability related to devices.

The Device to Device Interoperability FC implements the needed functionalities to achieve the

interoperability among devices which are available through the Device Access FG.

To enable this interoperability among devices rules are defined. These rules define the actions to be

followed when some update is received from a device through the Device Access FG, like for

instance to send a request to another device(s), also through the Device Access FG. An example of

this would be to switch on a set of outdoor lights when a proximity sensor detects that someone is

close.

The Network Interoperability FC is responsible for managing the interoperability between networks

or parts of the network that belong to an IoT deployment, and which are accessible through the

Device Access FG. We understand the network level of an IoT deployment as the protocols, systems,

and devices that work on the layer 2 and 3 of the OSI stack of protocol. The particularity of the

network on the IoT is the treatment of many different types of data flows as well as protocols to

support this communication.

The Network Interoperability FC addresses the mobility of objects through different access networks

or secure seamless mobility and the backing of real time data among the network. The operation in

highly constrained environment is also an important issue. The interoperability solution is based on

software defined paradigms but mainly on two approaches: SDR for interoperability on access

network and SDN/NFV for the core network.

The role of the IoT Platform Interoperability FC is to enable the interaction between the devices

available from the Device Access FG and the Platform Interoperability FG. Please, note that the

devices available from the Device Access FG are not devices tied to existing IoT Platforms. The

devices connected to an IoT Platform are accessed through the interaction between the Platform

Interoperability FG and the IoT Platform FG, while the devices not tied to an IoT Platform (those

connected to legacy sensor systems that cannot be considered as IoT Platform), are accessed

through the Device Access FG.

The interaction between the IoT Platform Interoperability FC and the Platform Interoperability FG

works in two ways:

● The IoT Platform Interoperability FC can act as a client of IoT Platforms, thus being

responsible for interconnecting legacy or disparate devices into existing IoT Platforms. This

is achieved through the appropriate device register and data retrieval/actuating functions,

typical in these platforms.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

130 / 191

● The IoT Platform Interoperability FC can also act as a kind of legacy IoT Platform from the

point of view of Platform Interoperability FG. This may happen when there is no IoT Platform

where to attach the devices, but there is a need from an external application to access these

devices and, maybe, interoperating their data with information from other IoT Platforms. In

this last case, the Platform Interoperability FG would interact with devices through the Device

Interoperability FG.

4.1.3.5 Device Access

The Device Access FC embraces the functionality described in Communication, IoT Service and

Virtual Entity FG’s of the IoT-A Functional View. This Functional Component is responsible for

offering a common interface to services and virtual entities that represent and expose functionality

of physical devices.

It abstracts all the necessary functions for managing the devices and interacting with them.

The Device Access FC consists of three Functional Components (see Figure 89 below):

● Communication;

● IoT Service;

● Virtual Entity;

Figure 89: Device Access

The aim of the Communication FC is to perform the function of dealing with the devices through

very different techniques, abstracting the IoT Service from the technical details of the communication

with the devices. It provides a common interface to the IoT Service so that it can access or interact

with very different devices in a common way.

The whole communication protocol stack under the transport layer must be handled by the

Communication FG. This protocol stack management implies to address all the features related to

the communication tasks (flow control, network access, protocol conversion, etc.). Therefore, it’s

responsibility of the Communication FG to manage the communication with the devices with two

different aspects:

● Access network. Handling the access to the different communication networks that may

appear to establish the contact with the devices (WiFi, LTE, Bluetooth Low Energy, Serial,

etc.).

● Transport Protocol Management. Managing the necessary actions to provide end-to-end

communication between devices and gateways, specifically supporting transport protocols

like MQTT, CoAP, LWM2M, Raw, etc.

The Communication FG interacts with the Device FG on its southbound interface and with the IoT

Service FC to provide it the interaction with devices in a common way and to keep updated the

necessary functions of Service Resolution.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

131 / 191

The IoT Service FC is responsible for managing IoT Services as well as functionalities for discovery,

look-up, and name resolution of IoT Services. These services expose resources of devices to the

rest of the components. It may allow to gather information about a sensor in a continuous

asynchronous way, after a subscription, for instance. Or it may allow to submit requests to an

actuator. A specific IoT Service could be to provide access to recent history of sensor observations.

The typical functions of the IoT Service FC are two:

● To access resources, interacting in three different ways: (1) to query information about a

resource of a device, e.g. get current temperature of thermometer X, (2) to subscribe to

observations about a resource of a device and receive notifications asynchronous for each

new observation, e.g. receive all temperature measurement under 0ºC for thermometer X,

(3) to submit a request to a resource of an actuator, e.g. switch light actuator Y on.

● To provide the necessary functions for finding the appropriate IoT Services, which may

include: discovery, lookup, service locators, service management, etc.

The IoT Service runs in the virtual plane, decoupling the interaction with the resources of devices

from their usage.

The Virtual Entity FC allows the interaction with an IoT Platform on the basis of Virtual Entities

rather than IoT Services. It contains the functions to associate the Virtual Entities with the IoT

Services and with the physical things they represent.

The typical functions of the Virtual Entity FC are:

● Discovery and lookup functions to find VE’s and their resources and register of new ones.

Handling VE’s, which includes getting the values of the entities’ attributes, updating this data, and

accessing its recent history.

4.1.4 Interactions of the Functional View

To better understand the Reference Architecture from a functional point of view, it’s recommended

to describe the communication among the Functional Components for some relevant interactions.

We have gathered the most relevant use cases from the Deliverables D2.4 INTER-IoT Requirements

and Business Analysis, and D2.3 (Use cases manual).

The different interactions are described below:

4.1.4.1 Subscription merged data flows from two IoT Platforms to an external user

This interaction can appear when an external user uses INTER-IoT to receive a continuous single

data flow with information from different sensors placed at different IoT Platforms: IoT Platform 1 and

IoT Platform 2.

This interaction assumes that the external user has previously established the subscription to the

two IoT Platforms 1 and 2.

The interaction among the different components is depicted in the diagram below:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

132 / 191

Figure 90: Functional View interaction for subscription to 2 IoT Platforms

In the diagram, it can be observed that each of the IoT Platforms 1 & 2 notify the Platform Access

FC that a new sensor observation is available as the Platform Access FC is subscribed to both IoT

Platforms.

1. Just after each notification, the Platform Access FC receives the data and sends it to the

Ontology Resolution FC with an indication of the specific platform so that the Ontology

Resolution FC can find the syntactic and semantic description of the input data for each one

of the observations from each IoT Platform.

2. In the subscription that the user previously made, a desired output ontology may have been

requested. This ontology is now being resolved by the Ontology Resolution FC.

3. The pair <input ontology, output ontology> along with the observation data from each IoT

Platform is submitted to the Ontology Alignment FC.

4. The Ontology Alignment FC then performs the semantic translation into the expected output

ontology.

5. The translated data from each IoT Platform now translated into the expected output ontology

is sent to the Platform Service FC.

6. The Platform Service FC has a register of the subscriptions that external users have made,

and can identify that the incoming data has to merged into a single data flow that is pushed

in form of notifications to the external user.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

133 / 191

4.1.4.2 Device to Device Interoperability

Figure 91: Functional View interaction of device to device interoperability

In the previous diagram the following FCs take part:

1. A device pushes data using the communication features.

2. An IoT Service is attached to the Communication FC so it is fed with the data produced by

the device.

3. An IoT Service is provided, so that data pushed can be consumed by upper layers in a IoT

standardized way.

4. The service publishes data to the Device to Device Interoperability FC, which manages the

routing (source and destination) of the data, and also is able to unify/adapt formats between

technologies.

5. Data is pushed into destination device(light) IoT service.

6. The communication FC converts data to the protocol of the destination device and forwards

the message.

4.1.4.3 Service Composition

For describing the service composition interaction, we are going to use the use case #13: IoT

interoperability for Vessel Arrivals of D2.4. The reason of selecting this case is that involves two

different platforms with different ontologies, so that all the FCs have a role and need to interact. The

main idea around this use case is as follows:

A CEP Service within ValenciaPort IoT Platform can send an event/raise an alert when a

vessel has berthed to a dock. When a berthing has been detected, we need to search for

the nearest cranes in the terminal and instantiate a Web Service in the terminal ICT

infrastructure.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

134 / 191

In this example, we will use a Platform Service from ValenciaPort (CEP), a search service of Noatum

IoT Platform and an external Web Service from Noatum for orchestrating business processes.

Figure 92: Functional View interaction of service composition (service to service interoperability)

Former diagram contains the following interactions between FCs:

1. CEP service in ValenciaPort and available crane search service are connected to the

platform access, so that information can be pushed and accessed in that platforms.

2. Service orchestration FC is able to access native services of the platforms. Native in this

context means that these services consume platform-specific APIs and communicate data

exclusively in the platform domain with its platform ontology.

3. Service resolution FC consumes discover services and provide the means to effectively

consume them.

4. As the consumed services provide data in native ontologies, ontology resolution is required.

5. Ontology alignment works to put the data in the expected output format.

6. Same as in 5.

7. Ontology resolution is used to provide aligned data to the service composition FC.

8. Data is composed (appropriate operations are performed) and send to user.

9. User destination is resolved in platform service FC.

4.2 Other views

This section summarizes other views that are more related to the instantiation of the architecture

and thus will be reported in future documents. This, an initial introduction is given and, when possible,

are applied the works (such as requirement specification or scenario definition) performed in the

project.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

135 / 191

4.2.1 Information View

The main reason about connecting objects is to allow an information exchange between each object

and external systems, and within each other. Therefore, the way to define, structure, store, process,

manage and exchange information is fundamental in this domain. IoT-A created a specific view (the

information view) in order to specify a static information structure and a dynamic information flow.

Based on the IoT Information Model, the Information View gives more details about how the relevant

information is represented in an IoT system. As the Information View belongs to the reference

architecture space, and not a specific system architecture, concrete representation alternatives are

not part of this view.

The information view also describes the components that handle the information, the flow of

information through the system and the life cycle of information in the system.

As described earlier, the Virtual Entity is a key concept of any IoT system as it models the Physical

Entity that is the real element of interest. As specified in the IoT IM, Virtual Entities have an identifier

(ID), an EntityType and a number of attributes that provide information about the entity or can be

used for changing the state of the Virtual Entity, triggering an actuation on the modelled Physical

Entity. The modelling of the EntityType is of special importance, as it can be used to determine what

attributes a Virtual Entity instance can have, defining its semantics. The EntityType can be modelled

in two different ways: either based on a flat type system or as a type hierarchy, enabling sub-type

matching.

EntityTypes are similar to classes in object-oriented programming, so UML class diagrams are

suitable for modelling EntityTypes. Similarly, the generalization relation can be used for modelling

sub-classes of EntiyTypes, creating a hierarchy of several EntityTypes inheriting attributes from its

super-classes.

Services provide access to functions for retrieving information or executing actuation tasks on IoT

Devices. Service Descriptions contain information about Service interfaces, both on a syntactic as

well as a semantic level. Furthermore, the Service Description may include information regarding

the functionality of the resources, or information regarding the device on which the resource is

running.

The association between Virtual Entities and Services captures the information on what kind of

actuation or data is possible to obtain by which Virtual Entity. The association includes the attribute

of the Virtual Entity for which the Service provides the information or enables the actuation as a result

of a change in its value.

Information in the system is handled by IoT Services. IoT Services may provide access to On-Device

Resources, that provide real-time information about the physical world accessible to the system.

Other IoT Services may further process and aggregate the information provided by IoT

Services/Resources, deriving additional higher-level information. Furthermore, information that has

been gathered by the mentioned IoT Services or has been added directly by a user of the IoT system

can be stored by a special class of IoT Service, the history storage. A history storage may exist on

the level of data values directly gathered from sensor resources as a resource history storage or as

a history storage providing information about a Virtual Entity as a Virtual Entity history storage.

4.2.1.1 Information Handling by Functional Components

There are four message exchanges patterns considered for information exchange between IoT

Functional Components: Push, Request/Response, Subscribe/Notify, Publish/Subscribe.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

136 / 191

The Push-pattern is a one-way communication between two parties in which a server sends data to

a predefined client that receives the data. The server hereby knows the address of the client

beforehand and the client is constantly awaiting messages from the server. The communication

channel in this pattern is pre-defined and meant to be applied in scenarios in which the

communication partners do not changed often. For example, the server can be a constrained device

that sends data to a gateway dedicated to this device. The gateway is listening constantly to the

device and is consuming the data received from this device.

The Request/Response-pattern is a synchronous way of communication between two parties. A

client sends a request to a server. The server will receive the request and will send a response back

to the client. The client is waiting for the response until the server has sent it.

The Subscribe/Notify-pattern allows an asynchronous way of communication between two parties

without the client waiting for the server response. The client just indicates the interest in a service

on the server by sending a subscribe-call to the server. The server stores the subscription together

with the address of the client wants to get notified on and sends notifications to this address

whenever they are ready to be sent.

The Publish/Subscribe-pattern allows a loose coupling between communication partners. There are

services offering information and advertise those offers on a broker component. When clients declare

their interest in certain information on the broker the component will make sure the information flow

between service and client will be established.

4.2.1.2 Deployment and Operation View

The Deployment and Operation View aims at developing a set of guidelines to drive users through

the different design choices that they must face while designing the actual implementation of their

services. To this extent this view will discuss how to move from the service description and the

identification of the different functional elements to the selection among the many available

technologies in the IoT to build up the overall networking behaviour for the deployment.

Since a complete analysis of all the technological possibilities and their combination may be

extremely complex, IoT-A focus is on those categories that have the strongest impact on IoT systems

realization. Starting from the IoT Domain Model, there are three main element groups: Devices,

Resources, and Services. Each of them poses a different deployment problem, which, in turn,

reflects on the operational capabilities of the system.

In particular, the viewpoints used in the Deployment and Operation view are the following:

● The IoT Domain Model diagram is used as a guideline to describe the specific application

domain;  

● The Functional Model is used as a reference to the system definition, as it defines Functional

Groups;

● Network connectivity diagrams can be used to plan the connectivity topology to enable the

desired networking capability of the target application; at the deployment level, the

connectivity diagram will be used to define the hierarchies and the type of the sub-networks

composing the complete system network;  

● Device Descriptions (such as datasheets and user manuals) can be used to map actual

hardware on the service and resource requirements of the target system.  

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

137 / 191

Devices in IoT systems include the whole spectrum of technologies ranging from the simplest of the

radiofrequency tags to the smartest objects able to understand the environment and take real-time

decisions. The unifying characteristics are the connection and the capability of performing

computation. These two characteristics are the subject of the first choices a system designer has to

make.

Selecting the computational complexity for a given device is intrinsic to the target application and to

the planned roadmap: for instance, a system architect may choose to have a large amount of

memory that may seem unnecessary at first, but may be used for future releases and upgrades. On

the other hand, choosing among the different connectivity types is not as straightforward as different

choices may provide comparable advantages, but in different areas. For the same reason, it is

possible to realize different systems implementing the same or similar application from the functional

view, which are extremely different from the Deployment and Operation view.

Because of the coexistence of different communication technologies in the same system, the second

choice the system designer must account for is related to communication protocols. Connectivity

functionalities for IoT system are defined within the ARM in the Communication FG of the FM; in

addition, to better understand the application, it is important to describe it within the Functional View.

The following possibilities have been identified:

1. IoT protocol suite: This is supposed to be the best solution for interoperability;  

2. Ad-hoc proprietary solutions: Whenever the performance requirements of the target

application are more important than the system versatility, ad hoc solutions may be the only

way to go;  

3. Other standards: Depending on the target application domain, regulations may exist forcing

the system designer to adopt standards, different from those suggested by the IoT protocol

suite, that solved a given past issue and have been maintained for continuity.  

After having selected the devices and their communication methods, the system designer has to

account for services and resources, as defined in the IoT Service FG section. These are pieces of

software that range from simple binary application and increasing their complexity up to full-blown

control software. Both in the case of resources and for services the key point here is to choose where

to deploy the software related to a given device. The options are as follows:

1. On smart objects: This choice applies to simple resource definitions and lightweight

services, such as web-services that may be realized in few tens or hundreds of bytes;

2. On gateways: Whenever the target devices are not powerful enough to run the needed

software themselves, gateways or other more capable devices have to be deployed to assist

the less capable ones;

3. In the cloud: Software can be also deployed on web-farms. This solution improves the

availability of the services, but may decrease the performance in terms of latency and

throughput.  

Note that this choice must be made per type of resource and service and depending on the related

device. As an example, a temperature sensor can be deployed on a wireless constrained device,

which can host the temperature resource with a simple service for providing it, but, if a more complex

service (for instance, when the Service Organisation FG is called in) is needed, the software should

be deployed on a more powerful device as per option 2) or 3).

On the same line, it is important to select where to store the information collected by the system, let

their data be gathered by sensor networks or through additional information provided by users. In

such a choice, a designer must take into consideration the sensitiveness (e.g.: is the device capable

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

138 / 191

of running the security framework), the needed data availability and the degree of redundancy

needed for data resiliency. This choice is also very important for what concerns interoperability, as

the location of the data may ease the interaction between different systems – or, at the contrary,

may prove very complex to overcome. The foreseen options are the following:

1. Local only: Data is stored on the device that produced it, only. In such a case, the locality

of data is enforced and the system does not require complex distributed databases, but,

depending on the location of a given request, the response might take longer time to be

delivered and, in the worst-case scenario, it may get lost;  

2. Web only: No local copy is maintained by devices. As soon as data is sent to the aggregator,

they are dispatched in databases;  

3. Local with web cache: A hierarchical structure for storing data is maintained from devices

up to database servers.  

Finally, one of the core features of IoT systems is the resolution of services and entities, which is

provided by the Entity and Service Resolution FCs, respectively and oversees semantically retrieving

resources and services, discovering new elements and binding users with data, resources, and

services. This is performed adopting the definitions of the Virtual Entity FG. This choice, while one

of the most important for the designer, has only two options:

1. Internal deployment: The core engine is installed on servers belonging to the system and

is dedicated to the target application or shared between different applications of the same

provider;  

2. External usage: The core engine is provided by a third party and the system designer has

to drive the service development on the third-party APIs.

Differently from the other choices, this is driven by the cost associated to the maintenance of the

core engine software. In fact, since it is a critical component of the system, security, availability and

robustness must be enforced. Hence, for small enterprises the most feasible solution is the external

one.

4.3 IoT Architecture Perspective: Non-Functional Properties

Architectural decisions often address concerns that are common to more than one view, or even all

of them. These concerns are often related to non-functional or quality properties. In this respect, IoT-

A follows the approach of [3]: these aspects need to be addressed by special perspectives, to build

a concrete architecture. One important aspects are that these perspectives help to introduce

Stakeholders requirements in the architectural building process. IoT-A uses the [3] definition for

perspectives:

where a quality property is defined as:

The requirements we collected in D2.3 clearly show a need of addressing non-functional

requirements. Based on them, we identified the perspectives, which are the most important for IoT-

systems:

An architectural perspective is a collection of activities, tactics, and guidelines that are

used to ensure that a system exhibits a particular set of related quality properties that

require consideration across a number of the system’s architectural views.

A quality property is an externally visible, non-functional property of a system such as

performance, security, or scalability.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

139 / 191

● Evolution and Interoperability;  

● Availability and Resilience;  

● Trust, Security and Privacy and

● Performance and Scalability.  

In INTER-IoT we collected 4 non-functional requirements related to INTER-FW concerning the

Evolution and Interoperability perspective, 12 concerning Availability and Resilience, 7 related to

Trust, Security and Privacy, and 5 related to Performance and Scalability. As can be seen from

the definition above there is a close relationship between Perspectives, Views and Guidance.

Using the table template that IoT-A proposes, we can derive the following tables:

Evolution and Interoperability:  

Desired Quality

The ability of the system to be flexible in the face of the inevitable

change that all systems experience after deployment, balanced

against the costs of providing such flexibility

INTER-IoT

 Requirements

1,33,34,35

Applicability

Important for all systems to some extent; more important for longer-

lived and more widely used systems. IoT systems are expected, as

an emerging technology, to be highly affected by evolution and

interoperability issues

Activities

● Characterize the evolution needs

● Assess the current ease of evolution

● Consider the evolution trade-offs

● Rework the architecture

Tactics

● Contain change 

● Create extensible interfaces 

● Apply design techniques that facilitate change

● Apply meta-model-based architectural styles

● Build variation points into the software

● Use standard extension points 

● Achieve reliable change 

● Preserve development environments

 Performance and Scalability:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

140 / 191

Desired Quality The ability of the system to predictably execute within its mandated

 performance profile and to handle increased processing

volumes in the future if required

INTER-IoT

Requirements

3,132,114,115,142

Applicability

Any system with complex, unclear, or ambitious performance

requirements; systems whose architecture includes elements

whose performance is unknown; and systems where future

expansion is likely to be significant. IoT systems are very likely to

have unclear performance characteristics, due to their

heterogeneity and high connectivity of devices.

Activities

● Capture the performance requirements

● Create the performance models

● Analyze the performance model

● Conduct practical testing

● Assess against the requirements

● Rework the architecture

Tactics

● Optimize repeated processing

● Reduce contention via replication

● Prioritize processing 

● Consolidate related workload

● Distribute processing over time

● Minimize the use of shared resources

● Reuse resources and results

● Partition and parallelize

● Scale up or scale out 

● Degrade gracefully 

● Use asynchronous processing

● Relax transactional consistency

● Make design compromises

Table 5: Interoperability requirements

Availability and Resilience:

Desired

 Quality

The ability of the system to be fully or partly operational as and when

required and to effectively handle failures that could affect system

availability.

INTER-IoT

Requirements

10, 44, 58, 83, 134, 92, 109, 110, 113, 119, 120, 126

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

141 / 191

Applicability Any system that has complex or extended availability requirements,

complex recovery processes, or a high profile (e.g., is visible to the

 public)

Activities

● Capture the availability requirements

● Produce the availability schedule

● Estimate platform availability

● Estimate functional availability

● Assess against the requirements

● Rework the architecture

Tactics

● Select fault-tolerant hardware 

● Use high-availability clustering and load balancing

● Log transactions 

● Apply software availability solutions 

● Select or create fault-tolerant software

● Design for failure 

● Allow for component replication

● Relax transactional consistency

● Identify backup and disaster recovery solution

Figure 93 Availability and resilience requirements

Trust, Security and Privacy:  

Desired Quality Ability of the system to enforce the intended confidentiality, integrity

and service access policies and to detect and recover from failure

in these security mechanisms, and to be able to build dependability.

INTER-IoT

Requirements

30, 36, 37, 69,77, 104, 117

Applicability Relevant to all IoT systems.

Activities

● Capture the privacy requirements 

● Conduct risk analysis

● Evaluate compliance with existing privacy frameworks.

● Capture the security requirements 

● Check interoperability requirements for impacts on security

processes between heterogeneous peers

● Conduct risk analysis 

● Use infrastructural Authentication components that support

more Identity Frameworks for scalability and interoperability

● Use infrastructural or federated Key Exchange Management

to secure communication initiation and tunnelling between

gateways for interoperability 

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

142 / 191

● Use an Authorization component to enable interoperability

with other systems 

● Define security impact on interaction model 

● Address all aspects of Service and Communication Security

● Integrate the trust model and support privacy features

● Identify security hardware requirements 

● Consider performance/security trade-offs 

● Validate against requirements

Tactics

● Use an extended Internet Threat Model for which takes into

account specific IoT communication vulnerabilities

● Harden infrastructural functional components Authenticate

subjects

● Define and enforce access policies 

● Secure communication infrastructure (gateways,

infrastructure services) 

● Secure communication between subjects 

● Secure peripheral networks (data link layer security, network

entry, secure routing, mobility and handover)

● Avoid wherever possible wireless communication

● Physically protect peripheral devices or consider peripheral

devices as available to malicious users in the attacker model

● Use an Identity Management component that supports

Pseudonymization 

● Avoid transmitting identifiers in clear especially over wireless

connections

● Minimize unauthorized access to implicit information (e.g.

deriving location information from service access requests)

● Validate against requirements

● Consider the impact of security/performance trade-offs on

privacy 

● Enable the user to control the privacy (and thus security and

trust) settings

● Balance privacy vs. non-repudiation (accountability)

Figure 94 Trust, security and privacy requirements

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

143 / 191

5 Relationship with INTER-IoT

Architecture

5.1 Introduction

In the previous chapter, we have described a generic ARM (Architecture Reference Model) for the

interoperability of IoT Platforms. This was one of the objectives of the INTER-IoT project (see

Objective 2).

We consider this, a novel approach and a high valuable output of the project. Nevertheless, an ARM

is a generic model, and we need a concrete model for the design of the architecture of the different

components of INTER-IoT. This design has been performed in D3.1 using the ongoing work done in

this deliverable.

Thus, an architecture has been designed for the different interoperability layers of the INTER-

LAYER, using the INTER-IoT ARM as an input. These architectures for the different layers has gone

through an iterative process along with the INTER-IoT ARM as described in the Figure 95 below:

Figure 95: Process for generating D3.1 and D4.1

For both deliverables, the review of requirements, scenarios and use cases has been the main

inputs, as it’s described in both. The starting point for the process of generating an architecture for

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

144 / 191

the INTER-LAYER has been the definition of a Reference Model (RM) for INTER-IoT. Based upon

it, the Reference Architecture (RA) has been created, and this has been used as an input for the

INTER-LAYER Architecture Design.

This Architecture Design has identified some needs and discrepancies with the RM and RA models,

initiating an iterative process, that will run until the end of the project as needed. As a matter of fact,

the second versions of both deliverables (D3.2 and D4.2) are expected to reflect this, along ship with

the INTER-FW design (D4.3), which will fill-in some missing components of the RA, like those dealing

with aspects of security and management.

In order to show the matching of the INTER-IoT RA with the architecture design of INTER-LAYER,

a mapping of the INTER-IoT Functional View with the different layers of INTER_LAYER has been

performed.

This mapping is described in two phases. First, an analysis of the compliance of the RA against the

DoW has been done to prove its validity, and assess the achievements of the project. Next, an exact

mapping of the different Functional Components of the INTER-IoT RA with the main design

components of the INTER-LAYER has been sketched to show the instantiation of the INTER-IoT RA

to the INTER-LAYER.

It’s important to notice that the analysis of the relationship of some models of the INTER-IoT

Reference Model with the INTER-LAYER interoperability layers has already been done (see sections

3.5.3 INTER-IoT Domain Model Element Communications and 3.5.4 INTER-IoT Channel Model for

Interoperability).

This instantiation and alignment of the results will be improved in D4.2 with more views and new

added changes.

5.2 Mapping of the Functional View with the multi-layered

interoperability approach

A way to assess the validity of the Functional View is to try to match it against the Description of

Work. To evaluate this assessment, we are first going to extract some relevant excerpts of the

INTER-IoT proposal and next we will map the Functional View against it:

1. In the overall goal description of INTER-IoT it’s stated that:

2. The research & innovation objective 1 (“Design and Implementation of an Open Cross-Layer

Framework for Interoperability of IoT Platforms”) states this:

INTER-IoT uses a layer-oriented approach.

By using the INTER-FW, any IoT platform can be made interoperable with

respect to its fundamental layers: device, networking, middleware, application

service, and data/semantics.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

145 / 191

3. The research & innovation objective 2 (“Definition of Techniques and Tools for interoperability

at the different IoT Platform Layers”) states this:

4. The INTER-IoT approach (see Figure 96 below) is described as:

Figure 96: INTER-IoT approach abstract schema

We have matched the different interoperability layers identified in the proposal with the different

Functional Groups and Functional Components of the INTER-IoT functional View. The mapping of

the Functional View of INTER-IoT against the interoperability layers, is depicted in the figures below.

Layer (and cross-layer) interoperability is fundamental to provide global

interoperability between IoT platforms.

The INTER-IoT approach will be fundamentally based on three main building

blocks:

1. Methods and tools for providing interoperability among and across each layers

of IoT platforms;

2. Global framework (INTER-FW) for programming and managing interoperable

IoT platforms,including INTER-API and several interoperability tools for every

layer;

3. Engineering Methodology based on CASE tool for IoT platforms

integration/interconnection.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

146 / 191

We have represented filled in light blue colour the Functional Groups involved in the related

interoperability layer, and in blue border the specific Functional Components that implement the

necessary functions to provide the expected interoperability layer.

Device-to-Device (D2D)

Figure 97: Mapping the functional View with the Device-to-Device Interoperability

Network-to-Network (N2N)

Figure 98: Mapping the Functional View with the Network-to-Network Interoperability

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

147 / 191

We have included the Communication FC from the Device Access FG because the Network

Interoperability is tightly related with communications aspects.

Middleware-to-Middleware (MW2MW)

Figure 99: Mapping the Functional View with the Middleware-to-Middleware Interoperability

Application Service-to Application Service (AS2AS)

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

148 / 191

Figure 100: Mapping the Functional View with the Application Service-to Application Service Interoperability

Data&Semantics-to-Data&Semantics

Figure 101: Mapping the Functional View with the Data&Semantics-to-Data&Semantics Interoperability

As we can see, all the proposed interoperability layers are covered in the INTER-IoT Functional

View.

5.3 Instantiation of the INTER-IoT RA to INTER-LAYER

As described in section 5.1, an instantiation of the INTER-IoT Reference Architecture to the different

layers of the INTER-LAYER has been done. The result is widely described in D3.1. Repeating the

description is not in the scope of this deliverable, however, an exact mapping of the generic

Functional Components of the INTER-IoT RA with the main design components of INTER-LAYER

has been sketched.

This relationship will also help the reader to understand the real difference between the generic

INTER-IoT Reference Architecture, which can be applicable to any solution willing to interoperate

different IoT Platforms, and the concrete instantiation made for the INTER-LAYER.

5.3.1 Device to Device Interoperability

The mapping of the D2D Interoperability with the INTER-IoT Functional View is described in two

steps to help the understanding of a wide set of components. First a mapping of the Functional

Groups of the INTER-IoT Reference Model with the main modules of the D2D Interoperability

Architecture has been sketched, using coloured lines to show the relationships. Next, a detailed

relationship including Functional Components of the INTER-IoT RA is described.

The D2D Interoperability Architecture corresponds to the also called Gateway Architecture,

described in section 3.1 of the D3.1. We have rearranged a bit the Gateway Architecture to make it

more simple to see the mappings through the lines with minimal crossings. We have also changed

some colours, and we have removed the interaction arrows, as they don’t add value to the functional

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

149 / 191

mapping. As a result, the Gateway Architecture has been flipped horizontally, keeping all the

components.

Figure 102: Alignment of the INTER-IoT Functional Groups with the D2D Interoperability layer of the INTER-LAYER.

Applications Application

Device Interoperability Middleware Controller

Device Access A.N. Controller

Devices Devices

Table 6 Alignment of INTER-IoT FGs and D2D Layer Ineroperabilty Infrastructure

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

150 / 191

As described in the Figure 97: Mapping the functional View with the Device-to-Device

Interoperability, the D2D Interoperability uses two Functional Groups:

● The Device Access FG.

● The Device Interoperability FG.

Apart from this non-transversal Functional Groups of the Reference Model, some other transversal

or generic Functional Groups have been instantiated for the Device-to-Device Interoperability:

● The Device FG.

● The Application FG.

● The Management FG.

The Device Access FG has been exploited into a set of components that are represented in purple

colour. This is the FG with more functionality to be implemented for the D2D Interoperability, so a

wide set of components were expected. The detailed description of this instantiation is described

below after Figure 103: Mapping of the Functional Components of the INTER-IoT RA with the

components of the D2D interoperability layer of the INTER-LAYER.Figure 103, in a detailed figure

with the relationship of the specific Functional Components of each Functional Group.

The Device Interoperability FG has produced the yellow components of the D2D Interoperability

Architecture, which are also described in the detailed figure.

The Device FG corresponds directly to the Device component of the D2D Interoperability

Architecture, where the devices are located. It’s really an external module, not part of the D2D

Interoperability Architecture, but that interacts with the Access Network Controller, as is described

in D3.1.

The Application FG is mapped to a generic user component which can access directly the gateway,

and which is placed in the Application component of the D2D Interoperability Architecture. This

Application module also hosts another component, the Middleware Platform, which is the

instantiation of the IoT Platform Functional Group of the INTER-IoT RA.

The Management FG corresponds to the Gateway Configuration components of the D2D

Architecture.

Now we are going to show the mapping of the exact Functional Components of the INTER-IoT RA

with the lower-level components of the D2D interoperability layer of the INTER-LAYER. The aim is

to see how each Functional Component has been instantiated and to check that there are no missing

Functional Components in the INTER-IoT RA. Please note that each interoperability layer uses only

a subset of the existing Functional Groups in INTER-IoT RM & RA.

The mapping of the exact Functional Components of the INTER-IoT RA with the components of the

D2D of the INTER-LAYER is depicted as follows:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

151 / 191

Figure 103: Mapping of the Functional Components of the INTER-IoT RA with the components of the D2D
interoperability layer of the INTER-LAYER.

Applications Middleware platform

IoT Platform Interoperability Middleware Controller

Device to device
interoperability

 Rules engine

IoT Service + Virtual Entity Discovery

Communications
Protocol Controller

A.N. Controller

Table 7 Mapping of INTER-IoT FGs and D2D Layer Interoperabilty Infrastructure

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

152 / 191

In this figure, we show the instantiation of the different Functional Components of the INTER-IoT RA

in the Gateway Architecture Design made in D3.1. The following Functional Components of the

INTER-IoT RA have been instantiated:

● The IoT Platform Interoperability FC has been directly mapped to a component called

Middleware Controller, that acts as a mediator between the MW module and the rest of the

gateway.

● The Device-to-Device Interoperability FC is implemented in the Rules Engine, which

performs that D2D interaction through configurable rules.

● The Communication FC has been instantiated as a set of components enclosed into two

main groups:

○ A.N. (Access Network) Controller. It allows access to the devices, offering interfaces

between the devices and the protocol modules. It includes the different A.N. Modules

for providing access to different communication channels.

○ Protocol Controller. It contains all the communication protocols supported by the

Gateway, also implementing the common interfaces between those protocols and the

other components.

● The IoT Service FC and the Virtual Entity FC, are instantiated together through a set of

modules in the Gateway Architecture. These modules are represented in purple colour

enclosed by a dashed purple line. They include:

○ Dispatcher: It handles all traffic between the Protocols layer (Physical device) and the

Middleware controller (Virtual device). It provides the entry point to the main functions

of the IoT Service and Virtual entity services.

○ Device Manager: It provides information of any sensor/actuator.

○ Registry, Discovery, Data Mapping: They provide the necessary functions for finding

the appropriate IoT Services.

○ Measure Storage: It stores measurements from the sensors to offer a history service

through the Dispatcher.

5.3.2 Network to Network Interoperability

We don’t describe the mapping between the Functional Components of the Functional View of the

INTER-IoT RA and the Network to Network Interoperability Architecture Design. The reason is that

only one Functional Component was identified in the INTER-IoT RA related to network

interoperability, as it is shown in Figure 104 below.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

153 / 191

Figure 104: Functional Components for Network Interoperability.

Therefore, the instantiation of this Network Interoperability FC has really been an explosion to all

the components designed in section 3.2 of D3.1.

During the iterations of the INTER-IoT Reference Architecture and the INTER-LAYER Architecture

Design described in section 5.1, some discussion arose about the convenience of splitting the

Network Interoperability FC into two or more FCs, or even whether to create or not a new Functional

Group. The specific features of network interoperability, which are part of the INTER-IoT, but seem

not widely addressed as a key issue in interoperability among IoT Platforms, advised us to keep

identified as a Functional Component, but only as a single component part of the Device

Interoperability Functional Group.

For the description of the different components of the Network to Network Interoperability

Architecture Design, we suggest to read the section 3.2 of D3.1.

5.3.3 Middleware to Middleware Interoperability

The instantiation of the Functional View to the INTER-Middleware Interoperability layer has followed

the paths depicted in the Figure 105, as shown below.

The Middleware to Middleware Interoperability Architecture corresponds to the also called INTER-

MW Architecture, described in section 3.3 of the D3.1. We have rearranged a bit the INTER-MW

Architecture to make it more simple to see the mappings through the lines with minimal crossings.

We have also changed some colours, and we have removed the interaction arrows, as they don’t

add value to the functional mapping.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

154 / 191

Figure 105: Functional Components of the INTER-IoT RA with the components of the INTER-MW interoperability layer of
the INTER-LAYER.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

155 / 191

Platform service Communication and control

Platform resolution MW2MW services

Platform access Bridges

Ontology alignment IPSM

Table 8 Mapping of INTER-IoT FGs and MW2MW Layer Interoperability Infrastructure

In this figure, we show the instantiation of the different Functional Components of the INTER-IoT RA

in the INTER-MW Architecture Design made in D3.1. The following Functional Components of the

INTER-IoT RA have been instantiated:

● The Platform Service FC, which was responsible for performing device and platform

interactions, has been instantiated as a set of components grouped as Communication and

Control. This group encloses three components:

○ API Request Manager. It handles requests, received from the API proxy.

○ Data Flow Manager. It orchestrates data flows from the platforms (bridges) to the

original caller.

○ Platform Request Manager. It arranges and manages flow of requests to underlying

platforms.

● The Platform Resolution FC which was responsible for discovering and cataloguing the IoT

Platforms that are available at a specific deployment of INTER-IoT as well as their devices,

capabilities and IoT Platform Services, has been instantiated as a set of components grouped

as MW2MW Services. This encloses the following components:

○ Resource Registry. It contains a list of devices and their properties that can be quickly

consulted when needed.

○ Resource Discovery. It finds resources based on queries.

○ Routing & Roaming Service. It allows the communication with a particular device

independently of the platform it is currently connected to.

○ Platform Registry & Capabilities. It contains the information of all connected Platforms

including their type and service capabilities.

● The Platform Access FC, that has the role of implementing the functions needed for

connecting to an IoT Platform and accessing their resources, has been instantiated in the

bridges component. It is just a collection of bridges for interacting with the different IoT

Platforms. A bridge manages the communication with the underlying platforms by translating

requests and answers in and out.

● The Semantics components, which are the Ontology Alignment FC and the Ontology

Resolution FC have been instantiating in a common component called IPSM (IoT Platform

Semantic Mediator). It is responsible, among other features, for translating incoming

information, representing semantics of artefact X to semantics of artefact Y. The IPSM will

use ontological alignments to perform ontology-to-ontology translations.

5.3.4 Application&Services to Application&Services Interoperability

The instantiation of the Functional View to the Application&Service Interoperability layer has followed

the paths depicted in the Figure 106, as shown below.

The AS2AS Interoperability Architecture has been described in section 3.4 of the D3.1. We have

rearranged a bit the AS2AS Architecture to make it more simple to see the mappings through the

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

156 / 191

lines with minimal crossings. We have also changed some colours, and we have removed the

interaction arrows, as they don’t add value to the functional mapping. As a result, the AS2AS

Architecture has been flipped horizontally, keeping all the components.

Figure 106: Functional Components of the INTER-IoT RA with the components of the Application&Service
interoperability layer of the INTER-LAYER.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

157 / 191

Service orchestration Orchestrator

Service composition Communication and control

Service resolution Service management

Semantics IPSM

Table 9 Mapping of INTER-IoT FGs and AS2AS Layer Interoperability Infrastructure

In this figure, we show the instantiation of the different Functional Components of the INTER-IoT RA

in the AS2AS Architecture Design made in D3.1. The following Functional Components of the

INTER-IoT RA have been instantiated:

● The Service Resolution FC was responsible for the storage of what we call flows,

understood as a logical definition of a sequence of steps, each of which can be a service

existing in an IoT Platform. It has been instantiated as a group that we have called Service

Management here for mapping purposes. This group contains two components:

○ Service Discovery. It manages the detection of services provided by each IoT platform

attending certain features.

○ Service Catalogue. It provides storage and access to a uniform catalogue of existing

and new services.

● The role of the Service Composition FC was to design new compound services based on

services that IoT Platforms exposes. The new services are designed like flows which will be

later executed. In the AS2AS Architecture, it has been instantiated as a set of components

depicted in green colour:

○ Modeller. It allows to make a composition of services with a graphical tool

○ Register Client. It allows the registration of new services through the graphical

environment.

○ Flow Repository. It stores the composite services designed with the modeller.

● The Service Orchestration FC was responsible for the execution of the flows. It has been

directly mapped to an Orchestrator component of the AS2AS Architecture with all the

functions of the Service Orchestration FC.

● As in the MW2MW case, the Semantics components, which are the Ontology Alignment

FC and the Ontology Resolution FC have been instantiating in a common component called

IPSM (IoT Platform Semantic Mediator). It is responsible, among other features, for

translating incoming information, representing semantics of artefact X to semantics of artefact

Y. The IPSM will use ontological alignments to perform ontology-to-ontology translations.

5.3.5 Data&Semantics to Data&Semantics Interoperability

The Semantics FG of the INTER-IoT RA is used in different layers of the interoperability. It has been

described in the MW2MW Interoperability and AS2AS Interoperability Architectures, the mapping of

the Functional Components of the Semantics FG of the INTER-IoT RA to the specific components

used in D3.1.

Basically, the instantiation has been done designing a common component called IPSM (IoT

Platform Semantic Mediator), which is widely described in section 3.5 of D3.1. We have rearranged

a bit the DS2DS Architecture to make it more simple to see the mappings through the lines with

minimal crossings. We have also changed some colours, and we have removed the interaction

arrows, as they do not add value to the functional mapping. We have added an enclosing dashed-

box to some components to facilitate the interpretation of the mapping.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

158 / 191

Figure 107: Functional Components of the INTER-IoT RA with the components of the Data&Semantics interoperability
layer of the INTER-LAYER.

Ontology alignment Alignments repository

Ontology resolution IPSM Core

Application REST Manager

Table 10 Mapping of INTER-IoT FGs and DS2DS Layer Interoperability Infrastructure

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

159 / 191

In this figure, we show the instantiation of the different Functional Components of the INTER-IoT RA

in the DS2DS Architecture Design made in D3.1. The following Functional Components of the

INTER-IoT RA have been instantiated:

● The Ontology Resolution FC was responsible for managing the different ontologies used

at the various IoT Platforms that are connected through INTER-IoT. It has been instantiated

as the Alignments Repository in the DS2DS Architecture Design.It stores and manages

alignments (read/write alignments) used in the translation process. It contains:

○ Input Alignments.

○ Output Alignments.

○ Converter. It performs one-time conversion for each new alignment written into the

repository.

● The Ontology Alignment FC was responsible for performing the alignment from a source

data with an ontology to a target data with its own ontology. It makes the data translation

between two ontologies, using the ontology definitions resolved by the Ontology Resolution

FC. It has been instantiated as a set of components enclosed by a purple dashed-box. These

components are depicted in purple/pink or green colour:

○ Channel Manager. It manages (creates, destroys, lists) Communication Channels i.e.

flows in message broker and Semantic Translation Channels.

○ Semantic Translation Channels. A lightweight component that stores information

about: where to receive data from, which alignment to use, and where to send data

to.

○ Alignment Applicator. A component, instances of which are performing semantic

translation.

○ IPSM Communication Infrastructure. It facilitates the communication between IoT

artefacts and the IPSM.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

160 / 191

6 Appendices

6.1 Appendix 1 - INTER-IoT requirements relevant to meta-data

Inter-IoT Requirement Description Meta-data entities +

comments

INTERIOT-203 (Id 1)

Roaming across platforms

Users want to get information about a device

independently of the platform it is.

Objects that are moving can switch platform

to which they are connected. Change

between a platform and the other should be

automatic and transparent to the device.

From INTER-FW point of view, a moving

device could be set as 'roamable' to specify

INTER-LAYER that if it's not available in the

expected platform, it should try to discover it

in the rest of connected platforms and update

the device registry

Device ID, location,

position

INTERIOT-278 (Id 42)

Support for heterogeneous

information representation

The method of integration of multiple

information and knowledge representing the

same real-world sensing object into a

consistent, accurate, and useful

representation. It will help to fully take the

usage of the IoT information resources for

different application and service within an IoT

system or between different information

systems.

Sensor, Meta-model

design

INTERIOT-325 (Id 10)

Extensibility (feature

evolution)

Functionality must be updated over time, and

the system should be capable to integrate

these updates.

The system should expose functionality to

the infrastructure maintenance to update the

functionality when needed with new INTER-

FW versions, without affecting existing

clients.

Meta-model design -

extensibility

INTERIOT-466 (Id 58)

Auditability and

Accountability

Configured operations performed in the

system must be tracked uniquely to the entity

that generated it.

Provenance

information

(ownership,

creation,

responsibility), users

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

161 / 191

The platform should allow:

- To retrieve users and/or devices that

carried out or are in charge of the activities in

the system and their logged operations.

- Producing an Audit log with trace of the

most important data and their values before

and after changes;

- Maintain records for a period not less than

six months;

- Provide synchronization technologies in

order to keep aligned the date and time

recorded in the logs associated with the

access.

The criteria for registration of the aforesaid

Log (products so as to not be editable) must

at least enable the identification:

- The event that triggered the log (login,

logout, login failure);

- The user, the date and the start / end

connection.

- The sensitive data updates (before and

after)

INTERIOT-473 (Id 63)

Provision of authentication

credentials

Conformity to the legal rules and criteria

(Privacy code) it must be defined procedures

and roles for authentication credentials

management process to enable proper

management of authentication credentials of

persons in charge of the data processing.

As regards the management of the User

credentials, the platform will have to:

- allow access only through individual

authentication credentials (consisting of a

User ID and an authentication device, e.g.

Password);

- prevent the reassignment of User ID to

another user;

- allow the definition of access profiles sets

that guarantee the principles of "need to

know" and “segregation of duties”;

Authentication

credentials and

methods (user ID,

email, password,

checksum,

encrypted key

file,authentication

device,authenticatio

n token)

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

162 / 191

- allow the extraction of the information

required to verify the correct allocation of

authentication credentials and their

authorization profiles;

- carry out automatic checks at least monthly

of the users inactive for more than six

months in order to suspend, unless the users

for which it has been required and authorized

a derogation on the basis of an operational

need.

INTERIOT-479 (Id 69)

Confidentiality

Conformity to the legal rules and criteria

(Privacy code): In order to ensure the

confidentiality of data, it will have to ensure

compliance with the principle of "need to

know" through the implementation of

appropriate measures.

Avoid data falsification or disclosure.

- If the need of data processing ended, such

data must be deleted permanently and

irreversibly in order to prevent unauthorized

treatment.

- It must be guaranteed the logical isolation

of data belonging to different customers on a

single platform. In particular, it must be

guaranteed the segregation of single

customer views, in order to allow processing

of data only to persons in charge of the

processing (preventing access / views by

unauthorized persons).

- Special procedures for extraction and

transmission of the data processed by the

platform must be available.

- In order to ensure the confidentiality of data

stored in the platform encryption must be

provide of identification codes or other

solutions that make health data unintelligible

to those who are authorized to access (i.e.

identification data decoupled from health /

sensitive ones).

Authentication

credentials and

methods

INTERIOT-483 (Id 4)

Alignment with AIOTI

architecture and view

A key requirement for the system

architecture is the alignment with the

architectural reference models of other IoT

projects, and especially AIOTI.

Meta-model design

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

163 / 191

AIOTI architectural model is suitable for

guiding the development of INTER-IoT

architecture. The use of AIOTI view of the

architecture of Internet of Things will be

useful, in order to utilize its results and from

other projects to avoid re-inventing a new

architectural model from scratch, and to be

aligned and compatible with those projects.

INTERIOT-540 (Id 98)

Data provenance

Data provenance metadata should allow to

identify what is the origin of data e.g. which

artefact collected the data.

Provenance (source

of information –

platform, device or

user)

INTERIOT-547 (Id 77)

Users manage how their

public data is seen

Devices/IoT platforms as data sources are

owned by different third parties. The owner

of the object should be able to manage who

and when other users have access to their

information.

IoT platforms should support data ownership

management, data-flow monitoring, and

access management. Data visibility is

managed according to owning entities

policies. This is managed globally (platform

independent)

At the configuration of an IoT platform

registrated into INTER-IoT, the software

integrator may be able to specify a list of

devices and/or operations which will be

accessible from external agents through

INTER-IoT, how long, with whom, etc.

Data access policy –

when, who (user,

role, device,

platform)

INTERIOT-616 (Id 186)

Design of required

ontologies

To achieve semantic interoperability generic

ontology(ies) should be used.

Use of required ontologies - a generic

ontology of the Internet of Things. Creation

of GOIoTP, a global IoT ontology, providing

common understanding of the IoT (generic)

meta-structure, and enabling semantic

interoperability. It is required to be designed

or chosen from available ones in order to

produce semantic alignment. GOIoTP will be

based on current main IoT ontologies, such

as W3C SSN, SAREF, etc.

Meta-model design

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

164 / 191

INTERIOT-662 (Id 223)

Semantic support for

virtual smart objects, not

only sensors

More broad definition of smart object in the

ontology, not only referred to physical

sensors but to other types of smart object.

INTER-IoT ontology, GOIoTP, will include

support for smart objects that are not

sensors, but act as smart devices, such as

virtual devices, human interfaces or

algorithms. Many ontologies do not include

objects that are not sensors, although they

are potential and relevant IoT smart objects.

Device (sensor,

actuator, human

interface)

INTERIOT-663 (Id 224)

Location semantic support

for mobile smart objects

The location of smart objects may be a

critical information in order to analyse data

from them, specially in the case of mobile

sensors, and it is not considered in many

ontologies.

Device location /

position

INTERIOT-693 (Id 132)

Portability

Unique names, usage, disambiguation.

Service providers must be able to switch

between customers / users.

Entities (users,

services) IDs

INTERIOT-699 (Id 254)

Each data unit is identified

univocally

Allow traceability, storage and decoupling

between transmissions.

Each minimal unit of meaningful data

transmission (e.g. a heart rate measurement

or a truck location event) must contain an

identifier allowing retrieve the source of data

and the network/platform for traceability.

Provenance (source

of information –

platform, network,

device)

INTERIOT-702 (Id 256)

Each device has a unique

INTER-IoT identifier

Each device connected to the network must

be recognized in order to be able to process

data to and from the device. There should

not be a limitation to the number of devices

that can connect.

An identifier system must be developed to be

able to identify each device.

Granularity in identification must reach the

device level.

Device ID

INTERIOT-703 (Id 257)

The INTER-IoT unique ID

is used to find the platform-

specific ID of the device

The platform specific ID needs to be

retrieved from the INTER-IoT ID.

The platform specific ID of each element

needs to be retrieved from que unique ID

assigned in INTER-IoT. This ensures

traceability.

Device ID

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

165 / 191

INTERIOT-706 (Id 260)

Manages user permission

Users have permissions to access different

platform/devices that need to be managed.

User permissions for

platforms/devices.

INTERIOT-708 (Id 262)

Manages group-based

permissions

Permissions can be managed at group level

in order to simplify business processes.

User groups

INTERIOT-709 (Id 263)

Access to personal data

needs to be previously

authorized

Personal data access must meet the EU

policies.

Access to personal information must be

previously authorized by the owner.

Authorization

INTERIOT-712 (Id 266)

API allows

resources/capabilities

discovery

Applications and/or physical devices needs

to know the resources and capabilities of the

connected platforms.

API allow applications to discover resources

and capabilities of the platforms.

Platform

INTERIOT-723 (Id 278)

Future-proof

Future-proof: Future versions of the protocol

must work with prior versions and provide all

the same capabilities as prior versions.

Meta-model design

INTERIOT-729 (Id 91)

The implementation must

be done by phases and

progressively

When a complex system migrates to a new

IoT protocol it is impossible to do it all at the

same time.

The process of implementation a new IoT

protocol has to be compatible with both at the

same time, i.e. at least it should have a

gateway between the new and the old

systems.

Meta-model design

INTERIOT-829 (Id 280)

Requests filtering

Access needs can be very different for each

situation, so tools must be provided to the

user to select what he needs.

When sending a requests to INTER-FW, it

will be possible to specify filtering: The

system shares a common filter format when

possible. This filtering will allow:

- Selection of platform(s).

- Selection of device(s).

- Selection of property type(s).

- Selection of property filtering(s).

Platform, Device,

Geolocation

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

166 / 191

- Selection of geo-queries (if allowed by the

IoT platform).

6.2 Appendix 2 - IoT ontologies

Ontology Dublin Core

URI http://purl.org/dc/terms

Available at: http://dublincore.org/

Documentation at: http://dublincore.org/documents/dcmi-terms/

Description:

A set of vocabulary terms that can be used to describe web such as web pages and

physical resources such as books or CDs, and objects like artworks.

Ontology FoaF (Friend of a Friend)

URI http://xmlns.com/foaf/spec/

Available at: http://xmlns.com/foaf/spec/

Documentation at: http://www.foaf-project.org/

Description:

FoaF (Friend of a Friend) describes persons, their activities and their relations to

other people and objects. FoaF allows to describe social networks without the need

for a centralised database.

Ontology DUL (Dolce Ultra Lite)

URI http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

Available at: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

Documentation at:
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+

DnS_Ultralite

Description:

It is a simplification and an improvement of some parts of DOLCE (Descriptive

Ontology for Linguistic and Cognitive Engineering) Lite-Plus library and

Descriptions and Situations ontology (DnS). Its purpose is to provide a set of upper

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

167 / 191

level concepts that can be the basis for easier interoperability among many middle

and lower level ontologies.

Ontology Prov-O

URI http://www.w3.org/ns/prov#

Available at: http://www.w3.org/ns/prov-o

Documentation at: https://www.w3.org/TR/prov-o/

Description:

The PROV-O ontology is a realization of the PROV model in OWL. The model itself

is used to represent provenance, i.e. information about actors, entities and activities

involved in producing a piece of data (e.g. a document) or thing (e.g. a physical

book), regarding quality, reliability, trustworthiness.

Ontology Schema.org

URI http://topbraid.org/schema/

Available at: http://topbraid.org/schema/schema.rdf

Documentation at: http://topbraid.org/schema/

Description:

Schema.org is a collection of terms that webmasters can use to markup their pages

to improve the display of search results. There is an up-to-date OWL version of the

ontology produced by TopQuadrant.

Ontology SAO (Stream Annotation Ontology)

URI http://purl.oclc.org/NET/UNIS/sao/sao

Available at:
http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/saov06.

rdf

Documentation at: http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao

Description:

A lightweight ontology used to represent the features of a stream data. It is built on

top of Semantic Sensor Networks (SSN), PROV-O and TimeLine Ontologies, and

involves connections with the Complex Event Processing Ontology.and Quality

Ontology.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

168 / 191

Ontology M3-lite

URI http://purl.org/iot/vocab/m3-lite

Available at: http://purl.org/iot/vocab/m3-lite

Documentation at: https://mimove-apps.paris.inria.fr/ontology/m3lite.html

Description:

Machine-to-Machine measurement ontology is refactored, cleaned and simplified

version of M3 ontology.

Ontology Open-IoT Ontology

URI http://openiot.eu/ontology/ns/

Available at: http://openiot.eu/ontology/ns/openiot.owl

Documentation at: https://github.com/OpenIotOrg/openiot/wiki/X-GSN-Use

Description:

It was developed within the OpenIoT project. The ontology is a comparatively big

model that (re)uses and combines other ontologies. Those include all modules of

the SSN (the main basis for the OpenIoT), SPITFIRE (including sensor networks),

Event Model-F, PROV-O, LinkedGeoData, WGS84, CloudDomain, SIOC,

Association Ontology and others, including smaller ontologies developed at the

DERI (currently, Insight Centre). It also makes use of ontologies that provide base

for those enumerated before, e.g. DUL. Other than those from the SSN, OpenIoT,

uses a large number of SPITFIRE concepts, e.g. network and sensor network

descriptions. Although some of the mentioned ontologies are not imported by the

OpenIoT explicitly, they appear in all examples, documentation and project

deliverables. Therefore, we treat OpenIoT as a combination of parts of all of those.

Similarly to the SSN, OpenIoT does not define its own location concepts and does

not explicitly import geolocation ontologies. It relies on other ontologies for that but,

in contrast to the SSN, it clearly indicates LinkedGeoData and WGS84 as sources

of geolocation descriptions. It defines a limited set of units of measure (e.g.

temperature, wind speed), but only when they were relevant to the OpenIoT project

pilot implementation.

Ontology OneM2M Base Ontology

URI
http://www.onem2m.org/ontology/Base_Ontology/base_o

ntology

Available at:
http://www.onem2m.org/ontology/Base_Ontology/oneM2

M_Base_Ontology-V_2_0_0.owl

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

169 / 191

Documentation at: http://www.onem2m.org/technical/onem2m-ontologies

Description:

 It is a recently created ontology, with first non-draft release in August 2016. It is

relatively small, prepared for the release 2.0 of oneM2M specifications, and

designed with the intention of providing a shared ontological base to which other

ontologies align to. It is similar to the SSN, since any concrete system necessarily

needs to extend it before implementation. It describes devices in a very broad

scope, enabling (in a very general sense) specification of device functionality,

networking properties, operation and services. The philosophy behind this

approach was to enable discovery of semantically demarcated resources using a

minimal set of concepts. It is a base ontology, as it does not extend any other base

models (such as DUL or Dublin Core).

Ontologies UniversAAL ontologies

URI http://ontology.universAAL.org/[ontology name].owl

Available at:
http://ontology.universaal.org/

https://github.com/universAAL/ontology

Documentation at: https://github.com/universAAL/ontology/wiki

Description:

A set of ontologies developed within UniversAAL (Universal open platform and

reference Specification for Ambient Assisted Living) project. The following

ontologies were used as data models for information shared thourgh the

middleware buses. The following ontologies were selected as relevant in the

INTER-IoT context:

● Devices - unified device ontology.

● Measurement - ontology for representing different measurement

capabilities e.g. measurement, signal, error.

● Data Representation - basic data representation model with concepts

representing e.g. root class for all locations, root class for comparable individuals,

enumeration for QoS rating.

● Unit - ontology for unit representation such as ampere, bit, gram.

● Physical Things - ontology for physical things. It is part of the Physical

World upper ontology concept, which defines the most general concepts from the

physical world as opposed to the virtual realm.

● Security - ontology defining the most general concepts dealing security.

● Location - ontology for locations. It is part of the Physical World upper

ontology concept, which defines the most general concepts from the physical

world as opposed to the virtual realm.

● Service Bus - ontology of the universAAL Service Bus

● Health, HealthMeasurement, - health ontologies as an example of domain

ontologies defining the health service, based on the treatment concept and

measurements of health parameters

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

170 / 191

● PersonalHealthDevice - ontology for person-related health devices

(Continua certified devices) e.g. blood pressure monitor, weighing scale,...

Ontology SSN Ontology

URI http://purl.oclc.org/NET/ssnx/ssn

Available at: https://www.w3.org/ns/ssn/

Documentation at: https://www.w3.org/TR/vocab-ssn/

Description:

This ontology describes sensors and observations, and related concepts. It does

not describe domain concepts, time, locations, etc. as these are intended to be

included from other ontologies via OWL imports.

Ontology SAREF

URI https://w3id.org/saref

Available at: http://ontology.tno.nl/saref.owl

Documentation at: http://ontology.tno.nl/saref/

Description:

It covers the area of smart devices in houses, offices, public places, etc. It does not

focus on any industrial or scientific implementation. The devices are characterized

predominantly by the function(s) they perform, commands they accept, and states

they can be in. Those three categories serve as basic building blocks of the

semantic description in SAREF. Elements from each can be combined to produce

complex descriptions of multi-functional devices. The description is complemented

by device services that offer functions. A noteworthy module of SAREF is the

energy and power profile that has received considerable attention shortly after its

inception. SAREF uses WGS84 for geolocation and defines its own set of

measurement units.

Ontology Fiesta-IoT Ontology

URI https://mimove-apps.paris.inria.fr/ontology/fiesta-iot.owl

Available at: https://mimove-apps.paris.inria.fr/ontology/fiesta-iot.owl

Documentation at: http://ontology.fiesta-iot.eu/ontologyDocs/fiesta-iot/doc

Description:

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

171 / 191

FIESTA-IoT Ontology is designed with a goal to achieve semantic interoperability

among heterogeneous testbeds. To build the ontology, a number of core concepts

from various mainstream ontologies and taxonomies were merged, such as W3C

SSN, M3-lite, WGS84, IoT-lite, Time, and DUL ontology.

Ontology iot-lite

URI http://purl.oclc.org/NET/UNIS/fiware/iot-lite

Available at:
http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite/iot-

lite.rdf

Documentation at: http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite

Description:

It is an instantiation of the SSN, i.e. a direct extension of some of its modules. It is

a minimal ontology, to which most of the caveats of the SSN apply. Those include:

focus on sensors and observations, reliance on other ontologies (e.g. time or units

ontologies), high modularity and extendability. The idea behind IoT-Lite was to

create a small/light semantic model that would be less taxing (than other, more

verbose and broader models) on devices that process it. At the same time, it needed

to cover enough concepts to be useful. The ontology describes devices, objects,

systems and services. The main extension of the SSN in the IoT-Lite lies in addition

of actuators (to complement sensors, as a device type) and a coverage property. It

explicitly uses concepts from a geolocation ontology (WGS84) to demarcate device

coverage and deployment location.

Ontology
Ontology Modeling for Intelligent Domotic

Environments (dogont)

URI http://elite.polito.it/ontologies/dogont

Available at: http://elite.polito.it/ontologies/dogont.owl

Documentation at: http://www.cad.polito.it/pap/exact/iswc08.html

Description:

The DogOnt ontology supports device/network independent description of houses,

including both controllable and architectural elements.

Ontology IoT-O

URI http://www.irit.fr/recherches/MELODI/ontologies/IoT-O#

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

172 / 191

Available at:
http://lov.okfn.org/dataset/lov/vocabs/ioto/versions/2015-

02-20.n3

Documentation at:
https://www.irit.fr/recherches/MELODI/ontologies/IoT-

O.html

Description:

IoT-O is a core domain Internet of Things ontology. It is intended to model horizontal

knowledge about IoT systems and applications, and to be extended with vertical,

application specific knowledge. It is constituted of different modules : - A sensing

module, based on W3C's SSN (http://purl.oclc.org/NET/ssnx/ssn) - An acting

module, based on SAN (http://www.irit.fr/recherches/MELODI/ontologies/SAN) - A

service module, based on MSM (http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-

09-03.rdf) and hRest (http://www.wsmo.org/ns/hrests) - A lifecycle module, based

on a lifecycle vocabulary (http://vocab.org/lifecycle/schema-20080603.rdf) and an

iot-specific extension (http://www.irit.fr/recherches/MELODI/ontologies/IoT-

Lifecycle) - An energy module, based on powerOnt

(ttp://elite.polito.it/ontologies/poweront.owl) IoT-O developping team also

contributes to the oneM2M IoT interoperability standard

Ontology Spitfire Ontology

URI http://spitfire-project.eu/ontology/ns

Available at: http://spitfire-project.eu/ontology.owl

Documentation at: http://spitfire-project.eu/incontextsensing/ontology.php

Description:

The SPITFIRE Ontology (spt) is based on the alignment among Dolce+DnS

Ultralite(dul), the W3C Semantic Sensor Network ontology (ssn) and the Event

Model-F ontology (event).

Ontology SAN (Semantic Actuator Network)

URI

Available at:

Documentation at: http://www.irit.fr/recherches/MELODI/ontologies/SAN

Description:

This ontology is intended to describe Semantic Actuator Networks, as a

counterpoint to SSN definition of Semantic Sensor Networks. An actuator is a

physical device having an effect on the world (see Actuator for more information).

It is worth noticing that some concepts are imported from SSN, but not SSN as a

whole. This is a design choice intended to separate as much as possible the

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

173 / 191

definition on actuator from the definition of sensor, which are completely different

concept that can be used independently from each other. This ontology is used as

a ontological module in IoT-O ontology.

Model SensorThings

URI N/A

Available at: https://github.com/opengeospatial/sensorthings

Documentation at: http://docs.opengeospatial.org/is/15-078r6/15-078r6.html

Description:

API: http://cite.opengeospatial.org/te2/about/sta10/1.0/site/apidocs/index.html

Documentation at: http://docs.opengeospatial.org/is/15-078r6/15-078r6.html OGC

SensorML for sensor description URI:

http://www.opengeospatial.org/standards/sensorml OGC SensorML for sensor

description specification: http://www.opengeospatial.org/standards/om OGC

Observations and Measurements: http://www.opengeospatial.org/standards/om

Ontology W3C OWL-Time ontology

URI http://www.w3.org/2006/time#

Available at: https://www.w3.org/2006/time

Documentation at: https://www.w3.org/TR/owl-time/

Description:

 The ontology provides a vocabulary for expressing facts about topological relations

among instants and intervals, together with information about durations, and about

temporal position including date-time information.

Ontology Timeline Ontology

URI http://purl.org/NET/c4dm/timeline.owl

Available at: http://motools.sf.net/timeline/timeline.n3

Documentation at: http://motools.sourceforge.net/timeline/timeline.html

Description:

The ontology defines the TimeLine concept, that is meant to identify a temporal

backbone. Each temporal object (signal, video, performance, work, etc.) can be

associated to such a timeline. Then, a number of Interval and Instant can be defined

on this timeline.

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

174 / 191

Ontology Process Execution Ontology

URI https://w3id.org/pep/

Available at: https://w3id.org/pep/

Documentation at: http://ci.emse.fr/pep/

Description:

The process execution ontology is a proposal for a simple extension of both the

[W3C Semantic Sensor Network](https://www.w3.org/TR/vocab-ssn/) and the

[Semantic Actuator

Network](https://www.irit.fr/recherches/MELODI/ontologies/SAN.owl) ontology

cores.

Ontology Event Ontology

URI http://purl.org/NET/c4dm/event.owl

Available at: http://motools.sf.net/event/event.n3

Documentation at: http://motools.sourceforge.net/event/event.html

Description:

This ontology deals with the notion of reified events. It defines one main Event

concept that may have a location, a time, active agents, factors and products.

Ontology Geoposition Ontology (wgs84_pos)

URI http://www.w3.org/2003/01/geo/wgs84_pos

Available at: https://www.w3.org/2003/01/geo/wgs84_pos.rdf

Documentation at: https://www.w3.org/2003/01/geo/

Description:

A vocabulary for representing latitude, longitude and altitude information in the

WGS84 geodetic reference datum. Basic classes are: SpatialThing (anything with

special extent) and Point (a point described using a coordinate system such as

WGS84). Basic properties are: latitude, longitude, location, altitude, lat/long.

Ontology GeoSPARQL

URI http://www.opengis.net/ont/geosparql

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

175 / 191

Available at:
http://schemas.opengis.net/geosparql/1.0/geosparql_voca

b_all.rdf

Documentation at: http://www.opengeospatial.org/standards/geosparql

Description:

The OGC GeoSPARQL standard supports representing and querying geospatial

data on the Semantic Web. GeoSPARQL defines a vocabulary for representing

geospatial data in RDF, and it defines an extension to the SPARQL query language

for processing geospatial data. GeoSPARQL ontology defines a list of spatial

concepts described in OGC/ISO Simple Features e.g. point, line, polygon that can

be placed in a geometry concept hierarchies.

Model / Ontology GeoRSS

URI http://www.georss.org/georss/

Available at:
https://www.w3.org/2005/Incubator/geo/XGR-geo-

20071023/W3C_XGR_Geo_files/geo_2007.owl

Documentation at: http://www.georss.org/

Description:

Geographically Encoded Objects for RSS feeds is an emerging standard for

encoding location as part of a Web feed. Two encodings of GeoRSS are available:

GeoRSS-Simple - a lightweight format that supports basic geometries and covers

the typical use cases when encoding locations.

GeoRSS GML - a formal Open Geospatial Consortium (OGC) GML Application

Profile, that supports a greater range of features than GeoRSS Simple e.g.

coordinate reference systems other than WGS84 latitude/longitude.

W3C Geo OWL provides an ontology which closely matches the GeoRSS feature

model and which utilizes the existing GeoRSS vocabulary for geographic properties

and classes.

Format GeoJSON (IETF RFC 7946)

URI N/A

Available at: http://geojson.org/

Documentation at: https://tools.ietf.org/html/rfc7946

Description:

GeoJSON is a geospatial data interchange format based on JSON proposed by

Internet Engineering Task Force (IETF). It defines several types of JSON objects

and the way in which they can be combined to represent data about geographic

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

176 / 191

features, their properties, and their spatial extents. GeoJSON uses a geographic

coordinate reference system, WGS84 and units of decimal degrees.

Ontology Library for Quantity Kinds and Units

URI http://purl.oclc.org/NET/ssnx/qu/qu

Available at: http://purl.oclc.org/NET/ssnx/qu/qu

Documentation at: https://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu

Description:

This ontology is partially based on the SysML QUDV (Quantities, Units, Dimensions

and Values) proposed by a working group of the SysML 1.2 Revision Task Force

(RTF), working in close coordination with the OMG MARTE specification group.

Ontology Ontology for Quantity Kinds and Units

URI http://purl.oclc.org/NET/ssnx/qu/qu-rec20

Available at: http://purl.oclc.org/NET/ssnx/qu/qu-rec20

Documentation at:
https://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu-

rec20.html

Description:

Ontology units and quantities definitions that imports the qu ontology. It defines

numerous dimensions and can be used as a common model for describing the type

of data measured by sensors.

Ontology Units of Measurement (UO)

URI http://purl.obolibrary.org/obo/uo.owl

Available at: http://www.berkeleybop.org/ontologies/uo.owl

Documentation at: https://bioportal.bioontology.org/ontologies/UO

Description:

The Ontology of Units of Measurement is developed as part of the OBO Foundry

initiative.

Model Unified Code for Units of Measure (UCUM)

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

177 / 191

URI http://unitsofmeasure.org/trac

Available at: http://unitsofmeasure.org/trac

Documentation at: http://unitsofmeasure.org/ucum.html

Description:

A code system intended to include all units of measures being contemporarily used

in international science, engineering, and business. A typical application of UCUM

are electronic data interchange (EDI) protocols, but it can also be used in other

types of machine communication.

Ontology IoT-A Ontologies

URI

Available at: http://www.surrey.ac.uk/ccsr/ontologies/DeviceModel.owl

Documentation at:
http://iot.ee.surrey.ac.uk/s2w/share/ontologies/iot-

a/original/

Description:

The following ontologies were developed within IoT-A projects:

DeviceModel.owl - extends W3C SSN and DUL ontologies with TagDevice,

NodeDevice, ActuatingDevice, Actuator concepts

LocationModel.owl - describes location with concepts such as SpatialThing, Room,

Building, Floor, Premises, Compass_Area

ResourceModel.owl - describes a resource i.e. a computational element that gives

access to information about or actuation capabilities on

a Physical Entity

ServiceModel.owl - exposes resource functionalities in terms of the input, output,

precondition, and effect

ServiceInstance.owl - sample instances built on the service model

VirtualEntityModel.owl - describes a physical object that is relevant from a user

or application perspective

VirtualEntityInstance.owl - sample instances built on the virtual entity model

AssociationModel.owl - imports VirtualEntityModel.owl and ServiceModel.owl and

adds concepts to relate virtual entites to services. e.g. ServiceCabalilities,

VEServiceDescription

AssociationInstance.owl - sample instances built on the association model

Ontology Quantities, Units, Dimensions, and Types Ontology

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

178 / 191

URI

http://qudt.org/1.1/schema/qudt

Available at: http://qudt.org/1.1/schema/qudt

Documentation at: https://bioportal.bioontology.org/ontologies/QUDT

Description:

The ontology specifies the base classes properties, and restrictions used for

modeling measurable quantities, units for measuring different kinds of quantities

and and their dimensions in various measurement systems.

Model

Web Service Modelling Ontology (WSMO)

URI N/A

Available at: https://www.w3.org/Submission/WSMO/#appendixA

Documentation at: https://www.w3.org/Submission/WSMO/

Description:

WSMO is a top-down conceptual framework for describing semantic web services

in order to facilitate the automation of discovering, combining and invoking. It

provides ontology-based framework with components, ontologies, web service

descriptions (describe the functional and behavioral aspects), goals (user desires)

and mediators (interoperability between different WSMO elements).

Ontology WSMO-Lite

URI http://www.wsmo.org/ns/wsmo-lite/index.rdfxml

Available at: http://www.wsmo.org/ns/wsmo-lite#

Documentation at: https://www.w3.org/Submission/WSMO-Lite/

Description:

This is a lightweight ontology for semantic annotations of services, intended for use

with SAWSDL and the Minimal Service Model.

Ontology
OWL-S: Semantic Markup for Web Services

URI N/A

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

179 / 191

Available at: http://www.daml.org/services/owl-s/1.0/

Documentation at: https://www.w3.org/Submission/OWL-S/

Description:

OWL ontology for describing semantic web services. It was designed to enable

automatic discovering, invoking, composing, and monitoring web resources offering

services. OWL-S has three main parts: service role (service description), service

model (how a client can interact with the service e.g. inputs, outputs) and service

grounding (details needed to interact with the service e.g. communication protocols,

message formats).

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

180 / 191

6.3 Appendix 3 - Functional view study dataset

6.3.1 Applications

Platform

H
e

a
lt

h
c

a
re

R
e

ta
il

B
a

n
k

in
g

In
s

u
ra

n
c

e

G
a

m
in

g

T
e

lc
o

s

S
m

a
rt

 H
o

m
e

S
m

a
rt

 O
ff

ic
e

S
m

a
rt

 C
it

y

S
m

a
rt

 E
n

e
rg

y

S
m

a
rt

 P
a

rk
in

g

S
m

a
rt

 T
ra

n
s

p
o

rt

S
m

a
rt

 B
u

s
in

e
s

s

A
p

p
li
c

a
ti

o
n

 E
n

ti
ty

O
th

e
rs

Y Y Y Y Y

Y Y

Initially

intended f or

eHealth and

It prov ides an

ontology f or

Smart Home

Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y

Y Y Y Y P Y Y

Introspection,

Conf iguration

Serv ice

Serv ices in one

app can

discov er and

Introspection

Via proxy

object,

established

Y Y Y Y Y

Smart

Health/Wellnes

s

SmartShopping
SmartHome/Of

f ice
SmartCity

SmartTransport

/Mobility

Y Y Y Y Y Y Y Y

Health Care

Prison Security

Consumer

Mov ing

Patterns

Social Sensors Smart Meeting

IJKdijk (dike

integrity

management)

Supply Chain

Management

and Logistics

Cross Domain:

Crowded Ev ent

Management

Y Y Y Y Y Y Y Y Y

Y Y

Y Y Y Y Y Y

Indstry

Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y

Gov ernment

Architecture,

Engineering and

Construction

Education

Y Y Y Y Y

IBM Watson IoT

WSO2

Contiki

Sofia 2

ThingSpeak

GE Predix

All-Joyn

Butler

i-Core

OneM2M

Microsoft Azure IoT

Amazon AWS IoT

FIWare

Open IoT

UniversAAL

Specific application domains the IoT platform is designed or used for

Applications

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

181 / 191

6.3.2 Management

Platform Configuration Fault Reporting Member State

Y Y Y Y Y

Backend Dev ice Management - IDAS Resource Usage Monit. Data Visualization - SpagoBI Backend Dev ice Management - IDAS Auxiliar enablers

Y P Y Y Y

Extended GSN (X-GSN)
Application Runtime Monitoring (with Jav a

Melody)

Application Runtime Monitoring (with Jav a

Melody)
OpenIoT Security and Priv acy module Virtual Sensor Conf iguration & Monitoring

Y Y P P

Middleware, prof iling tool, LDDI Context History , Log Monitor tool
User Prof ile Tool (it does not link dev ices

and users) AAL Space Prof iles

Only in supported technologies (potentially ,

ZigBee, Bluetooth Continua Alliance, KNX).

It does not prov ies an API to globally

manage this f eatures.

Y

Y Y Y Y Y

Dev ice Prov isioning Dev ice Identity Store Dev ice State Store Dev ice State Store Dev ice State Store

Y Y P P

Registry AWS Console Only dev ices AWS monitoring tools + dashboard

Y Y Y Y

Sy stem/Dev ice Management Lay er
SmartObject Management Portal at

Sy stem/Dev ice Management Lay er

LogFile generated by SmartObject

Management Portal

User&User/Dev ice Directory at

Communication Lay er, Data/Context

Management Lay er and Serv ice Lay er

Y Y Y

An Alarm Sy stem monitors unexpected

ev ents
At CVO lev el CVO Management Unit

Y Y Y Y Y

Acquisition Lay er Auditoría Dashboard Acquisition Lay er Data Engines

Y

Basic channel def inition

Y Y Y Y Y

Connectiv ity , Edge Manager Anomaly Detection Analy tics Runtime Edge Manager, Analy tics Runtime/ Catalog/ Framework

Y Y Y X

Watson Dashboard CA Nimsof t (multiple lev els) CA Nimsof t (multiple lev els) Watson

Y Y Y Y

App Manager

Enter. Mobility Mgr

Application Serv er

Gov ernance Reg.

Application Mgr.

Gov ernance Reg.

App Manager

Enter. Mobility Mgr
Application Mgr.

P P P

Conf iguration has to be done manually Has to be done manually has to be done manually

IBM Watson IoT

WSO2

Contiki

Sofia 2

ThingSpeak

GE Predix

All-Joyn

Butler

i-Core

OneM2M

Microsoft Azure IoT

Amazon AWS IoT

FIWare

Open IoT

UniversAAL

Functionalities that are needed to govern an IoT system

Management

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

182 / 191

6.3.3 Service Organization

Platform Service Composition Service Orchestration Service Choreography

Y Y

Mashup Mashup

Y Y Y

Request def initio Scheduler Serv ice Deliv ery & Utility Manager

Y Y Y

Middleware has a dedicated serv ice bus.

Middleware serv ice bus. It does not prov ide a tool

f or orchestrating, but composition is easy in the

lif ecy cle.

Serv ices can subscribe to other serv ices prof iles,

so that the middleware automatically resolv es the

publication to the interested serv ices.

Y

Y Y

Stream Processors Stream Processors

Y Y

AWS marketplace like AppSy mphony AWS Data Pipeline + marketplace

Y P Y

SmartObject Gateway enables the (not-autonomic)

serv ice composition at the Serv iceLay er

(specif ically at Data&Serv iceDiretory) exploiting

Serv ice Orchestration f oreseen but not detailed

(inherited by IoT-A)

MQTT broker in ContextManagement Portal at

Data/Context Management Lay er

Y Y Y

CVO Lev el At VO and CVO Lev el MQTT broker at VO and CVO lev els

Y P

Of f ers channels that acts as brokers.

Y Y

Analy tics Fwk, App Composer, workf low Analy tics Fwk, Workf low

Y Y Y

IBM Watson IoT Platf orm IBM Watson IoT Platf orm message hub

Y Y Y

Application Mgr.

Data Serv ices Serv er
WSO2 ESB Message Broker

IBM Watson IoT

WSO2

Contiki

Sofia 2

ThingSpeak

GE Predix

All-Joyn

Butler

i-Core

OneM2M

Microsoft Azure IoT

Amazon AWS IoT

FIWare

Open IoT

UniversAAL

Used for composing and orchestrating Services of different levels of abstraction

Service Organization

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

183 / 191

6.3.4 IoT Process Management

Platform Process Modelling Process Execution

Y Y

Scheduler Service Delivery & Utility Manager

P

It has tools to model domain-specific(health & telecare) businessess. Tools are vert

contrained and the support is weak.

Y

Y Y

Service Assisted Communication Service Assisted Communication

P P

Business Process Modeling foreseen but not detailed (inherited by IoT-A) Business Process Execution foreseen but not detailed (inherited by IoT-A)

Y Y

Agile-based IoT process modeling

Y Y

Y Y

Analytics Fwk, Workflow, enterprise connect Analytics Fwk, Workflow, enterprise connect

Y Y

Business Process Server

WSO2 Developer Studio

Business Process Server

Data Services Server

IBM Watson IoT

WSO2

Contiki

Sofia 2

ThingSpeak

GE Predix

All-Joyn

Butler

i-Core

OneM2M

Microsoft Azure IoT

Amazon AWS IoT

FIWare

Open IoT

UniversAAL

To provide the functional concepts necessary to conceptually integrate the idiosyncrasies of the IoT world into

traditional (business) processes. The different roles of the business objects and users will be defined here

IoT Process Management

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

184 / 191

6.3.5 Virtual Entity

Platform VE Resolution VE & IoT Service Monitoring

Y Y Y Y

IoT Discovery + Backend Dev. Mgmt. Auto-register Through Orion + IoT Broker IoT Broker

Y Y Y Y

Service Delivery & Utility Manager GSN service, monitoring Cloud W3C Semantic Sensor Networks (SSN)

Y P Y

Services are declared in a semantic way,

so they always are bound to virtual

representation of devices or services.

They can be bound to instances of them.

Universaal is fundamentally build on the

virtual domain, so that creating, reading

and updating a virtual entity are easy

operations. However, the binding with the

physical devices strongly depends on the

physical layer, which is not so developed.

Universaal is semantic native

Y

Y Y Y

Device Entity Store Device Entity Store Device Entity Store

Y

Things Shadow

Y Y Y Y

Y Y Y Y

follows IoT-A specifications follows IoT-A specifications follows IoT-A specifications W3C SSN ontology

Y Y Y Y

At VO and CVO Level At VO and CVO Level

The Web Ontology Language (OWL) and

Resource Description Framework (RDF)

for describing VOs

Y Y Y

Acquisition Layer Acquisition Layer KP's

P Y

Define the sensors ans its values but not

as an entity but as a channel
Existing + custom fields

Y Y Y

Asset, Edge Manager Digital Twins Usr Defined Domain Objs.

Y Y Y

Watson Watson Device Type

Partially Partially Partially Partially

Data Analytics Server

Data Services Server

Data Analytics Server

Data Services Server

Data Analytics Server

Data Services Server

Data Analytics Server

Data Services Server

IBM Watson IoT

WSO2

Contiki

Sofia 2

ThingSpeak

GE Predix

All-Joyn

Butler

i-Core

OneM2M

Microsoft Azure IoT

Amazon AWS IoT

FIWare

Open IoT

UniversAAL

VE Service

Functions for interacting with the IoT System on the basis of VEs, as well as functionalities for discovering and looking up services

about VEs.

Virtual Entity

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

185 / 191

6.3.6 IoT Service

Q
u

e
ry

 i
n

fo
rm

a
ti

o
n

U
p

d
a

te
 i
n

fo
rm

a
ti

o
n

U
s

e
 r

e
s

o
u

rc
e

 o
p

e
ra

ti
o

n
/s

e
rv

ic
e

S
u

b
s

c
ri

b
e

 t
o

 i
n

fo
rm

a
ti

o
n

S
u

b
s

c
ri

p
ti

o
n

 w
it

h
 f

il
te

rs

R
e

g
is

tr
a

ti
o

n

H
is

to
ri

c
 d

a
ta

 a
c

c
e

s
s

C
E

P

B
ig

 d
a

ta
 s

to
ra

g
e

O
th

e
rs

Io
T

 C
li
e

n
t

D
is

c
o

v
e

ry

L
o

o
k

u
p

S
e

rv
ic

e
 I
d

.
R

e
s

o
lu

ti
o

n

S
e

rv
ic

e
 D

e
s

c
r.

 M
g

m
t.

O
th

e
rs

Y Y Y Y Y Y Y Y Y Y P Y Y Y Y

Orion/IoT Broker
Orion + IoT

Agents/Broker

Orion + IoT

Agents/Broker
Orion Orion

Orion + IoT

Agents/Broker
Cosmos

Proton, with

basic geo

capabilities

Cosmos

Data

v isualization,

marketplace,…

Examples exist IoT Discov ery IoT Discov ery
IoT Discov ery +

IoT Broker

Repository +

IoT Discov ery

Y Y ? Y Y Y P P Y ? Y

Y Y ? Y Y Y Y Y Y P Y P Y Y

UI, Security ,

Marketplace…

Technology -

specif ic:

ZigBee,

Continua, Z-

Wav e, KNX

Strongly bound

to phy sical

interf ace

In the supported

protocols

Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Stream

Analy tics +

Apache *

Stream

Analy tics +

Apache *

Stream

Analy tics +

Apache *

Stream

Analy tics +

Apache *

Stream

Analy tics +

Apache *

Stream

Analy tics +

Apache *

Stream

Analy tics +

Apache *

Stream

Analy tics +

Apache *

Stream

Analy tics +

Apache *

IoT Client IoT Client IoT Client IoT Client IoT Client IoT Client

Y Y Y P Y Y Y Y Y Y Y Y Y Y

Not attributes AWS serv ices Rules engine AWS serv ices
All AWS

Serv ices
SDK

Y Y Y Y Y Y

AllJoy n Core

Permission

Management

AllJoy n Core

Permission

Management

AllJoy n Security

2.0

AllJoy n Core

Permission

Management

With some

AllJoy n Key

Exchange

AllJoy n Security

2.0

P Y Y Y P Y Y Y Y Y P Y

SmartObject

data can be

queried

Serv iceDirector

y at Serv ice

Lay er

datastream can

be f iltered by

CEP engine

Data and

Serv ice

Directory at

Serv ice Lay er

FIWARE-like

CEP

components

(CEP task, CEP

applications,

CEP engine)

f eeded by data

coming f rom

SOs and

distributed

among the

BUTLER

architecture

Persistent

Storage (a

f unctional

component

implementing a

NoSQL

database) at

Data / Context

Management

Lay er

Data and

Serv ice

Directory at

Serv ice Lay er

BUTLER

SmartObject

Gateway uses

the OSGi

registry at

Serv ice

Discov ery

within Serv ice

Lay er

see IoT-A

serv ice

descriptions

managed into

the Serv ice

Directory at

Serv ice lay er

Y Y Y Y Y Y Y Y Y Y Y

Esper CEP

engine f or the

SmartOf f ice,

WebMethods

CEP engine f or

the

SmartBusiness,

both inro CVO

Container

VO and CVO

Registry

VO and CVO

Registry

VO and CVO

Registry

VO and CVO

Registry

Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y P Y Y Y

IoT Analy tics React App Basic

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Asset/ Time

Series

Asset/ Time

Series

Asset/ Time

Series

Ev entHub/

RabbitMQ

Ev entHub/

RabbitMQ
Asset Time Series Redis Lots of serv ices Machine

Asset/ Time

Series

Asset/ Time

Series

Asset/ Time

Series

Asset/ Time

Series
PaaS

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Watson Watson Watson Watson Watson Watson Watson
Node-Red IBM

streams
OS NEXUS Watson

Serv ice

Discov ery

Serv ice

Discov ery

Serv ice

Discov ery +

Bluemix

Serv ice

Discov ery +

registry

Y Y Y Y Y Y Y Y Y Y Y

Data Serv ices

Serv er

Data Serv ices

Serv er

Data Serv ices

Serv er
Message Broker Message Broker Message Broker

Data Serv ices

Serv er

Complex Ev ent

Processor

Data Serv ices

Serv er; Data

Analy tics

Gov ernance

Reg.

Gov ernance

Reg.

Gov ernance

Reg.

Gov ernance

Reg.

IBM Watson IoT

WSO2

Contiki

Sofia 2

ThingSpeak

GE Predix

All-Joyn

Butler

i-Core

OneM2M

Microsoft Azure IoT

Amazon AWS IoT

FIWare

Open IoT

UniversAAL

IoT Service IoT Service Resolution.

IoT Service

Discovery, look-up, and name resolution of IoT Services. IoT Services can be used to get information provided by a resource retrieved from

a sensor device

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

186 / 191

6.3.7 Security

Platform

A
u

th
o

ri
z
a

ti
o

n

P
o

li
c

y
 M

g
m

t.
 (

R
B

A
C

)

S
p

e
c

if
ic

 t
e

c
h

n
o

lo
g

y

O
th

e
rs

E
n

c
ri

p
ti

o
n

 (
S

S
L

,…
)

T
L

S

X
.5

0
9

S
p

e
c

if
ic

 S
w

K
e

y
 P

ro
v

is
io

n

O
th

e
rs

R
e

q
u

e
s

t
tr

u
s

t

P
ro

v
id

e
 T

ru
s

t

O
th

e
rs

Id
e

n
ti

fy
 M

a
n

a
g

e
m

e
n

t

O
th

e
rs

A
u

th
e

n
ti

c
a

ti
o

n

S
p

e
c

if
ic

 t
e

c
h

n
o

lo
g

y

O
th

e
rs

Y Y Y Y Y Y Y Y Y Y Y Y Y Y

AuthZForce PDP, PEP XACML 3.0
In access

control

In access

control

In access

control

Sof tware

trustworthy

Sof tware

trustworthy

Certif ication

workf low

Key Rock +

Priv acy
SSO

SCIM 2.0,

Oauth 2.0

IoT Agents /

IoT Broker

Y Y Y Y

Y Y Y Y Y Y

Multi-f actor

authenticatio

n and

session

management

Y Y Y Y Y Y Y

TLS-PSK

Y Y Y Y Y

X.509

Compliant

AzureActiv e

Directory

Y Y Y Y Y Y Y Y Y Y

Amazon

Cognito
IAM

Y Y Y Y Y

Y Y Y Y Y Y P P P Y

Authorization

Serv er with

OAuth2.0

SmartObject

Management

Portal

communicati

ons

between

SmartMobile

and core

BUTLER

SmartServ er

s

messages

between Sos

and

Authorization

Serv er are

transported

ov er TLS

session

The TLS

session

perf orms

Serv er

Authenticatio

n based on

an X509

serv er

certif icate

access-

token and

security

material are

generated

by the

Authorization

Serv er

Foreseen in

the IoT-A

architecture

at Security

Lev el

Foreseen in

the IoT-A

architecture

at Security

Lev el

BUTLER

User Prof ile

Manager

prov ides not-

anony mous

UserID

Authenticatio

nsServ er

(AS)

Y Y Y Y Y Y Y Y

Model-based

Security

Toolkit

(SecKit) at

Security

Management

Lay er

Model-based

Security

Toolkit

(SecKit) at

Security

Management

Lay er

At VO and

CVO Lev el

At VO and

CVO Lev el

Model-based

Security

Toolkit

(SecKit) at

Security

Management

Lay er

Model-based

Security

Toolkit

(SecKit) at

Security

Management

Lay er

Model-based

Security

Toolkit

(SecKit) at

Security

Management

Lay er

Model-based

Security

Toolkit

(SecKit) at

Security

Management

Lay er

y y Y Y Y Y Y Y Y

XXTEA KP

Y Y

API Key

Y Y Y Y Y Y Y Y Y Y

Access

control

Access

control

Credential

Store

Data

Integrity
UAA

SAML/OOAu

th 2.0/penId

Credential

Store

Y Y Y Y Y Y Y Y

Cloud

Foundry

Single Sign

On
dashDB DB2

secure

gateway
examples dashDB DB2

Beta (key

protect)

Single Sign

On

Y Y Y Y Y Y Y Y Y Y Y Y Y Y

 WSO2-IS

RBAC

ABAC (PAP,

PDP, PIP)

XACML 2.0

& 3.0

Delegated

 IDToken

Signature
 Key Stores

Carbon

Serv er

 Secure

Identity

Serv er

 Serv ice and

Identity

Prov iders

Facebook

Google

Yahoo

SAML2

OAuth2

OpenId

Inbound &

Oubound

Identity

Workf low

Engine

Analy tics

IBM Watson IoT

WSO2

Contiki

Sofia 2

ThingSpeak

GE Predix

All-Joyn

Butler

i-Core

OneM2M

Microsoft Azure IoT

Amazon AWS IoT

FIWare

Open IoT

UniversAAL

Key Exchange & Management Trust & Reputation
Identity

Management
AuthenticationAuthorisation

Security

Responsible for ensuring the security and privacy

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

187 / 191

6.3.8 Communication

Hop To Hop

Communication

Network

Communication

Platform

H
T

T
P

M
Q

T
T

A
M

Q
P

W
iF

i

L
A

N

P
L

C

B
lu

e
to

o
th

C
o

A
P

Z
ig

B
e

e

U
P

n
P

K
N

X

S
u

n
S

p
o

t

T
S

T

Z
IG

P
O

S

O
M

S

M
2

M

W
e

b
S

o
c

k
e

t

L
W

M
2

M

Y Y Y Y P Y Y

OFNIC

Y Y Y

Y P Y P Y Y

LDDI
Theoretically it allows in particular

conditions

P Y Y Y Y Y

Has a routing module but not

f orm multicast, etc

Y Y Y

Y Y Y

Y Y Y Y

Y P Y Y Y Y Y Y Y Y Y Y Y Y Y Y

IoT Protocol Adapters

Foreseen in the IoT-A

architecture at Communication

Lev el

Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y

IoT Gateway

Y Y P

Very basic

For

create

and

update

Just f or

update

the

channel

Y Y Y Y Y Y Y

Asset/Edge Manager Connectiv ity

Y Y

Y Y Y Y Y Y

WSO2 ESB

Y Y Y P P P Y P Y Y Y

not

recomm

ended

not

recomm

ended

some

impleme

ntation

required

IBM Watson IoT

WSO2

Contiki

Sofia 2

ThingSpeak

GE Predix

All-Joyn

Butler

i-Core

OneM2M

Microsoft Azure IoT

Amazon AWS IoT

FIWare

Open IoT

UniversAAL

End To End Communication

Communication

It's an abstraction, modelling the variety of interaction schemes derived from the many technologies belonging to IoT systems and

providing a common interface to the IoT Service FG

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

188 / 191

6.3.9 Devices

Platform

IP
 C

a
p

a
b

le

C
o

n
s

tr
a

in
e

d

G
a

te
w

a
y

H
T

T
P

 e
n

a
b

le
d

C
o

A
P

 e
n

a
b

le
d

Y Y Y Y

Y Y

Y Y

Y Y

Y Y

Y Y Y

Y

Y Y Y Y Y

Y Y Y Y Y

Y Y Y

KP

Y

Y Y Y Y

Y Y

Y

Y Y Y Y Y

IBM Watson IoT

WSO2

Contiki

Sofia 2

ThingSpeak

GE Predix

All-Joyn

Butler

i-Core

OneM2M

Microsoft Azure IoT

Amazon AWS IoT

FIWare

Open IoT

UniversAAL

Devices

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

189 / 191

7 References

[1] MacKenzie et al. Reference Model for Service Oriented Architecture 1.0 http://docs.oasis-

open.org/soa-rm/v1.0/soa-rm.pdf OASIS Standard, 12 October 2006

[2] Bass, Len. Software architecture in practice. Pearson Education India, 2007

[3] Nick Rozanski, Eoin Woods. Software Systems Architecture: Working with Stakeholders Using

Viewpoints and Perspectives. Addison-Wesley, 2005.

[4] Shames, P. and Yamada, T. Reference architecture for space data systems. s.l.: DSpace at Jet

Propulsion Laboratory [http://trsnew.jpl.nasa.gov/dspace-oai/request] (United States), 2004

[5] Marek Obitko (advisor Vladimir Marik): Translations between Ontologies in Multi-Agent Systems,

Ph.D. dissertation, Faculty of Electrical Engineering, Czech Technical University in Prague, 2007.

[6] Muller, G. A reference architecture primer, (2008). Available at

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.5696&rep=rep1&type=pdf

[7] Haller S. The Things in the Internet of Things. Tokyo: s.n, 2010. Available at http://www.iot-

a.eu/public/news/resources/TheThingsintheInternetofThings_SH.pdf

[8] Basic Geo (WGS84 lat/long) vocabulary (https://www.w3.org/2003/01/geo/)

[9] INTER-IoT Project (http://www.inter-iot-project.eu)

[10] oneM2Mstandards for M2M and the Internet of Things (http://www.onem2m.org/)

[11] Semantic Sensor Network XG nal report (2011) (https://goo.gl/aaTcSf)

[12] SmartM2M; Smart Appliances; Reference Ontology and oneM2M mapping.

Technicalspecification 103 264, European Telecommunications Standards Institute (2015)

[13] Ben Alaya, M., Medjiah, S., Monteil, T., Drira, K.: Towards Semantic Data Interoperability in

oneM2M Standard. IEEE Communications Magazine 53(12), pp. 35-41 (Dec 2015)

(https://hal.archives-ouvertes.fr/hal-01228327)

[14] Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylo, K.: IoT-Lite: A lightweight semantic model

for the Internet of Things. In: Proc. of the IEEE Conferences on Ubiquitous Intelligence & Computing,

July 2016, Toulouse, France

[15] Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S., Graybeal, J.,

Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Phuoc, D.L., Lefort,

L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor, K.: The SSN

ontology of the W3C semantic sensor network incubator group. Web Semantics: Science, Services

and Agents on the World Wide Web 17, pp. 25-32 (2012) (https://goo.gl/urwO7g)

[16] Daniele, L., den Hartog, F., Roes, J.: Created in close interaction with the industry: The Smart

Appliances REFerence (SAREF) ontology. In: Cuel, R., Young, R. (eds.) Formal Ontologies Meet

Industry: Proc. of the 7th Int. Workshop, FOMI 2015, Berlin, Germany, August 5, 2015. pp. 100-112.

Springer (2015)

[17] Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Semantic

interoperability in the Internet of Things: an overview from the INTER-IoT perspective (in press).

Journal of Network and Computer Applications (2016)

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.5696&rep=rep1&type=pdf
http://www.iot-a.eu/public/news/resources/TheThingsintheInternetofThings_SH.pdf
http://www.iot-a.eu/public/news/resources/TheThingsintheInternetofThings_SH.pdf
https://www.w3.org/2003/01/geo/
http://www.inter-iot-project.eu/
http://www.onem2m.org/
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
https://hal.archives-ouvertes.fr/hal-01228327
http://www.websemanticsjournal.org/index.php/ps/article/view/312

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

190 / 191

[18] Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Towards semantic

interoperability between Internet of Things platforms (submitted for publication). Springer (2016)

[19] Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K., Fortino, G.: Tools for

ontology matching—practical considerations from INTER-IoT perspective. In: Proc. of the 8th Int.

Conference on Internet and Distributed Computing Systems. LNCS, vol. 9864, pp. 296-307. Springer

(2016)

[20] Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K., Palau, C.E.: From

implicit semantics towards ontologies—practical considerations from the INTER-IoT perspective

(submitted for publication). In: Proc. of 1st edition of Globe-IoT 2017: Towards Global Interoperability

among IoT Systems (2017)

[21] Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing?

International journal of human-computer studies 43(5), pp. 907-928 (1995)

[22] Jayaraman, P.P., Calbimonte, J.P., Quoc, H.N.M.: The schema editor of OpenIoT for semantic

sensor networks. In: Kyzirakos, K., Henson, C.A., Perry, M., Varanka, D., Grütter, R., Calbimonte,

J.P., Celino, I., Valle, E.D., Dell'Aglio, D., Krötzsch, M., Schlobach, S. (eds.) Proc. of the 1st Joint

Int. Workshop on Semantic Sensor Networks and Terra Cognita (SSN-TC 2015) and the 4th Int.

Workshop on Ordering and Reasoning (OrdRing 2015) co-located with the 14th Int. Semantic Web

Conference (ISWC 2015), Bethlehem, PA, United States, October 11-12th, 2015. CEUR Workshop

Proceedings, vol. 1488, pp. 25-30. CEUR-WS.org (2015)

[23] Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.P., Riahi, M., Aberer, K.,

Jayaraman, P.P., Zaslavsky, A., Podnar Žš arko, I., Skorin-Kapov, L., Herzog, R.: OpenIoT: Open

source Internet-of-Things in the Cloud. In: Podnar Žarko, I., Pripužic, K., Serrano, M. (eds.)

Interoperability and Open-Source Solutions for the Internet of Things. LNCS, vol. 9001, pp. 13-35.

Springer-Verlag (2015)

[24] Vrandečić, D.: Ontology Evaluation, pp. 293-313. Springer Berlin, Heidelberg (2009)

(http://dx.doi.org/10.1007/978-3-540-92673-3_13)

[25] Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., Meissner, S., eds.:

Enabling Things to Talk—Designing IoT solutions with the IoT Architectural Reference Model,

Springer-Verlag (2013)

[26] Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja, Katarzyna Wasielewska,

and Carlos E. Palau. From implicit semantics towards ontologies—practical considerations from the

INTER-IoT perspective. In Proceedings of 1st edition of Globe-IoT 2017: Towards Global

Interoperability among IoT Systems. Accepted for publication, 2017.

[27] Eclipse OneM2M site https://wiki.eclipse.org/OM2M/one

[28] Sofia2 site http://sofia2.com/

[29] ThingSpeak Help site https://es.mathworks.com/help/thingspeak/

[30] IOT-A D1.5 Final Architectural Reference Model for the IoT http://www.iot-a.eu/public/public-

documents/d1.5/at_download/file

[31] McGuinness, Deborah L., and Frank Van Harmelen. "OWL web ontology language

overview." W3C recommendation 10.10 (2004): 2004.

[32] Ronak Sutaria and Raghunath Govindachari from Mindtree Labs in "Making sense of

interoperability:Protocols and Standardization initiatives in IOT

http://dx.doi.org/10.1007/978-3-540-92673-3_13
https://www.google.com/url?q=https://wiki.eclipse.org/OM2M/one&sa=D&ust=1484255088810000&usg=AFQjCNGHeHBSwXrvySLA5BWqCAav_sUJdg
https://www.google.com/url?q=http://sofia2.com/&sa=D&ust=1484255088788000&usg=AFQjCNGkgH5yJ0NSavkNSbUq2_Z0iM3GRg
https://es.mathworks.com/help/thingspeak/
http://www.iot-a.eu/public/public-documents/d1.5/at_download/file
http://www.iot-a.eu/public/public-documents/d1.5/at_download/file

 Initial Reference IoT Platform Meta-Architecture and Meta Data Model

191 / 191

[33] The IoT ARM reference manual, Fraunhofer, Martin Bauer et al.

http://publica.fraunhofer.de/dokumente/N-276076.html

[34] Pras, A. Network Management Architectures. ISSN 1381-3617. PhD Thesis, University of

Twente.

http://publica.fraunhofer.de/dokumente/N-276076.html

