

Deliverable D4.3
Initial Reference IoT Platform Meta-Architecture and

Meta Data Model Interoperable IoT framework

Model and Engine v1

7th October 2017

Ref. Ares(2017)4903580 - 07/10/2017

 Interoperable IoT framework Model and Engine v1

INTER-IoT

INTER-IoT aim is to design, implement and test a framework that will allow

interoperability among different Internet of Things (IoT) platforms.

Most current existing IoT developments are based on “closed-loop” concepts, focusing

on a specific purpose and being isolated from the rest of the world. Integration between

heterogeneous elements is usually done at device or network level, and is just limited to

data gathering. Our belief is that a multi-layered approach integrating different IoT

devices, networks, platforms, services and applications will allow a global continuum of

data, infrastructures and services that can will enable different IoT scenarios. As well,

reuse and integration of existing and future IoT systems will be facilitated, creating a

defacto global ecosystem of interoperable IoT platforms.

In the absence of global IoT standards, the INTER-IoT results will allow any company to

design and develop new IoT devices or services, leveraging on the existing ecosystem,

and bring get them to market quickly.

INTER-IoT has been financed by the Horizon 2020 initiative of the European

Commission, contract 687283.

 Interoperable IoT framework Model and Engine v1

INTER-IoT

Initial Reference IoT Platform Meta-Architecture and
Meta Data Model Interoperable IoT framework Model
and Engine v1

Version: 1.0

Security: Public

30/09/2017

The INTER-IoT project has been financed by the Horizon 2020 initiative of the European Commission, contract 687283

 Interoperable IoT framework Model and Engine v1

2

Disclaimer

This document contains material, which is the copyright of certain INTER-IoT consortium parties, and may not

be reproduced or copied without permission.
The information contained in this document is the proprietary confidential information of the INTER-IoT

consortium (including the Commission Services) and may not be disclosed except in accordance with the

consortium agreement.
The commercial use of any information contained in this document may require a license from the proprietor

of that information.
Neither the project consortium as a whole nor a certain party of the consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.
The information in this document is subject to change without notice.

 Interoperable IoT framework Model and Engine v1

3

Executive Summary

The present document is the deliverable D4.3: Interoperable IoT framework Model and Engine v1

which reports about the results in the software design and implementation tasks (T4.4 - T4.5) of the

WP4 in the project INTER-IoT. This document gathers a significant part of the outputs of these tasks,

very specially the task T4.3 started in January 2017(M13), that aims to provide a proper design for

a configuration and management framework and toolset, making easier the administration and use

of the INTER-Layer mechanisms, and its twin task, T4.4, which takes care of the implementation of

the outputs the design performed.

The report gives a full architectural view from the requirements until the communication between

software components. It reflects the design work performed to univocally specify the software built

to support the goals of the INTER-FW and INTER-API products of the project.

Structure

This document contains a report with the initial design carried out to define a full-fledged framework

to enable administration, use and expansion of the multi-layered interoperability solution for

heterogeneous platforms.

The report, which is intended to be a reference document for the technical implementation of the

different modules that compose the INTER-Framework, is structured in a first initial glossary and

study of the different technologies and concepts that are closely related to the design and

implementation task, referring when appropriate some available alternatives for the technological

implementation. Secondly, it addresses the analysis of the solution to be developed, separating

concerns in functional aspects as commonly found in the modern software engineering analysis

processes. After this, a complete design of all the different parts of the software is depicted, defining

a general component architecture, security implementations and graphical design. Finally, the

design of the specification of the single-uniform API to access the different interoperability layer

features is specified, allowing to understand the capabilities of the INTER-FW solution and how it

interfaces with each layer.

Relation with other deliverables

The document is the first version of a total of two reports. This version includes state of the art of

related technologies, requirements analysis and software design, while the second version (D4.4)

will be more focused in usability, deployment, third party developers contributions and features

refinement. This second version will also report about all the updates and upgrades made to the

software during the last period of development (M21-M30). Some of the design ideas and diagrams

reported on the present document are developed and released in D4.5: Interoperable IoT Framework

and tools, released also in M21.

This report also has a tight relation with D4.1 (Initial Reference IoT Platform Meta-Architecture and

Meta Data Model), as far as the concepts proposed in that document are applied in this one, as it is

explained in section 3.2.1. Due to this, this document is also related with D4.2, to be released in M24

and which will contain a refinement of the concepts proposed in D4.1.

Deliverables D3.1(M12) and D3.2(M22) describe the layer-oriented interoperability principles which

are managed and used in the framework concepts and, thus, these deliverables represent a basis

for understanding the analysis and design presented in this work.

Finally, the design and implementation of the INTER-FW is validated and tested in most of the

activities planned in WP6 (pilots and open calls) and reported in D6.1, D6.2 and D6.3, so that D4.3

is an input for these activities.

 Interoperable IoT framework Model and Engine v1

4

Methodology followed

For the analysis of the INTER-FW and INTER-API, a curation of the user requirements has been

performed. After this, use cases with user histories were identified, following an agile approach. A

set of features and mockups was extracted from this analysis. Finally, a formal design of the

components to be instantiated, data models, entities to be stored and main interactions has been

made.

Figure 1 Main relations of this deliverable

D4.3 D4.4

D6.1

D3.1 D3.2

D4.1 D4.2

D6.2

D6.3

 M12

 M21

 M12

 M20

 M24

 M30

 M22

 M24

 M30

 Interoperable IoT framework Model and Engine v1

5

List of Authors

Organisation Authors

Prodevelop Miguel A. Llorente, Miguel Montesinos, Miguel

Llàcer, Julián Martínez

ValenciaPort Foundation Pablo Giménez

Systems Research Institute, Polish Academy of

Sciences

Katarzyna Wasielewska-Michniewska, Paweł

Szmeja

XLAB Flavio Fuart, Matevž Markovič

Università Della Calabria Raffaele Gravina

Rinicom Eric Carlson

Universidad Politécnica de Valencia Jara Suárez, Eneko Olivares, Andreu Belsa

Reviewed

Organisation Name

Association pour le Développement de la Formation en

Transports et Logisitique

Moncef Semichi

Universidad Politécnica de Valencia Álvaro Fides

Edited

Organisation Name

Prodevelop Miguel A. Llorente

XLAB Flavio Fuart

Approved

Universidad Politécnica de Valencia Prof. Carlos E. Palau

 Interoperable IoT framework Model and Engine v1

6

Change control datasheet

Version Date Changes Chapters Pernters

0.1 07/06/17 ToC All PRO

0.2

14/06/17 Comments for writers

and slight formatting for

Google Drive sharing.

All PRO

0.4
21/06/17 INTER-FW Overview

PRO, UPV,

SRIPAS, VPF

0.3
28/06/17 Official template and

formatting
All PRO

0.5

31/07/17

Added sequence

diagrams
2

PRO, UPV,

UNICAL,

SRIPAS, RINI,

VPF

0.7

22/08/17 Complete review,

introduction to some

sections added. Added

class diagrams for back-

end analysis. Added

mock-up screenshots.

All PRO, VPF

0.8
28/08/17 Some pictures and

references added
1 PRO

0.85

01/09/17 Improved sections 3.1,

3.3; Inputs from VPF

(3.5).

3 PRO, VPF

0.92

04/09/17 Added entity relationship

diagram. Added

communication diagram.

3
PRO, VPF, UPV,

XLAB

0.95

11/09/17 Security and relation

with INTER-Layer;

added tables to

sequence diagrams,

improved images,

rearranged

requirements, reviewed

models.

2, 3, 4
PRO, VPF, UPV,

RINI, SRIPAS

0.98

18/09/17
Minor changes,

executive summary
0

PRO, VPF,

SRIPAS, XLAB,

UPV

1.02
03/09/17 Changes after internal

review
All PRO, UPV, AFT

 Interoperable IoT framework Model and Engine v1

7

Contents

Executive Summary .. 3
List of Authors ... 5
Change control datasheet ... 6
Contents .. 7
List of Figures ... 10
List of Tables ... 12
Acronyms .. 13
1 Background .. 15

 INTER-Framework overview .. 15
 Introduction to frameworks ... 16
 Types of Frameworks and uses in INTER-IoT ... 19

1.3.1 Agent-based frameworks .. 20
1.3.2 Cloud based frameworks ... 21
1.3.3 REST-based frameworks .. 24
1.3.4 Reactive streams based frameworks .. 25
1.3.5 SOA-based frameworks .. 28

2 INTER-FW Analysis ... 32
 Analysis overview ... 32
 Use cases and sequence diagrams ... 32

2.2.1 Log In .. 32
2.2.2 API/Token generation .. 34
2.2.3 Add a new platform ... 34
2.2.4 Update platform configuration ... 36
2.2.5 Remove a platform .. 37
2.2.6 Add or register a virtual instance of a gateway ... 38
2.2.7 Update configuration of a virtual instance of a gateway .. 38
2.2.8 Remove a virtual instance of a gateway .. 39
2.2.9 Connect services with AS2AS tool .. 40
2.2.10 List permissions ... 42
2.2.11 Manage platform permissions ... 43
2.2.12 List IPSM instances ... 44
2.2.13 Register IPSM instance ... 45
2.2.14 Unregister IPSM instance .. 46
2.2.15 List alignments in IPSM ... 47
2.2.16 List alignments in Semantic Repository .. 48
2.2.17 Add a new alignment to Semantic Repository ... 49
2.2.18 Add a new alignment to IPSM ... 51
2.2.19 Delete an alignment from IPSM .. 52
2.2.20 Delete an alignment from Semantic Repository .. 53
2.2.21 Delete an ontology from Semantic Repository .. 54
2.2.22 Get an alignment from IPSM ... 55
2.2.23 View an alignment from IPSM ... 56
2.2.24 List active IPSM translation channels .. 57
2.2.25 Create a new translation channel in IPSM .. 58
2.2.26 Delete a translation channel in IPSM .. 59
2.2.27 List ontologies in Semantic Repository ... 60
2.2.28 View an ontology in Semantic Repository ... 61
2.2.29 View an alignment in Semantic Repository ... 62

 Interoperable IoT framework Model and Engine v1

8

2.2.30 View an alignment history in Semantic Repository ... 63
2.2.31 Get an ontology from Semantic Repository ... 64
2.2.32 Get an alignment from Semantic Repository ... 65
2.2.33 Add a new ontology to Semantic Repository ... 65
2.2.34 Add a new alignment to Semantic Repository ... 67
2.2.35 Add a new alignment to Semantic Repository ... 68
2.2.36 Change user data .. 68
2.2.37 Set up QoS requirements .. 69
2.2.38 Visualize SDN topology changes .. 70
 Back-end analysis .. 71

2.3.1 Requirements .. 71
2.3.2 UML class diagrams .. 72
2.3.3 Technologies ... 78
 Front-end analysis .. 79

2.4.1 Requirements .. 79
 API analysis .. 80

2.5.1 API Requirements Analysis ... 80
2.5.2 First iteration: Inter-Layer exposed API ... 81
2.5.3 Second iteration: Security and configuration management 82

3 INTER-FW Design ... 83
 Overview ... 83
 INTER-IoT RA Instantiation .. 83

3.2.1 INTER-IoT RA instantiation ... 85
3.2.2 INTER-FW Functional Components .. 87
3.2.3 Functional Components traceability .. 99
 INTER-FW Components ... 102

3.3.1 Communication diagrams .. 103
3.3.1 Entity relationship diagram .. 108
 INTER-FW security management ... 109
 INTER-FW GUI design ... 111

3.5.1 Main screen (landing page) ... 111
3.5.2 Platforms view ... 112
3.5.3 Gateway view .. 114
3.5.4 Network view ... 117
3.5.5 Service view .. 121
3.5.6 Semantic view ... 122
3.5.7 API management view .. 125
3.5.8 Configuration view ... 126
 INTER-FW relation with INTER-Layer .. 127

4 INTER-API ... 129
 API Management .. 129
 API description ... 131

4.2.1 API Specification tools ... 131
4.2.2 Comparison ... 132
4.2.3 Other API description languages and solutions .. 132
4.2.4 Conclusions ... 133
 API design .. 133

4.3.1 Inter-Layer REST API Endpoints ... 134
5 Ethical issues ... 138

 Introduction ... 138
 Ethics and INTER-FRAMEWORK .. 138

 Interoperable IoT framework Model and Engine v1

9

5.2.1 Data types ... 138
5.2.2 Requirements for ethical data processing ... 139

6 Conclusions and future work ... 141
7 References .. 142
8 Annex I User requirements .. 144
9 Annex II Requirements – use cases mapping ... 160

 Interoperable IoT framework Model and Engine v1

10

List of Figures

Figure 1 Main relations of this deliverable .. 4
Figure 2 Multi-layered approach of INTER-IoT ... 15
Figure 3 INTER-FW overview ... 16
Figure 4 Diagram of libraries, framework and application relationship. .. 17
Figure 5 A classical representation of the difference between library and framework 18
Figure 6 A representation of the relationship between libraries and APIs 19
Figure 7 Cloud-based frameworks classification .. 22
Figure 8 IoT online survey Source: IEEE IoT .. 22
Figure 9 The four attributes of a reactive system .. 25
Figure 10 Main interfaces in reactive streams .. 26
Figure 11 Example of service oriented architecture based framework ... 29
Figure 12 SOA Aspects in INTER-IOT .. 31
Figure 13 D2D UML class diagram ... 73
Figure 14 N2N UML class diagram .. 74
Figure 15 MW2MW UML class diagram ... 75
Figure 16 AS2AS UML class diagram ... 76
Figure 17 DS2DS UML class diagram ... 77
Figure 18 User management UML class diagram .. 78
Figure 19 High-level functionalities architectural approach in INTER-FW 83
Figure 20 Process followed for generating the INTER-FW architecture. .. 84
Figure 21 Functional-decomposition viewpoint of the INTER-IoT Reference Architecture 85
Figure 22: Functional Groups of the INTER-IoT Reference Architecture involved in the INTER-FW

 .. 85
Figure 23: Functional Components of the INTER-FW architecture according to the INTER-IoT

Reference Architecture. .. 88
Figure 24: Functional Components of the Management FG instantiated for INTER-FW concrete

architecture. .. 90
Figure 25: Functional Components of the Security FG instantiated for INTER-FW concrete

architecture. .. 92
Figure 26: Functional Components of the Device Access FG instantiated for INTER-FW concrete

architecture. .. 95
Figure 27: Functional Components of the Platform Interoperability FG instantiated for INTER-FW

concrete architecture. ... 96
Figure 28: Functional Components of the Service Interoperability FG instantiated for INTER-FW

concrete architecture. ... 97
Figure 29: Functional Components of the Semantics FG instantiated for INTER-FW concrete

architecture. .. 98
Figure 30 UML Component diagram of INTER-FW administration and configuration framework 102
Figure 31 Login use cases family: communication diagram ... 104
Figure 32 Manage platforms use cases family: communication diagram 105
Figure 33 Manage gateways use cases family: communication diagram 105
Figure 34 Manage permissions use cases family: communication diagram 106
Figure 35 Manage IPSM use cases family: communication diagram ... 107
Figure 36 ERD of INTER-FW (SQL style) ... 108
Figure 37 Security agents in INTER-IoT ... 110
Figure 38. INTER-FW web application login page .. 111
Figure 39. INTER-FW web application main view .. 112
Figure 40. INTER-FW web application platforms view ... 113

 Interoperable IoT framework Model and Engine v1

11

Figure 41. INTER-FW web application add platform view .. 113
Figure 42. INTER-FW web application platform's device list view .. 114
Figure 43. INTER-FW web application platform's device details view .. 114
Figure 44. INTER-FW web application gateway view ... 115
Figure 45. INTER-FW web application add gateway view .. 115
Figure 46. INTER-FW web application manage gateway devices view .. 116
Figure 47. INTER-FW web application show gateway device details view 116
Figure 48. INTER-FW web application network view .. 117
Figure 49. INTER-FW web application manage network elements view 118
Figure 50. INTER-FW web application add network elements view ... 118
Figure 51. INTER-FW web application network element configuration view 119
Figure 52 QoS queue configuration .. 119
Figure 53 QoS virtual switch configuration ... 120
Figure 54 QoS rules configuration view .. 120
Figure 55. INTER-FW web application service view ... 121
Figure 56. INTER-FW web application add node view ... 121
Figure 57. INTER-FW web application add flow view ... 122
Figure 58. IPSM general configuration view ... 123
Figure 59. Ontologies repository view ... 123
Figure 60. IPSM Translation channels view .. 124
Figure 61. IPSM Configuration view ... 124
Figure 62.IPSM Alignment configuration view .. 125
Figure 63. Alignments repository view .. 125
Figure 64. INTER-FW web application API management view .. 126
Figure 65. INTER-FW web application configuration view .. 126
Figure 66 Relation with INTER-Layer diagram ... 127
Figure 67. INTER-API manager structure ... 130
Figure 68. Swagger editor IPDM component .. 133

 Interoperable IoT framework Model and Engine v1

12

List of Tables

Table 1 Backend related user requirements ... 72
Table 2 Frontend related requirements ... 79
Table 3 API Requirements analysis .. 81
Table 4 INTER-API Frontend in the INTER-IoT RA .. 89
Table 5 Web Console Frontend in the INTER-IoT RA .. 90
Table 6 Web Configuration FC use cases and analysis ... 91
Table 7 Fault FC use cases and analysis ... 91
Table 8 Member FC use cases and analysis ... 92
Table 9 State FC use cases and analysis .. 92
Table 10 Authorisation FC use cases and analysis .. 93
Table 11 Authentication FC use cases and analysis .. 94
Table 12 Key Exange and Management FC use cases and analysis ... 94
Table 13 Identity Management FC use cases and analysis ... 94
Table 14 Virtual Entity FC use cases and analysis ... 95
Table 15 Platform Resolution FC use cases and analysis .. 97
Table 16 Service resolution FC use cases and analysis .. 98
Table 17 Ontology resolution FC use cases and analysis .. 99
Table 18 Traceability matrix of Functional Components of INTER-FW vs. use cases. 100
Table 19 Traceability matrix of Functional Components of INTER-FW vs. INTER-FW architectural

components .. 101
Table 20 Manage networks use cases family: communication diagram 107
Table 21 Ethical issues related requirements ... 140
Table 22 Requirements - use cases mapping part I .. 160
Table 23 Requirements - use cases mapping part II ... 161
Table 24 Requirements - use cases mapping part III .. 162
Table 25 Requirements - use cases mapping part IV .. 163

 Interoperable IoT framework Model and Engine v1

13

Acronyms

API Application Programming Interface
AS2AS Application and Services to Application and Services
AWS Amazon Web Services
CL Cross Layer
COAP Constrained Application Protocol
CSS Cascade Style Sheets
D2D Device to Device
DS2DS Data and Semantics to Data and Semantics
DSL Domain Specific Language
ERD Entity Relationship Diagram
FC Functional Component
FG Functional Group
GUI Graphic User Interface
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol – Secure
IEEE Institute of Electrical and Electronics Engineers
ILI Interoperability Layer Infrastructure
INTER-FW Inter Framework
IoC Inversion of control
IoT Internet of Things
IOT-A Internet of Things – Architecture
IPSM IoT Platforms Semantic Mediator
JADE Java Agent DEvelopment Framework
JIMAF Java-based Interoperable Mobile Agent Framework
JMS Java Messaging Service
JS Javascript
JSON Javascript Object Notation
JSON-LD Javascript Object Notation for Linked Data
JVM Java Virtual Machine
KVP Key Value Pairs
MAPS Mobile Agent Platform for SunSPOT
MAS Multi-agent System
MD Markdown
MFC Microsoft Foundation Classes
MQTT Message Queue Telemetry Transport
MS Microsoft
MW2MW Middleware to Middleware
N2N Network to Network

OASIS
Organization for Advancement of Structured
Information Standards

OPC-UA
Object Linking and Embedding for Process Control –
Unified Architecture

OS Operative System
OSGi Open Services Gateway initiative
QoS Quality of Service
RA Reference Architecture
RAML RESTful API Modeling Language
REST Representational State Transfer architectural style
RPC Remote Procedure Call
SCA Service Component Architecture

 Interoperable IoT framework Model and Engine v1

14

SDK Software Development Kit
SOA Service Oriented Architecture

SOAIF
Service Oriented Architecture Integration
Framework

SOAP Simple Object Access Protocol
SORCER Service-oriented computing environment
SQL Structured Query Language
UML Unified Modelling Language
URL Uniform Resource Locator
URI Uniform Resource Identifier
WCF Windows Communication Foundation
WSDL Web Services Description Language
WSN Wireless Sensor Networks
YAML YAML Ain’t Markup Language

 Interoperable IoT framework Model and Engine v1

15

1 Background

 INTER-Framework overview

The modular layered approach followed in INTER-IoT has multiple advantages such as strong

flexibility, adaptability to very different scenarios, separation of concerns, decoupling between

functional components, scalability across physical tiers, etc. However, the approach also presents

shortcomings in terms of usability or tooling unification, especially in the case of INTER-IoT, where

each Interoperability Layer Infrastructure (ILI) is designed to be completely decoupled, being able to

work standalone.

Figure 2 Multi-layered approach of INTER-IoT

Other important challenge of the INTER-IoT global design, affecting each layer separately is the

future-proof design. One of the fundamental problems solved in INTER-IoT, the isolation of IoT data

in information domains and the inability to automatically share these data across these domains, is

a consequence of the excessive short-term sight in the design or instantiation of IoT systems.

INTER-IoT addresses these described drawbacks by the introduction of a framework based on the

six ILIs (D2D, N2N, MW2MW, AS2AS, DS2DS and CL) exposed APIs. This framework, presented

as the INTER-FRAMEWORK or INTER-FW has three main goals identified:

1. Enable extension and scalability of the INTER-IoT solution to support present and future

applications or more demanding scenarios.

2. Configure, monitor and manage the different layers from a unique view.

 Interoperable IoT framework Model and Engine v1

16

3. Provide and manage a REST-like API to enable the use of the interoperable platforms and

INTER-IoT features.

These goals are addressed in the following functional components developed in INTER-FW:

1. Software development framework: a combination of software results, documentation,

templates and examples allowing extensibility through the application of the INTER-IoT

interoperability patterns in new platforms, devices, services, etc.

2. Instantiation, configuration and management framework and toolset: a web based application

which unifies in a single environment the monitoring, management configuration of the

different IoT components (sensors, network elements, gateways, platforms...) at each

interoperability layer. This element also includes key cross-layer elements management,

such as authentication or authorization configurations.

3. A global, unified API to offer a single-entry point to application and services developers, either

platform owners or third parties.

Challenges

Goals Modules

Figure 3 INTER-FW overview

 Introduction to frameworks

In software engineering, the concept o ‘framework’ is wide and can be applied in very different

disciplines. The idea of what a framework is depends strongly in the approach and the goal of the

software artefact resulting. However, there are some related concepts that very frequently are related

to the software framework. Some of them are quickly discussed in this section.

Library

A library is a collection of code relating to a specific task, or set of closely related tasks which operate

in each domain. Libraries are developed to be called by external agents, avoiding any control over

the applications.

Unification

Usability

Global

design

Future

proof
INTER-API

Software

development

framework

Configuration

framework

and toolset

Extension

and

scalability

Configure,

monitor

and

manage

Provide

REST API

 Interoperable IoT framework Model and Engine v1

17

Figure 4 Diagram of libraries, framework and application relationship.

Toolset

Historically, a toolset is a more focussed library, with a defined and specific purpose and includes

advanced interfaces solutions such as graphical widgets or GUI elements either in desktop or web

environments. Toolsets usually operate in a higher level of abstraction of a library, being very often

library consumers (it is very common to find libraries distributions with an associated toolset e.g.

mosquitto1, jmeter2, docker3, etc.).

Framework

A framework is a suite of interrelated libraries and software modules aimed to solve a problem or a

set of coupled problems. The definition of a framework is usually linked to one of its key properties,

the Inversion of Control (IoC) principle, which means that the program flow is taken over by the

framework itself (a pre-existing and external element to the program), instead of the common case

in imperative programming, where it is controlled by the developed program.

However, frameworks are also targeted either towards a specific output; an application for a specific

OS for example (MFC for MS Windows for example), or for more general-purpose work (Spring

framework for example).

1 https://mosquitto.org/
2 http://jmeter.apache.org/
3 https://www.docker.com/products/docker-toolbox

https://mosquitto.org/
http://jmeter.apache.org/
https://www.docker.com/products/docker-toolbox

 Interoperable IoT framework Model and Engine v1

18

Figure 5 A classical representation of the difference between library and framework

Software Development Kit (SDK)

An SDK is a collection of tools to assist the programmer to create and deploy code/content which is

very specifically targeted to either run on a very particular platform or in a very particular manner. An

SDK can consist of simply a set of libraries which must be used in a specific way only by the client

code and which can be compiled as normal, up to a set of binary tools which create or adapt binary

assets to produce its (the SDK's) output.

Engine

An Engine (in computer science terms) is usually referred to a central, core part of a software system

or subsystem. An engine also may be defined as software that facilitates automated processes, in

which different software elements work interactively to minimize human intervention. Examples of

software engines include relational database engines, workflow engines, inference engines and

search engines. A common characteristic of software engines is metadata that provides models of

the real data that the engine processes. Software modules pass data to the engine, and the engine

uses its metadata models to transform the data into a different state.

Application Programming Interface (API)

An API offers up a contracted external interface to another piece of software (Client code to the API).

More formally, an API is a set of rules ('code') and specifications that software programs can follow

to communicate with each other. It serves as an interface between different software programs and

facilitates their interaction, like the way the user interface facilitates interaction between humans and

computers. APIs are extremely popular in the recent times as a pattern to overtake the

interoperability limitations of the continuous creation and expansion of IT services. Other important

driver of the API popularity is the creation of application-centric ecosystems, allowing third parties to

create clients, use data and add value to the features of existing systems.

 Interoperable IoT framework Model and Engine v1

19

Figure 6 A representation of the relationship between libraries and APIs

In general, APIs are language dependent, since each interface is a contract specified in a given

protocol. However, APIs can make use of communication standards or protocols (e.g. HTTP, SOAP,

COAP...) to overtake this limitation and be programming language independent (though maintaining

the syntax dependency with the selected protocol). Thus, the classification of the APIs can be done

as follows:

 Language APIs: APIs that usually are part of a SDK and are composed by libraries and

annotations to be invoked in a concrete programming language such as Java, .NET, Ruby,

Javascript, Python, etc.

 Protocol APIs: These APIs, typically accessible within a network (mainly the Internet) and run

on the hosting systems. They can also be referred as Web Services, since they are usually

exposed through the Web to offer services to integrators and third parties. The W3C

consortium defines Web Services as software systems designed to support an interoperable

machine-to-machine interaction over a network. The three most common architectural styles

on Web Services are:

 RPC (Remote Procedure Calls): RPC-based Web Services presents a call interface to

distributed procedures and functions. Typically, the basic unit of this type of services is the

WSDL operation (Service descriptor).

 SOAP (Simple Object Access Protocol): Web Services can be implemented following the

concepts of the SOA (Service-oriented Architecture) architecture, where the basic unit of

communication is the message, rather than the operation. This is typically referred to as

message-oriented services.

 REST (REpresentation State Transfer): REST-based Web Services attempts to emulate the

HTTP protocol or similar protocols by restricting the interface to a known set of standard

operations (e.g. GET, PUT, etc.). Therefore, this style is more focused on interacting with

resources with state, than with messages and operations.

 Types of Frameworks and uses in INTER-IoT

For the sake of completeness of this document, a short study of different popular types of frameworks

has been performed. The results are gathered in this section.

 Interoperable IoT framework Model and Engine v1

20

1.3.1 Agent-based frameworks

A software agent is a computer program that acts on behalf of a user or other program in a

relationship of agency. Such "action on behalf of" implies a number of abilities that the agent need

to possess: autonomous behaviour, social ability, responsiveness, proactiveness, and mobility.

Agents may be autonomous or, often, they interact with other agents. In the latter case the

environment in which the agents operate is called Multi-agent system (MAS).

Software agent represent a very expressive paradigm for modelling dynamic distributed systems,

and perfectly fit the generic and specific requirements of IoT systems. Indeed, agent-based

modelling could provide even more benefits in the IoT domain than in conventional distributed

environments.

A MAS is a middleware that basically provide an API for developing agent-based applications, and

an agent server able to execute agents by providing them with basic services such as agent creation,

execution, migration, communication, and access to resources.

A great variety of agent platforms have been to date developed, mostly Java-based. In the following

three popular agent platforms will be briefly introduced: JADE, MAPS, and JIMAF. JADE is probably

the most representative MAS; it is very powerful and general-purpose. JIMAF focus on enhanced

agent interoperability support. Finally, MAPS is an agent platform specifically designed for supporting

wireless sensor networks.

 JADE (Java Agent DEvelopment Framework) is an open-source software Framework fully

implemented in the Java language. It simplifies the implementation of multi-agent systems

through a middleware that complies with the FIPA specifications and through a set of

graphical tools that support the debugging and deployment phases. A JADE-based system

can be distributed across machines (which not even need to share the same OS) and the

configuration can be controlled via a remote GUI. The configuration can be even changed at

run-time by moving agents from one machine to another, as and when required. Besides the

agent abstraction, JADE provides a simple yet powerful task execution and composition

model, peer to peer agent communication based on the asynchronous message passing

paradigm, a yellow pages service supporting publish subscribe discovery mechanism and

many other advanced features that facilitates the development of a distributed system.

Thanks to the contribution of the LEAP project, ad hoc versions of JADE exist designed to deploy

JADE agents transparently on different Java-oriented environments such as Android and J2ME

devices.

 MAPS (Mobile Agent Platform for SunSPOT) is an innovative Java-based framework

specifically developed on SunSPOT technology for enabling agent-oriented programming of

WSN applications. It has been defined according to the following requirements:

o Component-based lightweight agent server architecture to avoid heavy concurrency

and agents cooperation models.

o Lightweight agent architecture to efficiently execute and migrate agents.

o Minimal core services involving agent migration, agent naming, agent

communication, timing and sensor node resources access (sensors, actuators, flash

memory, switches and battery).

o Plug-in-based architecture extensions through which any other service can be

defined in terms of one or more dynamically installable components implemented as

single or cooperating (mobile) agent/s.

o Java language for programming mobile agents.

 Interoperable IoT framework Model and Engine v1

21

The MAPS architecture is based on components that interact through events and offer a set

of services to mobile agents including message transmission, agent creation, agent cloning,

agent migration, timer handling, and easy access to the sensor node resources.

 JIMAF (Java-based Interoperable Mobile Agent Framework) focus on interoperability as a

key issue for a wider adoption of Mobile Agent Systems (MASs) in heterogeneous and open

distributed environments where agents, in order to fulfill their tasks, must interact with other

non homogeneous agents and traverse different agent platforms to access remote resources.

JIMAF relies on an event-driven, proxy-based mobile agent model. It supports interoperable

mobile agents which can be easily coded and adapted to existing MASs without any

modifications of the MAS infrastructures. An interoperable mobile agent consists of a MAS-

neutral high-level part (programmed as an event-driven lightweight agent) which does not

change throughout the mobile agent lifecycle, and a low-level part which depends on the

specific MAS in which the mobile agent is operating and therefore changes after a

heterogeneous migration, assuming the "shape" of the mobile agent of the new hosting MAS.

Communications among interoperable mobile agents are based on asynchronous messages,

whereas communications between an interoperable mobile agent and a MAS-specific mobile agent

are mediated by a wrapper agent. While execution and communication interoperability is directly

furnished by the framework, migration of interoperable mobile agents between two heterogeneous

MASs is enabled by MAS Bridges which are software equivalents of network bridges.

In the context of the Inter-IoT project, there are many “advantages” enabled (or favoured) using

software agents. Agents can allow for:

 protocol encapsulation. In addition, in case of protocol upgrading, a new set of mobile agents

can easily replace the old one at run-time,

 agents have natural orientation to heterogeneity. Mobile agents can act as wrappers among

systems based on different hardware and software. This ability can well fit the need for

integrating heterogeneous IoT devices based on different platforms. An agent may be able

to translate requests coming from a system into specific suitable requests to submit to

another different system,

 robustness and fault-tolerance. The ability of mobile agents to dynamically react to adverse

situations and events (e.g. low battery level) can lead to more robust and fault tolerant IoT

systems; e.g. the reaction to the low battery level event can trigger the migration of all

executing agents to an equivalent device to continue their activity,

 devices and platforms configuration and management, enabled by agents migrating to the

target device/platform or communicating with the local agent.

The use of agents and associated development frameworks can be found in the lower layers of

INTER-IoT, such as the D2D level and in some parts of MW2MW. However, given the functional

relation between INTER-FW and INTER-LAYER components (the former uses and aggregates

functions of the latter), an extensive use of agent-based frameworks is not well suited for the INTER-

FW, since it performs tasks of orchestration and encapsulation, while IoT interoperability-related

business logic is frequently delegated to the lower layers.

1.3.2 Cloud based frameworks

The term "cloud based framework" is used to loosely describe collections of anything from

development tools to middleware to database services that ease the creation, deployment, and

management of cloud applications. Those that work at a software licensing and delivery model in

which the software is hosted centrally are referred to as Software as a service (SaaS). Those that

work at the level of servers, storage and networks are labelled as infrastructure-as-a-service (IaaS)

 Interoperable IoT framework Model and Engine v1

22

frameworks. Platform as a service (PaaS) is a category between these 2 in which cloud computing

services provide a platform allowing customers to develop, run, and manage applications without

the complexity of building and maintaining the infrastructure typically associated with developing and

launching an app. PaaS can be delivered in two ways: as a public cloud service from a provider,

where the consumer controls software deployment with minimal configuration options, and the

provider provides the networks, servers, storage, OS, 'middleware' (i.e.; java runtime, .net runtime,

integration, etc.), database and other services to host the consumer's application; or as a private

service (software or appliance) inside the firewall, or as software deployed on a public infrastructure

as a service.

Figure 7 Cloud-based frameworks classification

For the purposes of INTER-IoT, the platforms and infrastructure levels are relevant.

Representative implementations

The number of cloud based frameworks is extensive and in continuous growth4. The Eclipse IoT

working group, IEEE IoT and AGILE IoT co-sponsored an online survey to understand how

developers build IoT solutions5. 528 individuals participated between February 11 and March 25

2016.

Figure 8 IoT online survey Source: IEEE IoT

4 https://en.wikipedia.org/wiki/Category:Cloud_platforms
5 http://iot.ieee.org/images/files/pdf/iot-developer-survey-2016-report-final.pdf

https://en.wikipedia.org/wiki/Category:Cloud_platforms
http://iot.ieee.org/images/files/pdf/iot-developer-survey-2016-report-final.pdf

 Interoperable IoT framework Model and Engine v1

23

In the following lines, some examples of popular cloud based frameworks are briefly commented.

Amazon Web Services IoT6

 Launched in late 2015, AWS IoT allows companies to use Amazon Web Services to meet IoT needs

by combining device communications, security measures, and a number of versatile application

program interfaces (APIs) with Amazon’s robust AWS cloud. Essentially, AWS IoT acts as a device

gateway that facilitates messaging between IoT devices and the cloud. Amazon supplies clients with

a device SDK that they can use to connect their devices to the gateway and communicate with the

cloud using MQTT or HTTPS. The platform also creates what Amazon dubs a "device shadow," a

persistent virtual representation of each individual device connected to the platform that takes note

of metadata and the kinds of information the device can generate. Users are able to create rules that

will send messages to other AWS services and prompt automated actions. AWS IoT’s main strength

is the scale at which it operates within Amazon’s overall cloud portfolio and the additional services

that it can leverage from that existing stable.

Predix7

GE developed the open-source platform for both internal and external industrial applications. Users

can connect industrial machinery to data-collection devices, which then process and transmit data

at the edge or transmit data directly to a cloud server for processing and analysis. Predix includes

authorization and authentication protocols at both the device and application level for security, which

is integral in the industrial settings where it is used. Users are able to run analysis algorithms in order

to parse and read the data. They can also develop, deploy, and manage applications and services

based around data collected through the industrial platform, allowing for highly customizable uses

and various forms of automation. Additionally, users can create mobile apps to serve as dashboards,

with which they can tap into the data outputs in real time and view data based upon their particular

IoT setup and needs — like monitoring equipment or output levels, for example.

Azure IoT8

With a number of premade solutions that can be specifically altered to meet a company’s needs,

Microsoft’s Azure IoT Suite enables companies to implement a cloud-based IoT solution with minimal

development. The suite offers device SDKs to connect devices to the cloud and transmit operational

data and statistics. The platform builds a database and allows users to engage in real-time analytic

observations through SQL queries. Users can access an existing algorithm library to draw on others’

experiences and perform more informed predictive analysis. Azure also offers extensive device

authentication security measures.

Bluemix9

A versatile and modular platform, IBM’s Bluemix allows companies interested in IoT deployments to

employ a fully cloud-hosted, managed IoT platform. Bluemix can connect to existing devices or

gateways through either the MQTT or HTTP protocols and transmit data in real time from a remote

site to the cloud. It creates independent, scalable runtimes for each application on its cloud servers

that can be accessed through a number of APIs, and leverages IBM’s Watson AI computing system

to engage in real-time analytics. IBM also allows users to create their own applications within Bluemix

to communicate information from the cloud to relevant users via a dashboard and display the analytic

findings.

6 https://aws.amazon.com/iot
7 https://www.ge.com/digital/predix
8 https://azure.microsoft.com/suites/iot-suite/
9 https://www.ibm.com/cloud-computing/bluemix/internet-of-things

https://aws.amazon.com/iot
https://www.ge.com/digital/predix
https://azure.microsoft.com/suites/iot-suite/
https://www.ibm.com/cloud-computing/bluemix/internet-of-things

 Interoperable IoT framework Model and Engine v1

24

The knowledge and use of cloud-based frameworks in INTER-IoT has a twofold purpose:

 Integrate systems based on these cloud-based frameworks with the INTER-LAYER

infrastructure.

 Build a cloud-based framework to manage the different layers and the platform nodes

connected to them.

1.3.3 REST-based frameworks

The philosophy of REST10 is based on the concept of resources and idea of using the inherent power

of HTTP to manipulate and retrieve representations of these resources in varying states. Every

REST resource is identified uniquely by an URL, which is operated upon by a subset of HTTP

commands: get, post, put and delete. This is a major advantage of REST, as HTTP is the universal

protocol of communication over the internet. Another advantage of REST is that it does not bloat

messages sent over the internet -- that is, it does not add additional headers apart from standard

HTML header already contained in the message. For example, to execute a delete command upon

a resource, one must only embed the ID of the resource to the HTTP header, containing the HTTP

delete command.

REST architectural approach is scalable, while in performance benchmarks it is shown to have linear

time complexity regarding running more and more concurrent requests from clients. Its architecture

is based on the client-server model, it is stateless and cacheable.

 REST approach is most suitable for cases when one needs to manage hierarchically organized

resources, uniquely identified with resource identifiers. This is commonly the case, when one's

problem naturally translates to trees and it can be naturally and easily presented with URI paths,

while majority of system's operations can be expressed with simple query parameters. For problems

that don't conform well to this requirement, performing even simple operations can necessitate usage

of many query parameters, while also including the body of the query into the HTTP11 command

body.

The difference between protocols such as SOAP and REST, which is an architectural style, is that

in SOAP, changes are made by accessing server objects remotely, while REST focuses on

representing server objects on the client side. From this fact REST derives its scalability – when we

need to make changes to the server side, we simply enhance representations, which will only be a

concern of the client side, while the API itself (control methods) are left untouched. Pure REST never

manipulates objects on the server side.

Regarding security, we can secure REST by using HTTPS instead of HTTP.

REST implementation examples

A representative implementation of a REST-based framework is the Portal framework [1], which

serves as a bridge between abstract program actions and concrete device inputs, thus creating kind

of a middleware layer. It naturally maps into the client-server paradigm, employing the server side

to handle all registered interaction techniques, application, device and user profiles, while enabling

the client to deal primarily with applications that utilize the framework. Its architecture of

interconnected components (plug-in manager, controller, data transmission component, data model

component and data flow component) also neatly integrates into REST's preferred hierarchical

10http://restfulapi.net/
11http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

http://restfulapi.net/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

 Interoperable IoT framework Model and Engine v1

25

world-view. It was implemented both using REST and using SOAP. The REST implementation was

found to be more scalable, as well as less complex.

Second representative implementation of a REST-based framework is Livy12, which is a service that

enables easy interaction with an Apache Spark cluster over a REST interface. With it one can submit

Spark jobs or snippets of Spark code, one can retrieve results synchronously or asynchronously,

and also manage SparkContext. A session is emulated through usage of a session REST object,

which contains application's session id, owner id, state of the session and so forth. There are also

REST objects for a statement (result of an execution statement) and a batch object.

Django REST framework13 is a third representative of REST-based frameworks. It is a toolkit for

building web-based APIs, which are self-describing, list API endpoints, describes allowable

operations on each and presents them as hypermedia controls that it sends in responses.

REST in INTER-IoT

As described above, this approach is suitable for the INTER-IoT project and is the main mechanism

to expose the layers APIs and the global API of the framework.

As REST philosophy builds upon representations being completely at the mercy of the client, INTER-

FW would not become bloated with addition of new platform types, new devices, new brokers,

security features, etc. Existing nodes, such as /platforms/1/devices/5 could easily be not only

accessed, but also managed.

1.3.4 Reactive streams based frameworks

The concept of a reactive stream refers to handling of (possibly unbounded) sequence of data in a

“reactive way”. According to the Reactive Manifesto14, a reactive system has to be:

 responsive: responds in a timely manner to requests,

 resilient: stays responsive even in the face of failure,

 elastic: stays responsive even under heavy load, and

 message-driven: ensures loose coupling between components by use of asynchronous

message-passing.

Figure 9 The four attributes of a reactive system

12 http://livy.incubator.apache.org./
13 http://www.django-rest-framework.org/
14 http://www.reactivemanifesto.org/

http://livy.incubator.apache.org./
http://www.django-rest-framework.org/
http://www.reactivemanifesto.org/

 Interoperable IoT framework Model and Engine v1

26

In the context of data-stream handling/processing the reactivity principle essentially boils down to

the ability to establish and maintain a non-blocking data flow between (possibly distributed) system

components or systems. The Reactive Streams initiative standard defines a set of interfaces for

handling streams in a reactive manner and gives a detailed specification of their intended behaviour.

The main idea behind is the “back-pressure” mechanism, based on the Publish-Subscribe model.

The Reactive Streams (RS) standard offers the following interfaces: Publisher, Subscriber,

Subscription, and Processor.

 Publisher<T> is the source of data for Subscriber(s). It offers a possibly unbounded sequence

of data elements of type T.

 Subscriber<T> is an entity responsible for managing the subscription to a Publisher and

handling the incoming data of type T. It also copes with error conditions and subscription

cancellation.

 Subscription represents the lifecycle of a Subscriber subscribing to a Publisher.

 Processor<T,R> represents a reactive stream processing stage which is a Subscriber<T>

and, at the same time a Publisher<R>.

The RS standard specification, although presented in the form of just four simple interfaces turns out

to be quite complex and demanding at the implementation level. The treatment of asynchronous

communication combined with back-pressure and proper error handling mechanisms is not as simple

as it may seem at first. Fortunately, the existing libraries and frameworks that support the RS

standard offer DSLs which make creating and transforming reactive streams much easier and

intuitive.

Some examples of RS frameworks are listed in the following lines:

Figure 10 Main interfaces in reactive streams

Subscription

Publisher Subscriber

subscribe

onSuscribe

request(n)

onNext(data<T>) data<T>

cancel

onError/onComplete

 Interoperable IoT framework Model and Engine v1

27

RxJava

RxJava15 is a lightweight (single-jar) library supporting reactive programming in Java. It offers and

advocates functional programming techniques, including in-mutability and statelessness. RxJava is

essentially a JVM implementation of the Reactive Extensions (ReactiveX), which builds upon the

standard Observer pattern.

Even though, Netflix participated in the Reactive Streams initiative from the very beginning, the

RxJava 1.* implementation of streams does not directly comply with the RS standard. Interoperability

between RS implementations and RxJava 1.* can be achieved with the help of

RxJavaReactiveStreams module, though. The development of RxJava 2.* took a long time, but the

second generation of the project has recently been published, offering full implementation of the RS

standard.

At the moment, the development of the library seems to concentrate mainly on the Android platform.

Reactor

Reactor Core 316, similarly to RxJava, is a small (single-jar), highly focused library directly

implementing the Reactive Streams standard, adding many useful stream transformation-building

mechanisms. There are two types of Publisher(s) in Reactor Core 3: a (0..N) Flux<T>, and (0|1)

Mono<T>. The library requires Java 8 to operate. Prior to the version 3.0, Reactor was using RxJava

for the stream processing, and wasn't RS standard compliant.

An interesting feature of version 3 is that it also offers support for the native implementation of

Reactive Streams coming in Java 9 (Flow API).

The Reactor Core library is a core dependency for the coming Spring Framework 5, in particular,

offering RS capabilities through the Spring Data 5 module.

Akka streams

According to the Akka streams project webpage17 “Akka is a toolkit and runtime for building highly

concurrent, distributed, and resilient message-driven applications on the JVM”. Akka utilizes the

Actor Model of concurrency.

An actor is a lightweight primitive, able to communicate asynchronously with other actors in the

system. Upon receiving a message an actor can react by sending a finite number of messages,

spawning a finite number of new actors, and changing its own internal state. The model assumes no

shared global state.

With actors (both local and remote) as basic building blocks Akka offers a wide range of modules

supporting construction of distributed systems. In particular the module akka-stream provides a large

set of high-level tools for defining, constructing and managing reactive streams. The types

Source<T,U>, Flow<S,T>, and Sink<T,U> are built on top of the Reactive Streams standard types

Publisher<T>, Processor<S,T>, and Subscriber<T>. The “extra type parameter” U provides a way

of handling any auxiliary information that might be generated in addition to the data flow within the

stream.

Akka offers high-level DSLs for defining blueprints for streams, and a rich set of predefined

transformations on streams.

15 https://github.com/ReactiveX/RxJava
16 https://github.com/reactor/reactor-core
17 http://doc.akka.io/docs/akka/2.5.3/scala/stream/index.html

https://github.com/ReactiveX/RxJava
https://github.com/reactor/reactor-core
http://doc.akka.io/docs/akka/2.5.3/scala/stream/index.html

 Interoperable IoT framework Model and Engine v1

28

Use in INTER-IoT

Concepts of “stream of data” and “stream processing” seem very natural and fundamental for any

Internet of Things application. Also, the principles of “reactivity” undeniably apply to the realm of IoT.

The popularity/acceptance of the Reactive Streams standard increases, and will probably continue

to do so in the future. Solutions for many popular data sources/stores are available at the moment

and new ones are being created. Hence, a framework offering Reactive Streams as a tool/concept

is well worth considering in the case of INTER-IoT.

For a successful application within the INTER-FW, however, a framework definitely needs to provide

more than just plain Reactive Streams support. Any INTER-IoT deployment will surely be distributed

and will run on a (cloud) cluster. Therefore, the INTER-FW should also provide some flexible, high-

level mechanisms for defining/composing such deployments. A carefully designed DSL would

probably be very helpful in this respect.

Both Reactor and Akka Streams constitute a part of comprehensive frameworks – Spring Framework

and Akka respectively. RxJava 2.*, on the other hand, is a targeted library offering “just” an

implementation of Reactive Streams standard, together with some tooling.

Taking the above into account, we should probably narrow our choice to Reactor vs Akka Streams,

or rather Spring vs Akka. Both frameworks provide comprehensive sets of tools for building

distributed applications, and support microservice architecture. Spring has an undeniably longer

history, but Akka is definitely a mature project as well. Both frameworks have vibrant user

communities, and are actively maintained. Out of the two Akka seems to be more coherent and

compact in design. It also offers high-level DSLs which INTER-FW might successfully utilize/extend.

Some of the principles of reactive programming are successfully used in the design and

implementation of MW2MW layer (Intermw), while not following a specific framework.

1.3.5 SOA-based frameworks

The concept of Service-Oriented Architecture is a software design where services can be accessed

by other software components using a communication protocol over the network. These services

implement protocols that describe how to send and parse message using description metadata. A

service can be defined as a software unit piece with a functionality that can be accesses remotely

and acted upon and updated independently, these services have four main properties:

1. It logically represents a business activity with a specified outcome.

2. It is self-contained.

3. It is a black box for its consumers

4. It may consist of other underlying services.

 Interoperable IoT framework Model and Engine v1

29

Figure 11 Example of service oriented architecture based framework

The SO-Architecture is more related on how to compose an application by integration of distributed,

separately-maintained and deployed software components. It is enabled by technologies and

standards that make it easier for components to communicate and cooperate over a network,

especially an IP network. These technologies include:

 Web services (based on WSDL18 and SOAP19)

 Messaging, (e.g. ActiveMQ, JMS, RabbitMQ)

 RESTful HTTP, with REST20.

 OPC-UA21

 WCF (Microsoft's implementation of Web services, part of WCF22)

 Apache Thrift23

 SORCER24

But if we want to apply this software design into the implementation of a framework, we can use this

architecture as a base and cover it with a different tools and run-time infrastructure software. Hence,

we obtain a SOA architecture implementation framework or SOAIF. This is composed by all the

technologies that an enterprise might need to build and run a SOA, including design-time and run-

time capabilities as well as the software functionality with: tools, management, integration, modelling,

security, and processes.

This frameworks act as an infrastructure platform that lets developers and business analyst create,

deploy, manage and change processes within and across the enterprise. But these frameworks have

very specific requirements as:

 distributed event-enabled architecture,

 flexibility via service-enabled processes,

 enterprise standards support (fault tolerance, reliability, and scalability),

 security in distributed environment,

 visual process composition and monitoring,

18 https://www.w3.org/TR/ws-arch/#WSDL
19 https://www.w3.org/TR/ws-arch/#SOAP
20 https://www.w3.org/2001/sw/wiki/REST
21 https://opcfoundation.org/developer-tools/specifications-unified-architecture
22 https://msdn.microsoft.com/en-us/library/hh128109.aspx
23 https://thrift.apache.org/
24 http://sorcersoft.org/project/site/

https://www.w3.org/TR/ws-arch/#WSDL
https://www.w3.org/TR/ws-arch/#SOAP
https://www.w3.org/2001/sw/wiki/REST
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://msdn.microsoft.com/en-us/library/hh128109.aspx
https://thrift.apache.org/
http://sorcersoft.org/project/site/

 Interoperable IoT framework Model and Engine v1

30

 and rapid process changes.

Representative Implementations

Java OSGi25 technology is the most representative specification to implement software frameworks

and application in a service-oriented architecture. Some of the most representative implementation

examples are:

 Equinox26, Concierge27, Apache Felix28 or Karaf29 as runtime framework and service platforms

OSGi-based on a module design that allows developers to implement an application in a

bundles structure using the common services infrastructure they provide.

 Swordfish30, is an open source SOA framework intended for applications ranging from

enterprise environments to embedded systems. Its features as a SOA runtime platform that

leverages three popular projects: Service Component Architecture (SCA) as common

programming model and assembly description format, Java Business Integration (JBI) as a

common messaging model, and Open Services Gateway initiative (OSGi) as the basis of the

runtime platform.

 WSO2 Carbon31 the core platform of the middleware, also based in OSGi, that allows

components to be dynamically installed, started, stopped, updated and uninstalled, and it

eliminates component version conflicts, creating a service oriented structure for an enterprise

middleware.

SOA in INTER-IoT

INTER-FW and some interoperability layers (gateway, intermw) implementations are partially or

completely distributed using services for each functionality of the framework and communicating

each other by communication protocols. This is useful in the scalability and extendibility of the

framework due to the modularity that this architecture provides.

It also presents some caveats, as for instance that the components need to rely on the underlying

network, so this has to be strongly configured for resilience.

As INTER-FW has to access all the components of Inter layer, INTER-FW can implement different

services to be consumed for each one of the clients on each interoperability solution. So that each

tier of INTER-LAYER expose an API (e.g REST API) to connect with specific services within the

framework where an added value is also implemented.

25 https://www.osgi.org
26 http://www.eclipse.org/equinox
27 http://www.eclipse.org/concierge
28 http://www.felix.apache.org
29 http://www.karaf.apache.org
30 https://wiki.eclipse.org/Swordfish_Documentation:_Architecture:_Interceptor_Framework
31 http://wso2.com/products/carbon

https://www.osgi.org/
http://www.eclipse.org/equinox
http://www.eclipse.org/concierge
http://www.felix.apache.org/
http://www.karaf.apache.org/
https://wiki.eclipse.org/Swordfish_Documentation:_Architecture:_Interceptor_Framework
http://wso2.com/products/carbon

 Interoperable IoT framework Model and Engine v1

31

This added value is an environment where future developer can implement a new service included

within INTER-FW to be used by one or more interoperability solutions. So that, the modularity that

Service Oriented Architecture provides makes easier this extension.

DASHBOARDS

STATISTICS

SERVICES

EXTENDED FUNCTIONALITIES

REST REST REST REST REST REST

Figure 12 SOA Aspects in INTER-IOT

 Interoperable IoT framework Model and Engine v1

32

2 INTER-FW Analysis

 Analysis overview

The analysis of INTER-FW has been a process to transform user and technical requirements

gathered mainly in WP2 activities and consolidated with WP3/WP4 activities into technical

specifications to enable the implementation of all the components composing the framework.

Initially, all requirements affecting INTER-FW and INTER-API were extracted and analysed,

considering the initial version of the meta-model and meta-architecture (D4.1) and the intial results

of the INTER-LAYER (D3.1). After this, all the use cases were extracted according to the features

identified, and analyzed in a structured document by all the partners participating in the task. Inputs

from WP3/WP5 task leaders were also received to allow a good integration of INTER-FW with other

ongoing developments and to design the set of tools coherently to the rest of technical tasks.

After this, a mock-up of the front-end was also developed in collaboration of all the partners. The

mock-up is available online in the INTER-IoT repository (https://git.inter-iot.eu/Inter-

IoT/framework/src/master/design). Once the mock-up was validated by partners and stakeholders,

an analysis of the backend was made, including the security aspects of the web application and the

credentials brokerage needed to manage the security and privacy of the connected platforms. UML

Class diagrams have been used as supporting tool to depict the different models in the INTER-FW

web application and tooling.

These design documents are available in the project git, currently accessible only to project partners

and open call winners. The following sections gather the results of these activities.

 Use cases and sequence diagrams

In the analysis of the INTER-FW, all the functionalities and/or use cases extracted from the

requirements have been identified and analysed in depth before beginning any development. Use

cases are described as a story that facilitates the identification of the users, their motivation, and the

action they take to solve a problem. The template used to describe this history is the following [2]

(agile user story template):

As a <role of the user, e.g. INTER-IoT Third Party Developer>

I want to <user motivation, e.g. add a device to an existing gateway>

So that <goal/benefit/value e.g. I can interoperate my device with other existing in my office>

Finally, a sequence diagram has been made for each of the use cases of identified, in which you

can see the different actions that must be carried out among the proposed menus.

2.2.1 Log In

As an IoT platform administrator, I want to authenticate myself on the INTER-IoT environment, so
that I’m able to exploit the available platform functionalities according to my permissions.

https://git.inter-iot.eu/Inter-IoT/framework/src/master/design
https://git.inter-iot.eu/Inter-IoT/framework/src/master/design

 Interoperable IoT framework Model and Engine v1

33

Preconditions User is already registered, so he has INTER-IoT credentials (user & password).

Steps 1. Go to the page containing the authentication module
2. Insert user credentials (a link is available for unregistered users, which are

re-direct to a registration form)
3. Confirm the operation

Verification Credentials match and user is redirected to a customized page (in case of
unsuccessful login, user is invited to re-insert credentials or to start the password
recovery procedure -- a new password is sent to his/her registered email address.
After the fifth unsuccessful attempt, login functionality is temporarily disabled for
security reasons, user have to wait 30 minutes and portal administrator is notified
through an email).

Postconditions User can operate accordingly to his/her permissions.

 Interoperable IoT framework Model and Engine v1

34

2.2.2 API/Token generation

As an IoT integrator, I want a Rest API to integrate my services in the INTER-IoT environment so

that the services can interoperate with other IoT platforms.

Preconditions -

Steps 1. Login in the system
2. Access to the configuration menu. Use the old key/token to confirm your

privileges
3. Ask for a new key/token
4. Copy the new token

Verification -

Postconditions The new key/token can be used to access the APIs.

2.2.3 Add a new platform

As an IoT platform administrator, I want to add my platform to the INTER-IoT environment, so that

the platform can interoperate with other platforms.

 Interoperable IoT framework Model and Engine v1

35

Preconditions -

Steps 1. Login in the system
2. Access to the platform menu with the list of all the registered platforms
3. Select the button to create a new platform
4. Complete the mandatory and optional fields
5. Save the data

Verification If any of the mandatory fields are not complete, the system requires to fill it in.
The urls and ports are checked when the platform is created. If any of them has
not connectivity, the system requires changing it.
After the platform is created, it need a proper bridge to interoperate. If it does not
exist a bridge for this kind of platform, it is necessary to include it.

 Interoperable IoT framework Model and Engine v1

36

Postconditions The new platform can be used from the webapp

2.2.4 Update platform configuration

As an IoT platform administrator, I want to change my platform configuration, so that the new

parameters are updated.

Preconditions The platform is already registered in the system

Steps 1. Login in the system
2. Access to the platform menu with the list of all the registered platforms
3. Search the platform you want to update in the list and select the update

button
4. Update all the needed fields
5. Save the data

Verification If any of the mandatory fields are not complete, the system requires to fill it in.
The urls and ports are checked when the platform is created. If any of them has
not connectivity, the system requires changing it.

 Interoperable IoT framework Model and Engine v1

37

Postconditions The updated platform can be used from the webapp

2.2.5 Remove a platform

As an IoT platform administrator, I want to remove my platform from the INTER-IoT environment, so

that the data is now confidential.

Preconditions The platform is already registered in the system

Steps 1. Login in the system
2. Access to the platform menu with the list of all the registered platforms
3. Search the platform you want to update in the list and select the remove

button
4. Confirm that you are sure to remove the platform

Verification If there is any problem during the removal process, the platform is restored.
All the platform or devices subscribed to data of the platform are notified of its
removal

Postconditions The platform cannot be used from the webapp anymore

 Interoperable IoT framework Model and Engine v1

38

2.2.6 Add or register a virtual instance of a gateway

As a user who desires to install the INTER-IoT Gateway solution in my small-scale deployment (e.g.

devices from my smart home) to access its information from the same User Interface. In such case,

the data from my Bluetooth devices and data from Wi-Fi devices can be stored in the same database

and accessed from the same UI (that could be a GUI).

Preconditions -

Steps 1. User logs in and access virtual gateway page
2. User adds virtual gateway and fills requirements

Verification User is notified upon gateway registration, whether it is successful of not.

Postconditions If the operation was successful, the user can use the newly added gateway. Else,
the state of the system remains unchanged.

2.2.7 Update configuration of a virtual instance of a gateway

As a user who desires to configure the INTER-IoT Gateway solution in my small scale deployment

(e.g. devices from my smart home) to access its information from the same User Interface. I want to

custom configure the parameters of my gateway (virtual instance). So that I can change some

parameters such as the size of the storage buffer of data, the time slot for pooling information, choose

the platform to configure, etc.

 Interoperable IoT framework Model and Engine v1

39

Preconditions Virtual instance of the gateway is in the system

Steps 1. User logs in and access virtual gateway page
2. User chooses a virtual gateway instance
3. User modifies virtual gateway parameters

Verification User is notified upon gateway modification, whether it is successful of not.

Postconditions If the operation was successful, the user can use the changed gateway. Else, the
state of the system remains unchanged.

2.2.8 Remove a virtual instance of a gateway

As a User with a deployed INTER-IoT GW solution I want to remove an instance of the virtual GW

to create another one or to eliminate the deployment of my system. So that, I can reinstall it in

somewhere else or just remove it to create a fresh new instance of the virtual GW.

 Interoperable IoT framework Model and Engine v1

40

Preconditions Virtual instance of the gateway is in the system, and is not in use.

Steps 1. User logs in and access virtual gateway page
2. User chooses a virtual gateway instance
3. User removes virtual gateway

Verification User is notified upon gateway removal, whether it is successful of not.

Postconditions If the operation was successful, the user cannot use the removed gateway. Else,
the state of the system remains unchanged.

2.2.9 Connect services with AS2AS tool

As a user who has two or more IoT platforms deployment, I want to connect two services from these

different platforms, so that I can create a composite service using the output of one service as the

input for the other.

 Interoperable IoT framework Model and Engine v1

41

Preconditions The deployed environment with the AS2AS solution installed and running the
INTER-IoT Node-RED version.
To have installed the nodes that provide the access to the desired services.
To have installed the nodes that facilitate the conversion of formats/protocols
from the output of one of them to the input of the other.
To have IoT Platforms configured

Steps 1. As INTER-FW portal has embedded the INTER-IoT AS2AS solution, you
must access this portal, with the authentication access rights.

2. Then you drag and drop the first node (service) and complete the
configuration parameters needed to access this service.

3. Later, you drag and drop the second service and configure it as well.
4. Then, you can drag and drop a function node to connect the first service to

the second.
a. If the code of the connector is not already implemented, the user

should write a short function to extract the values from the output
of the first service to use it as the input of the later one.

5. Deploy the flow created.
6. If necessary, start the running of the initial service.

Verification The deploy does not return error.
The correct execution of the flow that imply the data coming from the first service
is used correctly as an input for the second one to carry out a specific task.
Use a debug node to verify the correct operation.

Postconditions A composite service has been created that can be used isolated or to compose
new composed services.
The user can provide different inputs to the first service to see how affects the
second one.
The second service is fed with the information of the first one.

 Interoperable IoT framework Model and Engine v1

42

2.2.10 List permissions

As an INTER-IoT Administrator, I want to list permissions previously granted, so that a summary of
the granted permissions is displayed.

Preconditions User is an INTER-IoT Administrator.

Steps 0. User browses to the INTER-FW admin.
1. User logs in (see 2.2.1)
2. Permission is granted and browser shows the Main Page
3. User clicks on the platforms tab.
4. The list of platforms is shown on screen.
5. User select the platform to list its permissions.
6. The list of platform details is returned.
7. User selects the option “List permissions”
8. List of permission assignment is returned and shown on screen.

Verification Permissions for the selected user(s) are displayed

Postconditions none

 Interoperable IoT framework Model and Engine v1

43

2.2.11 Manage platform permissions

Preconditions User is an INTER-IoT Administrator.

Steps 0. User browses to the INTER-FW admin <url>
1. User logs in (see 2.2.1)
2. Permission is granted and browser shows the Main Page
3. User clicks on the platforms tab.
4. The list of platforms is shown on screen.
5. User selects the platform to manage permissions.
6. The list of platform details is returned.
7. User selects the option “List permissions”
8. List of permission assignment is returned and shown on screen.
9. Permission management actions

1. Add permission action
1. User selects “Add” permission action and enters the data

for the new permission (User, Rights, Actions)
2. After a successful action the screen is updated with the

new permission. In case of error, the error is displayed.
2. Edit permission action

1. User selects “Edit” permission action and changes the data
for an existing permission (Rights, Actions)

2. After a successful action the screen is updated. In case of
error, the error is displayed.

3. Revoke permission action
1. User selects “Revoke (delete)” permission action.
2. After a successful action the screen is updated with the

new permission. In case of error, the error is displayed.

Verification Permissions for the selected user(s) updated

Postconditions none

 Interoperable IoT framework Model and Engine v1

44

2.2.12 List IPSM instances

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

get information on what alignments are active (used) in the IPSM deployment, so that I can verify

the configuration.

 Interoperable IoT framework Model and Engine v1

45

Preconditions -

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Go to IPSM Configuration view
4. Registered IPSM instances are displayed in the table with actions

available for each row

Verification The table with registered instances is successfully populated.

Postconditions Selected registered instance provides context for operation related to alignments
and translation channels within IPSM.

2.2.13 Register IPSM instance

As an INTER-IoT administrator and I want to register existing IPSM installation to be able to interact

with it via INTER-FW Portal.

 Interoperable IoT framework Model and Engine v1

46

Preconditions 1. Have a host and port of IPSM REST API.

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select IPSM Configuration view
4. Fill in parameters describing IPSM instance to be registered
5. Select Register IPSM instance operation

Verification Newly registered IPSM instance is listed in the registered IPSM instances table.

Postconditions Selected registered instance provides context for operation related to alignments
and translation channels within IPSM.

2.2.14 Unregister IPSM instance

As an INTER-IoT administrator I want to unregister existing IPSM installation since I no longer want

to interact with it via INTER-IoT FW Portal.

 Interoperable IoT framework Model and Engine v1

47

Preconditions 1. Have a host and port of IPSM REST API.

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select IPSM Configuration view
4. Select Remove operation next to the row with an entry representing IPSM

instance that is to be unregistered

Verification Removed IPSM instance is not listed in the registered IPSM instances table.

Postconditions IPSM instance is no longer attached to the INTER-IoT deployment.

2.2.15 List alignments in IPSM

AS an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

get information on what alignments are active (used) in the IPSM deployment, so that I can manage

this alignments or prepare a configuration for a new translation channel.

 Interoperable IoT framework Model and Engine v1

48

Preconditions 1. Know the host and port of IPSM instance for which alignments are to be
listed

Steps 1. Log into INTER-IoT Portal
2. Go to Semantics page to access IPSM configuration
3. On IPSM Configuration view mark IPSM instance for which alignments

will be listed
4. Select IPSM Alignments view
5. The GET operation of IPSM REST API is invoked
6. The response with json content is returned.

a. If status 200 is returned then table is successfully populated with
available alignments information

b. Otherwise, error message returned in response is displayed to the
user

7. Available alignments are displayed in the table with actions available for
each row

Verification The table with active alignments containing information about identifier, source
ontology, target ontology, author, version, comment is successfully populated.

Postconditions Returned alignments can be used to create channels or get/view/delete selected
alignment.

2.2.16 List alignments in Semantic Repository

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner and I want

to get information on what alignments are available in the Semantic Repository, so that I can manage

them (download, view, delete, add a new version) or verify available alignments to be added to a

specific IPSM instance.

 Interoperable IoT framework Model and Engine v1

49

Preconditions -

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select IPSM Alignments view
4. The GET operation of IPSM Semantic Repository REST API is invoked
5. The response with json content is returned.

a. If status 200 is returned then table is successfully populated
b. Otherwise, error message returned in response is displayed to the

user
6. Available alignments are displayed in the table with actions available for

each row

Verification The table of available alignments containing information about identifier, source
ontology, target ontology, author, version, description, upload date is successfully
populated.

Postconditions Returned alignments can be used to create channels or get/view/delete selected
alignment.

2.2.17 Add a new alignment to Semantic Repository

As a semantic engineer working for a IoT Platform owner that has integrated a platform into an

INTER-IoT ecosystem, or as an INTER-IoT administrator. I want to publish an alignment to be

available within INTER-IoT deployment.

 Interoperable IoT framework Model and Engine v1

50

Preconditions 1. Have a new platform to integrate with INTER-IoT (platform is not natively
supported)

2. NP has an API supporting the basic integration features
3. Have an alignment file persisted in IPSM alignment format. Preconditions

for creating alignment: have the platform ontology (existing or created
based on INTER-IoT methodology) and the central ontology used in
INTER-IoT deployment.

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Alignments Repository view
4. Upload or drag&drop from local computer an alignment file
5. Select Add alignment operation
6. The PUT operation of Semantic Repository REST API is invoked
7. The response with json content is returned

a. If status 200 is returned then message that alignment has been
uploaded successfully is displayed

b. Otherwise, error message return in the response is displayed to
the user

Verification The alignment file is successfully uploaded to Semantic Repository and
confirmation of success is returned by Semantic Repository API and displayed to
the user. Newly uploaded alignment is listed in the available alignments table.

Postconditions Alignment is available in Semantic Repository and can be added to specific IPSM
instance.

 Interoperable IoT framework Model and Engine v1

51

2.2.18 Add a new alignment to IPSM

As a semantic engineer working for a IoT Platform owner and I want to integrate my platform with

INTER-IoT ecosystem at the semantic level, so that I can translate data between my platform’s

semantics and semantics of the other platform that is available in the INTER-IoT ecosystem.

Preconditions
1. Know which alignment from Semantic Repository should be added to an

IPSM instance

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. On IPSM Configuration view mark IPSM instance for which alignment will

be added
4. Select IPSM Alignments view
5. From a list of alignments available in the repository select the one that is

to be added to IPSM instance
6. Select Add alignment operation
7. The PUT operation of IPSM REST API is invoked
8. The response with json content is returned

a. If status 200 is returned then message that alignment has been
uploaded successfully is displayed

b. Otherwise, error message return in the response is displayed to
the user

Verification The alignment file is successfully uploaded to IPSM and confirmation of success
is returned by IPSM API and displayed to the user. Newly uploaded alignment is
listed in the available alignments table.

 Interoperable IoT framework Model and Engine v1

52

Postconditions Alignment is available in IPSM alignments repository and can be used to create
translation channels.

2.2.19 Delete an alignment from IPSM

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

remove an alignment between ontologies that is no longer used in any translation process.

Preconditions 1. Know details of an alignment that is to be deleted (identifier, or source
and target ontology)

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. On IPSM Configuration view mark IPSM instance for which alignment will

be deleted
4. Select IPSM Alignments view
5. Filter the table of available alignments by identifier, source or target

ontology, author, version, or comment
6. Select Delete action for a specific alignment entry
7. Confirm the operation
8. The DELETE operation of IPSM REST API is invoked
9. The response with json content is returned

a. If status 200 is returned then message confirming than an
alignment has been deleted is returned

 Interoperable IoT framework Model and Engine v1

53

b. Otherwise, error message returned in response is displayed to the
user (e.g. when alignment is used in any active translation
channel)

Verification Confirmation of successful deletion of an alignment with a given identifier is
returned by IPSM API.

Postconditions List of available alignments does not contain deleted alignments and it is no
longer available to be used in channel creation.

2.2.20 Delete an alignment from Semantic Repository

As an INTER-IoT administrator I want to remove an alignment between ontologies that is no longer

used in any translation process in any IPSM instance.

Preconditions 1. Know details of an alignment that is to be deleted (identifier, or source
and target ontology)

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Alignments Repository view
4. Filter the table of available alignments by identifier, source or target

ontology, author, version, or comment
5. Select Delete action for a specific alignment entry
6. Confirm the operation
7. The DELETE operation of Semantic Repository REST API is invoked

 Interoperable IoT framework Model and Engine v1

54

8. The response with json content is returned
a. If status 200 is returned then message confirming than an

alignment has been deleted is returned
b. Otherwise, error message returned in response is displayed to the

user

Verification Confirmation of successful deletion of an alignment with a given identifier is
returned by the API.

Postconditions List of available alignments does not contain a deleted alignment and it is no
longer available to be added to IPSM instance.

2.2.21 Delete an ontology from Semantic Repository

As an INTER-IoT administrator I want to remove an ontology from the Semantic Repository so that

it cannot be used as a support in alignment creation. This can happen with a platform’s ontology e.g.

when a platform is removed from the INTER-IoT ecosystem.

Preconditions 1. Know details of an ontology that is to be deleted (identifier, or base URI)

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Ontology Repository view
4. Filter the table of available ontologies
5. Select Delete action for a specific ontology entry
6. Confirm the operation

 Interoperable IoT framework Model and Engine v1

55

7. The DELETE operation of Semantic Repository REST API is invoked
8. The response with json content is returned

a. If status 200 is returned then message confirming than an
alignment has been deleted is returned

b. Otherwise, error message returned in response is displayed to the
user

Verification Confirmation of successful deletion of an ontology with a given identifier is
returned by the API.

Postconditions List of available ontologies does not contain a deleted ontology.

2.2.22 Get an alignment from IPSM

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

retrieve an alignment between ontologies that has been uploaded to the IPSM instance so that I can

verify it or create a new version/alignment based on it.

Preconditions 1. Know an identifier (or source and target ontologies URIs) of an alignment
that is to be retrieved

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration

 Interoperable IoT framework Model and Engine v1

56

3. On IPSM Configuration view mark IPSM instance for which alignment will
be retrieved

4. Select IPSM Alignments view
5. Filter the table of available alignments by identifier, source or target

ontology, author, version, or comment
6. Select Get action for a specific alignment entry
7. The GET operation of IPSM REST API is invoked
8. The response is returned

a. In case of success a content with an alignment is returned
b. Otherwise, error message from the response is displayed to the

user

Verification The alignment with a specified identifier is returned to the user.

Postconditions The alignment can be used by the user as a basis to introduce modifications.

2.2.23 View an alignment from IPSM

I am an INTER-IoT administrator or a developer working for integrated IoT Platform owner and I want

to view an alignment between ontologies that has been uploaded to the IPSM deployment.

Preconditions 1. Knowa n identifier (or source and target ontologies URIs) of an alignment
that is to be viewed

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. On IPSM Configuration view mark IPSM instance which alignment will be

viewed

 Interoperable IoT framework Model and Engine v1

57

4. Select IPSM Alignments view
9. Filter list of alignments by identifier, source or target ontology, author,

version, or comment
5. Select View action for a selected alignment entry
6. The GET operation of IPSM REST API is invoked
7. The response is returned

a. In case of success, a content with alignment is returned
b. Otherwise, error message from the response is displayed to the

user
8. A new tab is open with an alignment viewer displaying a retrieved

alignment

Verification The alignment with a specified identifier (or source and target ontologies URIs
) is opened for viewing to the user.

Postconditions The alignment can be used by the user to investigate the details of semantic
translation.

2.2.24 List active IPSM translation channels

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

get information on what channels are active in the IPSM deployment.

Preconditions -

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. On IPSM Configuration view mark IPSM instance for which channels will

be listed
4. Select IPSM Translation Channels view
5. The GET operation of IPSM REST API is invoked
6. The response with json content is returned

 Interoperable IoT framework Model and Engine v1

58

a. If status 200 is returned then table with active channels is
successfully populated

b. Otherwise, error message returned in response is displayed to the
user

7. Active channels are displayed in the table with actions available for each
row

Verification The list of channels is returned to the user containing information about identifier,
source, target, input alignment and output alignment.

Postconditions -

2.2.25 Create a new translation channel in IPSM

As a semantic engineer working for a IoT Platform owner I want to integrate my platform with INTER-

IoT ecosystem at the semantic level, so that I can translate data between my platform’s semantics

and semantics of the other platform that is available in the INTER-IoT ecosystem.

Preconditions Know identifiers of two alignments (from source to central ontology, from central
to target ontology) that are available in the IPSM instance.

 Interoperable IoT framework Model and Engine v1

59

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. On IPSM Configuration view mark IPSM instance for which channels will

be created
4. Select IPSM Translation Channels view
5. Enter channel’s source and target names, and select identifiers of input

and output alignments
6. Select Add channel operation
7. The PUT operation of IPSM REST API is invoked
8. The response with json content is returned

a. If status 200 is returned then a message that a channel has been
successfully created is displayed

b. Otherwise, error message returned in response is displayed to the
user

Verification The channel is successfully created in IPSM and confirmation of success is
returned by IPSM API and displayed to the user .The list of active translation
channels contains the newly created channel.

Postconditions The translation channel can be used by other INTER-IoT components.

2.2.26 Delete a translation channel in IPSM

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

remove a translation channel that is no longer used in any translation process.

 Interoperable IoT framework Model and Engine v1

60

Preconditions 1. Know an identifier (or other identifying data) of a channel that is to be
deleted

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. On IPSM Configuration view mark IPSM instance which channel will be

deleted
4. Select IPSM Translation Channels view
5. Filter the table of active channels by identifier (or any other data that can

be used to identify the channel)
6. Select Delete action for a specific channel entry
7. Confirm the operation
8. The DELETE of IPSM REST API is invoked
9. The response with json content is returned

a. If status 200 is returned then message confirming than a channel
has been deleted is returned

b. Otherwise, error message returned in response is displayed to the
user

Verification Confirmation of successful deletion of a channel with a given identifier is returned
by IPSM API. The channel is no longer visible in the table with active translation
channels.

Postconditions List active channels operation does not return deleted channel.

2.2.27 List ontologies in Semantic Repository

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

get information on what ontologies are available in the Semantic Repository so that I can use them

to create an alignment between them.

Preconditions -

 Interoperable IoT framework Model and Engine v1

61

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Ontology Repository view
4. The Semantic Repository API is invoked
5. The response is returned

a. In case of success, the table with available ontologies is
successfully populated

b. Otherwise, error message returned in response is displayed to the
user

6. Available ontologies are displayed in the table with actions available for
each row

Verification The list of ontologies is returned to the user.

Postconditions -

2.2.28 View an ontology in Semantic Repository

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

quickly get information on the details of an ontology available in the INTER-IoT ecosystem.

Preconditions 1. Know an identifier or a base URI of an ontology that is to be viewed

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Ontology Repository view
4. Filter list of ontologies by any field in table header
5. Select View operation for a selected ontology entry
6. The Semantic Repository API is invoked

a. In case of success an ontology file is returned

 Interoperable IoT framework Model and Engine v1

62

b. Otherwise, error message from the response is displayed to the
user

7. A new tab is opened with an ontology viewer

Verification The ontology with a specified URI is opened for viewing to the user.

Postconditions The ontology can be used by the user to investigate the details of data
representation specific for a given platform or IPSM.

2.2.29 View an alignment in Semantic Repository

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

get information on the details of an alignment available in the Semantic Repository of INTER-IoT

ecosystem.

Preconditions 1. Know identifying information for an alignment (e.g. identifier, or source
and target ontology)

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Alignments Repository view
4. Filter list of alignments by any field in table header (identifier, source or

target ontology, author, version, or comment)
5. Select View operation for a selected alignment entry
6. The Semantic Repository API is invoked

a. In case of success an ontology file is returned
b. Otherwise, error message from the response is displayed to the

user
7. A new tab is opened with an alignment viewer

 Interoperable IoT framework Model and Engine v1

63

Verification The alignment is opened for viewing to the user.

Postconditions The alignment can be used to configure IPSM instance.

2.2.30 View an alignment history in Semantic Repository

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

get information on the changes of an alignment available in the Semantic Repository of INTER-IoT

ecosystem.

Preconditions 1. Know identifying information for an alignment (e.g. identifier, or source
and target ontology)

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Alignments Repository view
8. Filter list of alignments by any field in table header (identifier, source or

target ontology, author, version, or comment)
4. Select History operation for a selected alignment entry
5. The Semantic Repository API is invoked

a. In case of success an ontology file is returned
b. Otherwise, error message from the response is displayed to the

user
6. A history of alignments sorted by version is displayed.

Verification A history of alignments sorted by version is displayed.

Postconditions -

 Interoperable IoT framework Model and Engine v1

64

2.2.31 Get an ontology from Semantic Repository

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

get an ontology so that I can create alignments from my platform.

Preconditions 1. Know an identifier or a base URI of an ontology that is to be viewed

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Ontology Repository view
4. Filter list of ontologies by any field in table header
5. Select Download action from for a selected entry with available ontologies

(central ontology(ies) is highlighted)
6. The Semantic Repository API is invoked
7. The response is returned

1. In case of success an ontology file is returned
2. Otherwise, error message from the response is displayed to the

user

Verification The ontology available in the Semantic Repository is returned to the user.

Postconditions The ontology can be used to prepare alignments between IoT platform ontology
and central ontology to be used in the translation process.

 Interoperable IoT framework Model and Engine v1

65

2.2.32 Get an alignment from Semantic Repository

As an INTER-IoT administrator or a developer working for integrated IoT Platform owner I want to

get an alignment available in the Semantic Repository so that I can verify it before adding to IPSM

instance or create a new version/alignment based on it.

Preconditions 1. Know identifying information for an alignment (e.g. identifier, or source
and target ontology)

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Alignments Repository view
4. Select Download action from for a selected entry.
5. The Semantic Repository API is invoked
6. The response is returned

a. In case of success an ontology file is returned
b. Otherwise, error message from the response is displayed to the

user

Verification The alignment available in the Semantic Repository is returned to the user.

Postconditions The alignment can be used to configure an IPSM instance or as a basis for a new
alignment.

2.2.33 Add a new ontology to Semantic Repository

As a semantic engineer working for a IoT Platform owner I want to integrate my platform with INTER-

IoT ecosystem at the semantic level, so that I can translate data between my platform’s semantics

 Interoperable IoT framework Model and Engine v1

66

and semantics of the other platform that is available in the INTER-IoT ecosystem. To enable easier

alignment creation I want to make the ontology of my IoT platform available to other users. If I am

an INTER-IoT administrator I want to upload a central ontology, to enable others to define alignments

to/from it.

Preconditions 1. Have a file with the ontology that is to be uploaded to the Semantic
Repository

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Ontology Repository view
4. Drag&drop or upload the ontology file
5. Fill additional parameters describing the ontology
6. Select Add ontology operation
7. The Semantic Repository API is invoked
8. The response is returned

a. In case of success, a message that the ontology has been
successfully added is displayed

b. Otherwise, error message returned in response is displayed to the
user (e.g. ontology with such base URI is already added)

Verification The ontology is successfully added to the Semantic Repository and confirmation
of success is returned by the API and displayed to the user. The list of available
ontologies contains the newly added ontology.

Postconditions The ontology can be used by downloaded and viewed by INTER-IoT users.

 Interoperable IoT framework Model and Engine v1

67

2.2.34 Add a new alignment to Semantic Repository

As a semantic engineer working for a IoT Platform owner I want to integrate my platform with INTER-

IoT ecosystem at the semantic level, so that I can translate data between my platform’s semantics

and semantics of the other platform that is available in the INTER-IoT ecosystem. After preparing an

alignment I want to make it available in the Semantic Repository to be able to add it to IPSM

instances and reuse.

Preconditions 1. Have a file with the alignment that is to be uploaded

Steps 1. Log into INTER-IoT FW Portal
2. Go to Semantics page to access IPSM configuration
3. Select Alignments Repository view
4. Drag&drop or upload the alignment file.
5. Select Add alignment operation
6. The Semantic Repository API is invoked
7. The response is returned

a. In case of success, a message that the alignment has been
successfully added is displayed

b. Otherwise, error message returned in response is displayed to the
user

Verification The alignment is successfully added to Semantic Repository and confirmation of
success is returned by the API and displayed to the user. The list of available
alignments contains the newly added alignment.

Postconditions The alignment can be used by downloaded, viewed and added to IPSM instances
by INTER-IoT users.

 Interoperable IoT framework Model and Engine v1

68

2.2.35 Add a new alignment to Semantic Repository

I am a semantic engineer working for a IoT Platform owner and I want to integrate my platform within
INTER-IoT at the semantic level, so that I can translate data between my platform’s semantics and
semantics of the other platform that is available in the INTER-IoT ecosystem. After preparing an
alignment I want to make it available in the Semantic Repository to be able to add it to IPSM
instances and reused.

2.2.36 Change user data

As an INTER-IoT administrator, I want to be able to access and modify user data, so that changes

can be made to ensure the good functioning of all processes.

 Interoperable IoT framework Model and Engine v1

69

Preconditions

Steps 1. User logs in and access its personal user data page
2. User modifies its information data

Verification User is notified upon data change, whether it is successful of not.

Postconditions If the operation was successful, the user data is up to date. Else, the state of the
user data remains unchanged.

2.2.37 Set up QoS requirements

As an Inter-IoT administrator, I want to be able to modify QoS parameters for the virtual SDN network

to satisfy requirements of an application.

 Interoperable IoT framework Model and Engine v1

70

Preconditions At least one switch is running in the network and configured in the portal

Steps 1. Go to the network tab
2. Go to the sub-tab of QoS
3. Insert the configuration of the QoS parameter (meter, queue or rule)

including the ID of the switch where you want to include the parameter.
4. POST the configuration and wait for the success reply.

Verification In first place, a success message should appear once you include the QoS
parameter in the system, later if you list the indicated parameter a new entry
should appear. Thus, the switch in which this parameter is configured should act
consequently.

Postconditions After the inclusion of the parameter, the network should keep working
under this specification.

2.2.38 Visualize SDN topology changes

As an Inter-IoT administrator, I want to be able to vizualise the topology changes occuring within the

SDN network in order to monitor and adapt the virtual network.

 Interoperable IoT framework Model and Engine v1

71

Preconditions User is already registered.
At least one switch is running in the network.

Steps 1. Go to the network tab
2. Go to the sub-tab of topology and observe the topology
3. Click in any of the nodes to obtain information about the node
4. If it is needed go to the sub-tab of statistics and check and configure the

parameters inside the switches
5. POST the configuration changes and wait for the success reply.

Verification In first place, a success message should appear once you configure something
within a switch of the network, later if you list the virtual network devices a new
entry should appear. Thus, the switch in which this parameter is configured
should act consequently and if there is a topology change this one can be
observed through the topology tab.

Postconditions After the inclusion of the parameter, the network should keep working
under this specification and you can observe the changes in the topology.

 Back-end analysis

The INTER-FW web application delegates a great part of its features in the LIIs APIs. However, to

bring practical features that may eventually let the INTER-IoT to understand and manage the

concepts of multilayer interoperability of IoT Platforms, some back-end operations are needed.

In general, back-end operations are those which take on the features serving, transforming and

persisting the data of the application.

2.3.1 Requirements

A set of requirements were identified related to the back end of the INTER-FW in the initial stages
of the project. Since the definition of the layers, the scenarios and, in some cases, the global

 Interoperable IoT framework Model and Engine v1

72

functionality have been slightly modified, some extra requirements and modifications have been
added at the end to cover all the features planned.

The complete list of requirements affecting the back end is as follows. To have a complete
description of these requirements, see Annex I.

Title Id

Scalability. Computing resources 3

Extensibility 10

Remote device control 26

System security 27

System privacy 28

API for third-party developers 47

API for data publication 51

API REST 52

Auditability and Accountability 58

Constraints on processing of personal data 61

Constraints on processing of personal and health data 62,143,145,146,152

Provision of authentication credentials 63

Confidentiality 69

Users manage how their public data is seen 77

Use of standards 123

Adaptability 125

Portability 132

QoS Integration 142

Design of required ontologies 186

Integration with legacy systems 188

IDEs and APIs for rapid new applications development 199

Each data unit is identified univocally 254

Each sensor has a unique INTER-IoT identifier 256

The INTER-IoT unique ID is used to find the platform-specific ID of the device 257

Manage user permission 260

Manages group-based permissions 262

Access to personal data needs to be previously authorized 263

API allows create/update/remove users 264

API allows device declaration and configuration 264

API allows resources/capabilities discovery 266

API allows historic data query 268

API allows subscription to data streams/queues 270

Stores recent data for recovery 272

Stores system status for recovery 273

Time triggers 276

Indivisibility 277

Future-proof 278

Requests filtering 280

Map publish/subscription between platforms in the middleware 282

Manage a sensor or actuator 283

Table 1 Backend related user requirements

2.3.2 UML class diagrams

In this section, there are represented the different models (entity models) that will be needed to
accomplish the requirements, use cases and sequence diagrams reviewed in the previous sections

 Interoperable IoT framework Model and Engine v1

73

in the case of the INTER-FW Web Console. Considering the modularity of the application, these
models are divided in each of the different layers managed in the application, in addition to the user’s
model. Once implemented, these models will be the basis of the storage objects to make information
such as instant status or current configuration persistent in database.

The diagrams are represented in UML class style. They represent basic relations among entities. To
represent enumerations, a prefix (enum) is used as well as a light blue background. The level of
detail of the entity fields is different depending on the degree of maturity of each Web Console section
by the moment of writing this document. As mentioned, the basic input to achieve these documents
comes from previous subsection 2.3.1 and the front-end analysis (sect. 2.4).

2.3.2.1 D2D Layer

The ‘Gateways’ tab encapsulates the framework features based on the D2D layer. Basic information

of the gateway must be represented and persisted.

Figure 13 D2D UML class diagram

2.3.2.2 N2N Layer

Under the ‘Network’ tab, the web application offers the set of features related to the N2N layer. The

following diagram depicts its model.

 Interoperable IoT framework Model and Engine v1

74

Figure 14 N2N UML class diagram

2.3.2.3 MW2MW Layer

The mechanisms exposed by the MW2MW layer are available under the tab ‘Platforms’, which has

the following classes. It is remarkable the use of two kinds of users (see sect. 2.3.2.6), one to manage

the INTER-IoT session, access to different tabs, etc. and a second one to share credentials between

the connected platform and the framework. The enumeration of platform types includes all the

platforms analysed for the project (not necessarily integrated) and those used/integrated by the third

parties from the open call.

 Interoperable IoT framework Model and Engine v1

75

Figure 15 MW2MW UML class diagram

2.3.2.4 AS2AS Layer

The following diagram shows the main classes and relations under the ‘Services’ tab.

 Interoperable IoT framework Model and Engine v1

76

Figure 16 AS2AS UML class diagram

2.3.2.5 DS2DS Layer

The semantics layer model for INTER-FW application is depicted in the following diagram.

 Interoperable IoT framework Model and Engine v1

77

Figure 17 DS2DS UML class diagram

2.3.2.6 User and credentials management

The user management is a key element in INTER-FW, on one hand, the session of the INTER-IoT

users, developers, applications connected to API, etc. need to be managed from a central system.

This includes the control of the data by the owners of the connected platforms and nodes. On the

other hand, there is a need to manage the different authentication and authorisation systems of each

connected node.

 Interoperable IoT framework Model and Engine v1

78

Figure 18 User management UML class diagram

2.3.3 Technologies

The backend of the application is developed with Node.js32 as web application framework,

Mongo.db33 to store unstructured data and Mogoose34 for object modelling.

32 https://nodejs.org/en/
33 http://mongodb.org/
34 http://mongoosejs.com/

https://nodejs.org/en/
http://mongodb.org/
http://mongoosejs.com/

 Interoperable IoT framework Model and Engine v1

79

 Front-end analysis

The development of a client-side application is called front-end. It is the presentation layer where
users can see and interact with content in a user-friendly interface (e.g. a website or a mobile
application). It is usually developed as a mixture of Hypertext Markup Language (HTML), Cascading
Style Sheet (CSS), JavaScript (JS) and ancillary libraries.
This section is divided in three subsections about the requirements identified in the task 2.3, the tools
used for designing the front-end, and the tools used for developing it.

2.4.1 Requirements

A set of requirements were identified related to the front end of the INTER-FW in the initial stages of
the project. Since the definition of the layers, the scenarios and, in some cases, the global
functionality have been slightly modified, some extra requirements and modifications have been
added at the end to cover all the features planned.

The complete list of requirements affecting the back end is:

Title Id

Extensibility 10

Platform independency 14

System security 27

System privacy 28

Heterogeneous information representation 42

API for third-party developers 47

API for data publication 51

API REST 52

Auditability and accountability 58

Provision of authentication credentials 63

Confidentiality 69

Easy-to-use user interface 70

Application response time 71

Users manage how their public data is seen 77

Trust management 100

Adaptability 125

Provides a sensor-level interface 259

Manage user permission 260

A user knows its permissions 261

Manages group-based permissions 262

Access to personal data needs to be previously authorized 263

API allows create/update/remove users 264

API allows device declaration and configuration 265

API allows resources/capabilities discovery 266

API allows historic data query 268

API allows subscription to data streams/queues 270

Requests filtering 280

Map publish/subscription between platforms in the middleware 282

Manage a sensor or actuator 283

Table 2 Frontend related requirements

To have a complete description of these requirements, see

 Interoperable IoT framework Model and Engine v1

80

Annex I User requirements.

 API analysis

2.5.1 API Requirements Analysis

During the initial stages of the project a set of functional and non-functional requirements related to

INTER API implementation were identified. In total 13 requirements have been identified, of which

only one has a priority level “Should Have” [req. 268] and all others have a priority level “Must Have”.

This shows that prospective users of the system put a high priority on openness and extensibility of

the platform.

There is a strong need for centralized access to all Inter-IoT functionalities [req. 47 and 199]. These

general requirements are further supported by requirements to access specific INTER Layer

interoperability components: Device Layer Interoperability [req. 243 and 265], Network Layer

Interoperability [req. 226], Middleware Layer Interoperability [req. 237 and 266], Application Service

Layer Interoperability [req. 51] and Data and Semantics Layer Interoperability [req. 51].

Non-functional requirements specifically request to provide a REST interface [req. 52] and to provide

methods for interoperability with proprietary systems [req. 86].

Most of the requirements related to APIs are related to a unified way of accessing Inter Layer

functionalities. However, they are tightly related to tasks of this work package because we have a

very clear need by prospective stakeholders/users of the system to have a unified, well defined,

consistent, flexible and controlled access to all Inter Layer components, regardless of respective

implementations. For this reason the scope of the first development iteration is the detailed

specification for integration of Inter Layer APIs into INTER FW. In addition to pure API

integration, already in this phase extensibility in the sense of creating complex APIs (scripting), basic

user management and API publication (“marketplace”) will be provided. This will also support the

development of INTER FW core components.

In the second iteration, to be provided in D4.4./D4.6, a comprehensive set of APIs for the exposure

of INTER FW functionalities will be exposed. It will include user/access management APIs [req. 264],

SDK support [req. 47, 199 and 86] and other.

The complete list of requirements affecting the INTER API is provided in the table below. The first
four columns (Title, Id, Functional / non-functional., Module, Type) are taken from D2.3, while the
last column, “Affected components” is the identification of Inter-IoT components that provide the
underlying functionality.

Title Id functional
/ non-
functional

Module Type Affected
components

API for third-party developers 47 F INTER-
FW

API All (INTER
FW, INTER
LAYER)

API for data publication 51 F INTER-
FW

API AS2AS,
IPSM

API REST 52 N INTER-
FW

API INTER API

API for proprietary systems
interoperate with other
systems

86 N INTER-
FW

Interoperability INTER-

LAYER,

 Interoperable IoT framework Model and Engine v1

81

INTER-FW,

INTER-API

IDEs and APIs for rapid new
applications development

199 N General API All (INTER
FW, INTER
LAYER)

API for network services 226 F INTER-
LAYER

Interoperability NW2NW

API Middleware for
interoperability between
different platforms

237 F INTER-
LAYER

Middleware MW2MW

Gateway access API 243 F INTER-
LAYER

Interface D2D

API allows
create/update/remove users

264 F INTER-
FW

API INTER FW

API allows device declaration
and configuration

265 F INTER-
FW

API D2D

API allows
resources/capabilities
discovery

266 F INTER-
FW

API MW2MW

API allows historic data query 268 F INTER-
FW

API AS2AS,
INTER-API

API allows subscription to data
streams/queues

270 F INTER-
FW

API INTERMW,
INTER-FW

Table 3 API Requirements analysis

To have a complete description of these requirements, see Annex I.

2.5.2 First iteration: Inter-Layer exposed API

The aim of the API analysis of Inter-Layer components is to understand their exposed functionalities,

to define requirements that will drive the development of the INTER FW API (INTER-API), as well

as to create a set of supporting tools for programming and managing these. Inter-Layer APIs

encompass features such as creation of channels within the IPSM, registration of a new platform

and creation of a list of physical gateways, registered within INTER-IoT. INTER-API will thus expose

different INTER-IoT interoperability layers as a unified set of securely managed REST APIs.

This approach will expose INTER-FW functionalities to other IoT platforms and application domains.

In the first instance, the INTER FW core engine (back-end) and web application (front-end) will use

INTER API as a main point of access to Inter-Layer features. These APIs will allow an easy

mechanism to define new integration patterns at different interoperability layers creating the basis

for the development of new products.

The following Inter-Layer components are exposing their key functionality through a set of REST

APIs:

 Device Layer Interoperability (D2D) REST API: Provision of methods for physical and

virtual gateway management, as well as management of other devices. Using this API, one

can manage gateway and device configurations (using key-value pairs, KVP), start and stop

the devices and physical gateways, as well as get the list of platforms, connected to individual

virtual gateways.

 Network Layer Interoperability REST API: Provision of methods for interoperability of

components at network layer. The API allow monitoring and management of switches, flows,

ports, roles and queues.

 Interoperable IoT framework Model and Engine v1

82

 Middleware Layer Interoperability (INTERMW) REST API: INTERMW provides an API for

platform management, as well as management of individual things. With it, we can register

and unregister platforms as well as individual things connected to these platforms, subscribe

to and unsubscribe from thing updates, discover things within the platforms and query about

the status of these.

 Application Service Layer Interoperability (AS2AS) REST API: The core component of
this layer is a customised deployment of Node-RED, a flow-based programing tool for the
Internet of Things. In the Inter-IoT context, each node-RED instance represents an execution
flow (using its available nodes). If a user wants to execute two or more flows (two or more
instances of Node-RED), he needs two or more instances of Docker running Node-RED for
each flow. Each Node-RED instance only provides the nodes corresponding to the platforms
which the user is going to access. In order to allow flow management functionalities, Node-
RED flow management API will be exposed through INTER API.

 Data and Semantics Layer Interoperability (DS2DS): Provision of methods for
management of an IPSM (Inter Platform Semantic Mediator) instance configuration including
translation channels (listing, creation and deletion) and alignments (listing, upload, deletion
and retrieval). Note that alignments define correspondences between ontologies that are
used in the translation process within a translation channel. Additional REST API is exposed
for an independent INTER-FW Semantic Repository component that provides access to
centrally stored alignments and ontologies that can be reused for an IPSM configuration, or
accessed for revision. The exposed API methods allow management of ontologies (listing,
upload, deletion and retrieval) and alignments (listing, upload, deletion and retrieval).

In addition to a unified access to single Inter-Layer components, the proposed solution will allow API
mashups/scripting across all layers, this providing more complex functionalities.

2.5.3 Second iteration: Security and configuration management

There are several INTER FW supporting services that should be exposed through the INTER API

mechanism. The definition and implementation of those has been deferred to the second iteration

(D4.3 + D4.5) as the practical implementation of those APIs depends on adapted solutions for the

implementation of security and configuration components to be identified and elaborated in the

following sections:

 User and credentials management (2.3.2.6)

 API Key/Token generation (2.2.2)

 Security Management (3.4)

 Configuration (3.5.8)

Once the solution is in place, standard API definitions will be selected for those operations. In the

design phase of above mentioned service particular attention is devoted the availability of standard

REST API definitions. Standard definition helps API consumers understanding the purposes of these

interfaces, eases the access to the complete set of resources and make easier document and

understand the underpinning technology. The standardization of the API fosters seamless

integrations with less boilerplate and more focus on features and performance.

 Interoperable IoT framework Model and Engine v1

83

3 INTER-FW Design

 Overview

Once the analysis is done, a set of high-level functional blocks have been identified. These functional

blocks describe the main features of the INTER-FW and INTER-API. Some of them can be

implemented in single components, but most of them must be split down into components performing

more specific tasks. This section describes the architecture of these components, which is based in

the previous work performed in tasks 4.1 and 4.2 and reported in D4.1 (M12). In the section 3.2, it is

explained how the INTER-IoT Reference Architecture has helped to define the components which

form part of the INTER-FW solution. Sections 3.3 describe in detail the components which are part

of the solution and their relation; 3.4 gives more detail in the fundamental security interactions among

INTER-FW, INTER-LAYER and other modules in INTER-IoT. Finally, 3.5 reflects these backend

designs in a complete set of wireframes to show how the UX will look like.

Figure 19 High-level functionalities architectural approach in INTER-FW

 INTER-IoT RA Instantiation

In Deliverable D4.1, an Initial Reference IoT Platform Meta-Architecture and Meta-Data Model has

been produced. In this deliverable, INTER-IoT has defined a Reference Model (RM) or “meta-model”

for IoT Platforms Interoperability and a Reference Architecture (RA) (through an Architectural

Reference Model-ARM) defined based on the RM as well. This work is currently under progress

towards a final version of the deliverable. This document has a strong basis on the works done in

IOT-A EU Project and a deep analysis of 16 heterogeneous IoT platforms carried out in the INTER-

IoT project

This RA has been used for the design of the INTER-LAYER architecture, and both, the INTER-IoT

RA and the INTER-LAYER architecture (specifically the API design of the different interoperability

layers) has been the foundation for the design of the INTER-FW architecture.

 Interoperable IoT framework Model and Engine v1

84

Figure 20 Process followed for generating the INTER-FW architecture.

The APIs of the different layers has been used for designing the communication between the INTER-

FW and each of the interoperability layers, so it’s at a low level of the design. Instead, the INTER-

IoT RA has been the starting point for the design of the INTER-FW architecture.

According to OASIS35 definition:

According to the same organism:

The INTER-IoT RA was designed for the interoperability of IoT Platforms. This was one of the

objectives of the INTER-IoT project (see Objective 2). The explanation of OASIS about a reference

architecture and a concrete architecture is exactly what we have done for the INTER-FW: to create

an instantiation of the INTER-IoT RA to the specific needs of the INTER-FW.

35 http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

A reference architecture models the abstract architectural elements in the domain of interest

independent of the technologies, protocols, and products that are used to implement a specific

solution for the domain.

A reference architecture is not a concrete architecture; i.e., depending on the requirements

being addressed by the reference architecture, it generally will not completely specify all the

technologies, components and their relationships in sufficient detail to enable direct

implementation.

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

 Interoperable IoT framework Model and Engine v1

85

3.2.1 INTER-IoT RA instantiation

The starting point for this instantiation has been the Functional View for the INTER-IoT Reference

Architecture that is depicted in the following figure:

Figure 21 Functional-decomposition viewpoint of the INTER-IoT Reference Architecture

From these Functional Groups (FGs – the big blocks) and Functional Components (FCs – the inner

components of each FG), some of them have been identified as relevant for the INTER-FW

according to its defined requirements.

The FGs that are involved in the instantiation of the INTER-FW architecture can be seen in the

following picture:

Figure 22: Functional Groups of the INTER-IoT Reference Architecture involved in the
INTER-FW

 Interoperable IoT framework Model and Engine v1

86

The Device FG and the IoT Platform FG are clearly out of the scope of a framework that must provide

interoperability. The access and communication with devices and IoT Platforms is achieved through

the Device Access FG and the Platform Interoperability FG, not being the Device FG and the IoT

Platform FG part of the INTER-FW. The Device Interoperability FG is also considered out of the

scope of the INTER-FW, as all its functionality is within the Device-to-device and network-to-network

layers, and all their features are exposed through the virtual gateway, which lies in the Device Access

FG.

The role of the rest of FGs in INTER-FW is described below:

The Application FG, which aims at modelling the users of INTER-IoT, mainly applications or

systems willing to access the different platforms, is conceived in the INTER-FW as the provision of

an API (INTER-API), which will provide access to the full INTER-FW and all the interoperability

capabilities underneath it in the different layers.

So, an API will be designed, as it is described in section 4 of this document.

Apart from this API, the INTER-FW needs to fulfil other requirements related with the Application

FG. A Web Console has been analysed in section 2.2 of this document. It is the presentation layer

where users can see and interact with content in a user-friendly interface (e.g. a website or a mobile

application).

The Management FG is together with the Security FG, the two more relevant FGs of the

architecture instantiation of the INTER-FW. Many of the features of the rest of the groups, although

not advisable, could be accessed directly with the APIs of the different interoperability layers; but the

features of the Management FG and the Security FG give meaning to the INTER-FW.

The Management FG is needed in INTER-FW to fulfil some requirements like these ones:

 Scalability. Computing resources [3].

 Portability [132].

 Future-proof [278].

 Auditability and Accountability [58].

 QoS Integration [142].

 Users manage how their public data is seen [77].

 Stores recent data for recovery [272].

 Stores system status for recovery [273].

The Security FG is a key group of the INTER-FW architecture, which is responsible for ensuring all

the security aspects involved in the interoperability of IoT Platforms. The security in our realm has

two faces:

● Management of the security aspects related to the connection with underlying IoT Platforms.

This implies to accomplish with the different security features that the platforms require.

INTER-FW will need to tackle the user authentication for connecting to a platform, the

authorisation management (e.g. use of authentication tokens) and the encryption of some

communications.

● Management of the internal security of INTER-IoT. The connection to INTER-IoT must be

secured, with appropriate authentication capabilities, and authorisation management. The

identity of each user must be preserved, so much for keeping the identification until the IoT

Platform, as to keep track of the anonymization when talking with the IoT Platforms. This

internal security also implies the permission assignment to specific IoT Platforms and its

resources.

 Interoperable IoT framework Model and Engine v1

87

The Security FG is needed in INTER-FW to fulfil some requirements like these ones:

 Access to personal data needs to be previously authorized [263].

 Confidentiality [69].

 Data provenance [98].

 Manage user permission [260].

 Manages group-based permissions [262].

 API allows create/update/remove users [264].

 Users manage how their public data is seen [77].

 A user knows its permissions [261].

The Device Access FG will be instantiated only with the components that give access to the D2D /

N2N Layers of INTER-LAYER, providing access to the gateway and more specifically to the virtual

gateway.

The Semantics FG will also be used as the access to the Data & Semantics Interoperability Layer,

although the management of ontologies for incoming requests/responses and ontology definition for

connections to the different IoT Platforms must also be handled.

The Service Interoperability FG plays a relevant role in the INTER-FW, as there are important

features to provide apart from the pure access to services from IoT Platforms. INTER-FW will provide

the execution environments for orchestrating services from different IoT Platforms with user

independence among environments.

Finally, the Platform Interoperability FG will be used for platform resolution and cataloguing the

IoT Platforms that are available at a specific deployment of INTER-IoT.

Inside each Functional Group, some Functional Components have been identified as necessary for

INTER-FW. Please note that other FCs are not discarded in INTER-IoT, but addressed by other

products of INTER-IoT like INTER-LAYER.

3.2.2 INTER-FW Functional Components

The FCs within each FG that are involved in the instantiation of the INTER-FW architecture can be

seen in the following picture:

 Interoperable IoT framework Model and Engine v1

88

Figure 23: Functional Components of the INTER-FW architecture according to the INTER-
IoT Reference Architecture.

A more detailed description of each FC and their traced requirements is described below. Please,

consider that the INTER-FW exposes all the functionality of INTER-IoT, but does not implement it,

what is primarily done by INTER-LAYER. In this document, only the features implemented by INTER-

FW and the necessary functionality to manage and provide access to INTER-LAYER are designed.

For each FC, a list of analysed use cases and sequence diagrams as defined in the INTER-FW

analysis (section 2.2 of this document) are listed. Also, a pre-candidate definition of architectural

components is made for each FC.

3.2.2.1 Application FG

The Application FG does not include a pre-defined set of FCs in INTER-IoT Reference Architecture,

but INTER-FW will provide some features of the Application FG so as to give a full-fledged solution

to INTER-IoT uses. The new Functional Components designed for the INTER-FW are, thus,

described below.

Functional Component Description

INTER-API Provides access to all the functionality of INTER-IoT through an
API. To be used by system integrators and developers.

List of supported Use Cases 2.2.1. Log In
2.2.2. API Key/Token generation
2.2.3. Add a new platform
2.2.4. Update platform configuration
2.2.5. Remove a platform
2.2.6. Add or register a virtual instance of a gateway
2.2.7. Update configuration of a virtual instance of a gateway
2.2.8. Remove a virtual instance of a gateway
2.2.14. List IPSM instances
2.2.15. Register IPSM instance
2.2.16. Unregister IPSM instance
2.2.17. List alignments in IPSM

 Interoperable IoT framework Model and Engine v1

89

2.2.18. List alignments in Semantic Repository
2.2.19. Add a new alignment to Semantic Repository
2.2.20. Add a new alignment to IPSM
2.2.21. Delete an alignment from IPSM
2.2.22. Delete an alignment from Semantic Repository
2.2.23. Delete an ontology from Semantic Repository
2.2.24. Get an alignment from IPSM
2.2.25. View an alignment from IPSM
2.2.26. List active IPSM translation channels
2.2.27. Create a new translation channel in IPSM
2.2.28. Delete a translation channel in IPSM
2.2.29. List ontologies in Semantic Repository
2.2.30. View an ontology in Semantic Repository
2.2.31. View an alignment in Semantic Repository
2.2.32. View an alignment history in Semantic Repository
2.2.33. Get an ontology from Semantic Repository
2.2.34. Get an alignment from Semantic Repository
2.2.35. Add a new ontology to Semantic Repository
2.2.36. Add a new alignment to Semantic Repository
2.2.40. Change user data

Architectural Components API controller: it receives API calls from the different
components of the application and forwards them to the
specific API of the layer.

 API request validator: it checks the fields, verbs and paths of
the API requests.

Table 4 INTER-API Frontend in the INTER-IoT RA

Functional Component Description

Web App Frontend The presentation layer where users can see and interact with
content in a user-friendly interface (e.g. a website or a mobile
application)

List of supported Use Cases 2.2.1. Log In
2.2.3. Add a new platform
2.2.4. Update platform configuration
2.2.5. Remove a platform
2.2.6. Add or register a virtual instance of a gateway
2.2.7. Update configuration of a virtual instance of a gateway
2.2.8. Remove a virtual instance of a gateway
2.2.9. Connect services with AS2AS tool
2.2.10. Visualize INTER-IoT status
2.2.11. List permissions
2.2.12. Manage platform permissions
2.2.13. Revoke permissions
2.2.14. List IPSM instances
2.2.15. Register IPSM instance
2.2.16. Unregister IPSM instance
2.2.17. List alignments in IPSM
2.2.18. List alignments in Semantic Repository
2.2.19. Add a new alignment to Semantic Repository
2.2.20. Add a new alignment to IPSM
2.2.21. Delete an alignment from IPSM

 Interoperable IoT framework Model and Engine v1

90

2.2.22. Delete an alignment from Semantic Repository
2.2.23. Delete an ontology from Semantic Repository
2.2.24. Get an alignment from IPSM
2.2.25. View an alignment from IPSM
2.2.26. List active IPSM translation channels
2.2.27. Create a new translation channel in IPSM
2.2.28. Delete a translation channel in IPSM
2.2.29. List ontologies in Semantic Repository
2.2.30. View an ontology in Semantic Repository
2.2.31. View an alignment in Semantic Repository
2.2.32. View an alignment history in Semantic Repository
2.2.33. Get an ontology from Semantic Repository
2.2.34. Get an alignment from Semantic Repository
2.2.35. Add a new ontology to Semantic Repository
2.2.36. Add a new alignment to Semantic Repository
2.2.40. Change user data
2.2.41. Set up QoS requirements
2.2.42. Visualize SDN topology changes

Architectural Components Inter-fw frontend: The collection of views that will be rendered
to the users to interact with them.

 Inter-fw controller: Process and forward data requests to the
model, ask for fields, credentials, etc.

 User registry. a store of the INTER-IoT users.

 Nodes registry: a storage point for the registered nodes:
platforms, gateways, services, etc.

 Node configuration validator: it checks that the configuration
submitted for each node is correct, before calling the
associated API.

Table 5 Web Console Frontend in the INTER-IoT RA

3.2.2.2 Management FG

Figure 24: Functional Components of the Management FG instantiated for INTER-FW
concrete architecture.

 Interoperable IoT framework Model and Engine v1

91

The list of instantiated FCs of the Management FG is the following:

Functional Component Description

Configuration Responsible for initialising the system configuration
such as gathering and storing configuration about IoT Platforms,
users and so on.

List of supported Use Cases 2.2.3. Add a new platform
2.2.4. Update platform configuration
2.2.5. Remove a platform
2.2.6. Add or register a virtual instance of a gateway
2.2.7. Update configuration of a virtual instance of a gateway
2.2.8. Remove a virtual instance of a gateway
2.2.15. Register IPSM instance
2.2.16. Unregister IPSM instance
2.2.19. Add a new alignment to Semantic Repository
2.2.20. Add a new alignment to IPSM
2.2.21. Delete an alignment from IPSM
2.2.22. Delete an alignment from Semantic Repository
2.2.23. Delete an ontology from Semantic Repository
2.2.40. Change user data

Architectural Components User registry. a store of the INTER-IoT users.

 Nodes registry: a storage point for the registered nodes:
platforms, gateways, services, etc.

 Node configuration validator: it checks that the configuration
submitted for each node is correct.

Table 6 Web Configuration FC use cases and analysis

Functional Component Description

Fault The goal of the Fault FC is to identify, isolate, correct and log
faults that occur
in the IoT system.

List of supported Use Cases No specific use cases. It’s a transversal component used by all
the inner INTER-FW components.

Architectural Components Inter fw log handler. Central management of INTER FW logs.

Table 7 Fault FC use cases and analysis

Functional Component Description

Member Responsible for the management of the membership and
associated information of any relevant entity.

List of supported Use Cases 2.2.3. Add a new platform
2.2.4. Update platform configuration
2.2.5. Remove a platform
2.2.6. Add or register a virtual instance of a gateway
2.2.7. Update configuration of a virtual instance of a gateway
2.2.8. Remove a virtual instance of a gateway
2.2.40. Change user data

 Interoperable IoT framework Model and Engine v1

92

Architectural Components API manager. It features a wide set of operations including
API requests accounting, metrics, versioning, security, etc.

 Nodes registry: a storage point for the registered nodes:
platforms, gateways, services, etc.

Table 8 Member FC use cases and analysis

Functional Component Description

State It monitors the state of the INTER-FW and offers a view of the
current state to the INTER-FW administrators. It is also
responsible for measuring and eventually displaying the
performance of the usage of the API.

List of supported Use Cases 2.2.10. Visualize INTER-IoT status

Architectural Components Nodes registry: a storage point for the registered nodes:
platforms, gateways, services, etc.

 API manager. It features a wide set of operations including
API requests accounting, metrics, versioning, security, etc.

Table 9 State FC use cases and analysis

3.2.2.3 Security FG

Figure 25: Functional Components of the Security FG instantiated for INTER-FW concrete
architecture.

The list of instantiated FCs of the Management FG is the following:

Functional Component Description

Authorisation It is a front end for managing policies and performing access
control decisions based on access control policies. This access
control decision can be called whenever access to a restricted
resource is requested

 Interoperable IoT framework Model and Engine v1

93

List of supported Use Cases 2.2.3. Add a new platform
2.2.4. Update platform configuration
2.2.5. Remove a platform
2.2.6. Add or register a virtual instance of a gateway
2.2.7. Update configuration of a virtual instance of a gateway
2.2.8. Remove a virtual instance of a gateway
2.2.9. Connect services with AS2AS tool
2.2.10. Visualize INTER-IoT status
2.2.11. List permissions
2.2.12. Manage platform permissions
2.2.13. Revoke permissions
2.2.14. List IPSM instances
2.2.15. Register IPSM instance
2.2.16. Unregister IPSM instance
2.2.17. List alignments in IPSM
2.2.18. List alignments in Semantic Repository
2.2.19. Add a new alignment to Semantic Repository
2.2.20. Add a new alignment to IPSM
2.2.21. Delete an alignment from IPSM
2.2.22. Delete an alignment from Semantic Repository
2.2.23. Delete an ontology from Semantic Repository
2.2.24. Get an alignment from IPSM
2.2.25. View an alignment from IPSM
2.2.26. List active IPSM translation channels
2.2.27. Create a new translation channel in IPSM
2.2.28. Delete a translation channel in IPSM
2.2.29. List ontologies in Semantic Repository
2.2.30. View an ontology in Semantic Repository
2.2.31. View an alignment in Semantic Repository
2.2.32. View an alignment history in Semantic Repository
2.2.33. Get an ontology from Semantic Repository
2.2.34. Get an alignment from Semantic Repository
2.2.35. Add a new ontology to Semantic Repository
2.2.36. Add a new alignment to Semantic Repository
2.2.40. Change user data
2.2.41. Set up QoS requirements
2.2.42. Visualize SDN topology changes

Architectural Components Auth proxy: it receives authentication and authorization

requests and replies if the action requested is allowed for a

given user.

 Auth server: it grants access to users to the web environment

and API requests.

 Node credentials manager: It stores the credentials for the

nodes and also process authentication and authorization

requests to the nodes.

Table 10 Authorisation FC use cases and analysis

Functional Component Description

Authentication It is involved in user and service authentication. It checks
the credentials provided by a user, and, if valid, it returns an
assertion as result.

 Interoperable IoT framework Model and Engine v1

94

List of supported Use Cases 2.2.1. Log In
2.2.2. API Key/Token generation

Architectural Components Inter-fw user manager: it processes and forwards user

related data.

 Auth proxy: it receives authentication and authorization

requests and replies if the action requested is allowed for

a given user.

 Auth server: it grants access to users to the web

environment and API requests.

 Node credentials manager: It stores the credentials for the

nodes and also process authentication and authorization

requests to the nodes.

Table 11 Authentication FC use cases and analysis

Functional Component Description

Key Exchange &
Management

It is involved to enable secure communications of the INTER-API
with INTER-IoT users and among IoT Platforms with different
owners, keeping the confidentiality.

List of supported Use Cases 2.2.1. Log In
2.2.2. API Key/Token generation

Architectural Components Inter-fw user manager: it processes and forwards user

related data.

 API manager. It features a wide set of operations including

API requests accounting, metrics, versioning, security,

etc.

Table 12 Key Exange and Management FC use cases and analysis

Functional Component Description

Identity Management It addresses privacy questions by issuing and managing
pseudonyms and accessory information to trusted subjects so
that they can operate (use or provide services) anonymously.

List of supported Use Cases 2.2.1. Log In
2.2.2. API Key/Token generation

Architectural Components Inter-fw user manager: it processes and forwards user

related data.

 Node credentials manager: It stores the credentials for the

nodes and also process authentication and authorization

requests to the nodes.

Table 13 Identity Management FC use cases and analysis

 Interoperable IoT framework Model and Engine v1

95

3.2.2.4 Device Access FG

Figure 26: Functional Components of the Device Access FG instantiated for INTER-FW
concrete architecture.

The list of instantiated FCs of the Device Access FG is the following:

Functional Component Description

Virtual Entity The Virtual Entity FC allows the interaction with an IoT Platform
on the basis of Virtual Entities. It provides the interaction with the
Virtual Gateway of INTER-LAYER for the D2D and N2N
interoperability layers.

List of supported Use Cases 2.2.3. Add a new platform
2.2.4. Update platform configuration
2.2.5. Remove a platform
2.2.6. Add or register a virtual instance of a gateway
2.2.7. Update configuration of a virtual instance of a gateway
2.2.8. Remove a virtual instance of a gateway

Architectural Components API controller: it receives API calls from the different
components of the application and forwards them to the
specific API of the layer.

 API request validator: it checks the fields, verbs and paths of

the API requests.

 D2D API. API of the Device-to-Device interoperability layer

of INTER-LAYER.

 N2N API. API of the Network-to- Network interoperability

layer of INTER-LAYER.

Table 14 Virtual Entity FC use cases and analysis

 Interoperable IoT framework Model and Engine v1

96

3.2.2.5 Platform Interoperability FG

Figure 27: Functional Components of the Platform Interoperability FG instantiated for
INTER-FW concrete architecture.

The list of instantiated FCs of the Platform Interoperability FG is the following:

Functional Component Description

Platform Resolution It is responsible for discovering and cataloguing the IoT Platforms
that are available at a specific deployment of INTER-IoT as well
as their devices, capabilities and IoT Platform Services, so that
they can easily be found, when needed. This allows the remaining
groups to not to know about the location of the platforms, or how
the devices are connected to them. When any Functional
Component needs to access a specific resource of an IoT
Platform, it will use the Platform Resolution FC to get its
identification, location and way of accessing.

List of supported Use Cases 2.2.3. Add a new platform
2.2.4. Update platform configuration
2.2.5. Remove a platform
2.2.6. Add or register a virtual instance of a gateway
2.2.7. Update configuration of a virtual instance of a gateway
2.2.8. Remove a virtual instance of a gateway

Architectural Components API controller: it receives API calls from the different
components of the application and forwards them to the
specific API of the layer.

 API request validator: it checks the fields, verbs and paths of

the API requests.

 D2D API. API of the Device-to-Device interoperability layer

of INTER-LAYER.

 Interoperable IoT framework Model and Engine v1

97

 N2N API. API of the Network-to-Network interoperability

layer of INTER-LAYER.

 M2M API. API of the Middleware-to-Middleware

interoperability layer of INTER-LAYER.

 AS2AS API. API of the Application&Services-to-

Application&Services interoperability layer of INTER-

LAYER.

Table 15 Platform Resolution FC use cases and analysis

3.2.2.6 Service Interoperability FG

Figure 28: Functional Components of the Service Interoperability FG instantiated for INTER-
FW concrete architecture.

The features of the Service Interoperability FG will be spread between the AS2AS of INTER-LAYER

and the INTER-FW. The INTER-FW will provide access to the AS2AS API, but due to the nature of

the AS2AS execution environment, with a specific GUI, the INTER-FW will be responsible for

managing those execution environment controlling the user authorization and usage of resources

quota.

The list of instantiated FCs of the Service Interoperability FG is the following:

Functional Component Description

Service Resolution The features of the Service Resolution will be spread between the
AS2AS of INTER-LAYER

List of supported Use Cases 2.2.3. Add a new platform
2.2.4. Update platform configuration
2.2.5. Remove a platform
2.2.6. Add or register a virtual instance of a gateway
2.2.7. Update configuration of a virtual instance of a gateway
2.2.8. Remove a virtual instance of a gateway

Architectural Components API controller: it receives API calls from the different
components of the application and forwards them to the
specific API of the layer.

 API request validator: it checks the fields, verbs and paths of

the API requests.

 D2D API. API of the Device-to-Device interoperability layer

of INTER-LAYER.

 N2N API. API of the Network-to-Network interoperability

layer of INTER-LAYER.

 Interoperable IoT framework Model and Engine v1

98

 M2M API. API of the Middleware-to-Middleware

interoperability layer of INTER-LAYER.

 AS2AS API. API of the Application&Services-to-

Application&Services interoperability layer of INTER-

LAYER.

 Docker Swarm controller: Controller of clusters fo docker

containers.

 Docker container controller: Controller of the docker

container used for supporting the software infrastructure for

the execution environments of AS2AS.

Table 16 Service resolution FC use cases and analysis

3.2.2.7 Semantics FG

Figure 29: Functional Components of the Semantics FG instantiated for INTER-FW concrete
architecture.

The list of instantiated FCs of the Semantics FG is the following:

Functional Component Description

Ontology Resolution The Ontology Resolution FC is responsible for managing the
different ontologies used at the various IoT Platforms that are
connected through INTER-IoT. These ontologies have a double
approach:

● Syntactic knowledge: the syntax that the IoT Platforms

uses for interchanging data

● Semantic knowledge: it is about being aware of the

structure and meaning of the data, usually through JSON-

LD in INTER-IoT.

List of supported Use Cases 2.2.14. List IPSM instances
2.2.15. Register IPSM instance
2.2.16. Unregister IPSM instance
2.2.17. List alignments in IPSM
2.2.18. List alignments in Semantic Repository
2.2.19. Add a new alignment to Semantic Repository
2.2.20. Add a new alignment to IPSM
2.2.21. Delete an alignment from IPSM
2.2.22. Delete an alignment from Semantic Repository
2.2.23. Delete an ontology from Semantic Repository
2.2.24. Get an alignment from IPSM
2.2.25. View an alignment from IPSM

 Interoperable IoT framework Model and Engine v1

99

2.2.26. List active IPSM translation channels
2.2.27. Create a new translation channel in IPSM
2.2.28. Delete a translation channel in IPSM
2.2.29. List ontologies in Semantic Repository
2.2.30. View an ontology in Semantic Repository
2.2.31. View an alignment in Semantic Repository
2.2.32. View an alignment history in Semantic Repository
2.2.33. Get an ontology from Semantic Repository
2.2.34. Get an alignment from Semantic Repository
2.2.35. Add a new ontology to Semantic Repository
2.2.36. Add a new alignment to Semantic Repository

Architectural Components API controller: it receives API calls from the different
components of the application and forwards them to the
specific API of the layer.

 API request validator: it checks the fields, verbs and paths of

the API requests.

 IPSM API. API of the Inter-Platform Semantic Mediator of

INTER-LAYER.

Table 17 Ontology resolution FC use cases and analysis

3.2.3 Functional Components traceability

For ensuring the right engineering process of development, we have elaborated a traceability matrix

of the different Functional Components against the Use Cases and the architectural components:

 Interoperable IoT framework Model and Engine v1

100

Table 18 Traceability matrix of Functional Components of INTER-FW vs. use cases.

Device

Access FG

Platform

Interoperability

FG

Service

Interoperability

FG

Semantics

FG

INTER-API Web App Configuration Fault Member State Authorisation Authentication

Key Exchange

&

Management

Identity

Management
Virtual Entity

Platform

Resolution

Service

Resolution

Ontology

Resolution

2.2.1. Log In

2.2.2. API Key/Token generation

2.2.3. Add a new platform

2.2.4. Update platform configuration

2.2.5. Remove a platform

2.2.6. Add or register a virtual instance of a gatew ay

2.2.7. Update configuration of a virtual instance of a gatew ay

2.2.8. Remove a virtual instance of a gatew ay

2.2.9. Connect services w ith AS2AS tool

2.2.10. Visualize INTER-IoT status

2.2.11. List permissions

2.2.12. Manage platform permissions

2.2.13. Revoke permissions

2.2.14. List IPSM instances

2.2.15. Register IPSM instance

2.2.16. Unregister IPSM instance

2.2.17. List alignments in IPSM

2.2.18. List alignments in Semantic Repository

2.2.19. Add a new alignment to Semantic Repository

2.2.20. Add a new alignment to IPSM

2.2.21. Delete an alignment from IPSM

2.2.22. Delete an alignment from Semantic Repository

2.2.23. Delete an ontology from Semantic Repository

2.2.24. Get an alignment from IPSM

2.2.25. View an alignment from IPSM

2.2.26. List active IPSM translation channels

2.2.27. Create a new translation channel in IPSM

2.2.28. Delete a translation channel in IPSM

2.2.29. List ontologies in Semantic Repository

2.2.30. View an ontology in Semantic Repository

2.2.31. View an alignment in Semantic Repository

2.2.32. View an alignment history in Semantic Repository

2.2.33. Get an ontology from Semantic Repository

2.2.34. Get an alignment from Semantic Repository

2.2.35. Add a new ontology to Semantic Repository

2.2.36. Add a new alignment to Semantic Repository

2.2.37. Add a new bridge

2.2.38. Update a bridge

2.2.39. Remove a bridge

2.2.40. Change user data

2.2.41. Set up QoS requirements

2.2.42. Visualize SDN topology changes

Application FG Management FG Security FG

 Interoperable IoT framework Model and Engine v1

101

Table 19 Traceability matrix of Functional Components of INTER-FW vs. INTER-FW architectural components

Device

Access FG

Platform

Interoperability

FG

Service

Interoperability

FG

Semantics

FG

Architectural components INTER-API Web App Configuration Fault Member State Authorisation Authentication

Key Exchange

&

Management

Identity

Management
Virtual Entity

Platform

Resolution

Service

Resolution

Ontology

Resolution

API controller

API request validator

API manager

Inter-fw frontend

Inter-fw controller

User registry

Nodes registry

Node configuration validator

Inter-fw log handler

Auth proxy

Auth server

Node credentials manager

Inter-fw user manager

D2D API

N2N API

MW2MW API

AS2AS API

IPSM API

Docker Sw arm controller

Docker container controller

Application FG Management FG Security FG

 Interoperable IoT framework Model and Engine v1

102

 INTER-FW Components
The following diagram depicts the components taking part in the INTER-FW administration and

configuration framework. For simplicity, some components that share the same interactions have

been represented in one single box. Colours have been applied to identify the main functional

groups.

Figure 30 UML Component diagram of INTER-FW administration and configuration
framework

The functional groups identified are:

 Web application components: it follows the classical design pattern model-view-controller.

Includes all components related to the data storage, organization and visualization for the

end-user. This group contains:

o Inter-fw frontend: The collection of views that will be rendered to the user (main

view, platforms, gateways, network, services, semantics, configuration and users).

o Inter-fw controller: This component performs the classical operations of a controller:

process and forward data requests to the model, ask for fields, credentials and

permission validation,etc.

o Api request validator: it checks the fields, verbs and paths of the api requests before

sending them.

o User registry: a store of the INTER-IoT users.

 Interoperable IoT framework Model and Engine v1

103

o Nodes registry: a storage point for the registered nodes: platforms, gateways,

services, etc. Each entry contains the need information to univocally identify the node

(see 2.3.2)

o Node configuration validator: it checks that the configuration submitted for each

node is correct, before calling the associated API.

 Security: components intended to avoid the access to anonymous or unregistered users. It

also prevents the unauthorised access to data.

o Inter-fw user manager: it processes and forwards user related data.

o Auth proxy: it receives authentication and authorization requests and replies if the

action requested is allowed for a given user. The use of a proxy is appropriate to

decouple the auth servers from the web application environment, enabling technology

independence and better scalability.

o Auth server: it grants access to users to the web environment, as well as determines

whether the actions requested are permitted for a given user or not.

o Node credentials manager: stores the credentials for the nodes in their appropriate

format. It also process authentication and authorization requests to the nodes, using

the stored credentials.

 Scalability: it contributes to enable the growing of connected devices and users to the

INTER-FW. Based in containerization technologies, it is composed by two components:

o Docker swarm controller: it receives requests of new containers, build the calls

based on the docker-swarm api and forwards the to the container repository. It also

associates the containers with the user that requested them.

o Docker container repository: it contains a set of containers providing INTER-IoT

features.

 API: these components perform operations related to the global API, INTER-API.

o API Manager: it features a wide set of operations (see INTER-API, Section 4),

including API requests security, accounting, metrics, versioning, etc.

o API controller: it receives API calls from the different components of the application

and forwards them to the specific API of the layer, through the API Manager.

3.3.1 Communication diagrams

The following diagrams represent the main interactions and the message flow between objects in an

OO application and also imply the basic associations (relationships) between classes. The

rectangles represent the various objects involved that make up the application. The components

identified in the previous section, in this case are represented as lifelines. In these communication

diagrams, for the sake of simplicity, only most important interactions are represented, also, response

messages are avoided. The idea of these diagrams in to depict in one single figure the multiple

interactions that can occur in the main operations of the INTER-FW management application, so that

the relation and the chain of responsibilities of the components can be determined in a set of

features. Alternatively, these diagrams can be represented into sequence diagrams. The following

format, however, shows equivalent information while keeping a more compact style. The numbering

of the messages shows three figures. This differs slightly from the UML standard.

The first Id is a unique identifier for the message. After the colon, there is an identifier for the action

(making possible to represent different user operations in the same diagram) while the third number

represent the sequence in the given action.

Id: actionId.sequenceInAction

 Interoperable IoT framework Model and Engine v1

104

3.3.1.1 Login

The following diagram depicts the main communications between components in the Login

operation.

Figure 31 Login use cases family: communication diagram

 Interoperable IoT framework Model and Engine v1

105

3.3.1.2 Manage platforms

3.3.1.3 Manage gateways

Figure 32 Manage platforms use cases family: communication diagram

Figure 33 Manage gateways use cases family: communication diagram

 Interoperable IoT framework Model and Engine v1

106

3.3.1.4 Manage permissions

Figure 34 Manage permissions use cases family: communication diagram

 Interoperable IoT framework Model and Engine v1

107

3.3.1.5 Manage IPSM

Figure 35 Manage IPSM use cases family: communication diagram

3.3.1.6 Manage networks

Table 20 Manage networks use cases family: communication diagram

 Interoperable IoT framework Model and Engine v1

108

3.3.1 Entity relationship diagram

According the entities analysed in section 2.3.2, the following diagram represents the entities relationship. This is a representation of how the

different entities are organised in the database and how they can be accessed.

Figure 36 ERD of INTER-FW (SQL style)

 Interoperable IoT framework Model and Engine v1

109

 INTER-FW security management

Security is a key aspect to take in account when more than one solution and more than one client
access at the same system. One of the main problems with security is that there are vast amount of
point gathering data (devices, sensor, tags, etc) and of course not all of them has the enough
capacity or processing power to implement trustable security mechanisms to ensure the privacy and
authenticity of the given data. For that reason, the upper layers have to make up for this flaws and
take the leading role when we talk about implementing security.
But when we talk about this security we can define two key points; trust and privacy.

As we can see in [3] trust englobes several parts of a system:

 Device Trust: Need to interact with reliable devices.

 Processing Trust: Need to interact with correct and meaningful data.

 Connection Trust: Requirement to exchange the right data with the right service providers
and nobody else

 System Trust: Desire to leverage a dependable overall system. This can be achieved by
providing as much transparency of the system as possible.

And for other side the privacy encompasses the sensible information managed by an IoT system
that can put in harm a person, company or the system itself. Hence, the security in IoT cannot be
treated as in the typical deployment and it has to be focus in preserve the privacy and trust of the
elements included in the schema.

Since INTER-IoT is composed of several layers and modules, the security implementation cannot

be monolithic. INTER-FW provides a portal to access several layers of the interoperability

architecture, and each one of them has to be isolated and just communicate through the official

mechanisms and channels.

INTER-FW aims at providing global and open platform-level interoperability among heterogeneous

IoT platforms coupled through specifically developed ILIs. In this sense, the security-awareness and

implementation in this component has to take into account those particular aspects and depict an

architecture that encloses them and creates a reliable security framework across the different layers

of the global INTER-IoT solution.

Each layer will be responsible of ensuring the integrity and encryption (if necessary) of the data it

stores and the data exchanged with other components and INTER-FW. Nevertheless, the

authentication mechanism will be centralised in order to have a coherent access over all components

of an INTER-IoT deployment.

An INTER-IoT deployment will interact with one or more IoT Platforms and those IoT Platforms could

implement their own security mechanisms. For that reason, when a platform is registered in INTER-

FW it will also store (encrypted) every authentication detail needed to interact with that IoT Platform.

In the following figure, we can see a scheme of how this security architecture is implemented:

 Interoperable IoT framework Model and Engine v1

110

Figure 37 Security agents in INTER-IoT

As it can be observed on the figure above, there are security-specific components that, brought

together with previously mentioned agents, comprise the whole design of the privacy and security

model:

 External IoT Platforms: These are the external IoT platforms that will be configured and
available to the rest of the layers

 INTER-FW Backend Server: Here is where INTER-FW will be installed and deployed; it is
also the frontend for the management and configuration of the INTER-IoT deployment.
Regarding security aspects, all the authentication credentials and security specific data to
interact with the external IoT Platforms will be stored under the Cryptex36 library (more
detailed information available in D3.2).

 User Authentication Server: This server will be responsible to handle all authentication
related mechanisms. It will interact with the INTER-FW backend server to provide the
configuration and management points of the authentication integrated with the INTER-FW

36 https://github.com/scrogson/cryptex

https://github.com/scrogson/cryptex

 Interoperable IoT framework Model and Engine v1

111

frontend, but its main purpose is to act as a centralised point of authentication for all the other
layers deployed in the docker-swarm containers.

For this purpose, the WSO2 Identity Server has been chosen as the centralised
authentication server. It provides single sign-on and identity federation capabilities, multi-
factor authentication, management of users, groups and roles, monitoring and auditing and
multiple connectors and libraries for easy integration. More detailed information is available
in D3.2.

 Docker-Swarm Container: Here is where different layers components will be deployed and

managed, as described in the point INTER-FW relation with INTER-Layer . Regarding

security and authentication, each layer will be responsible to implement their security

mechanism in the framework and language chosen for each component. In order to have a

coherent and centralised authentication mechanism, each layer will have their connector to

the User Authentication Server to take advantage of all the authentication capabilities that

provides.

 INTER-FW GUI design

From the analysis performed in Chapter 2, the necessary INTER-FW functionalities have been

extracted and a mock-up was designed. With this design, which also allows you to navigate among

the different menus, we can start to develop the webapp more efficiently.

The following images show the appearance that the different INTER-FW webapp menus should

have.

Login

In the below figure there is the access page to the webapp with the login and the password.

Figure 38. INTER-FW web application login page

3.5.1 Main screen (landing page)

In the Figure 39, you can find the main page of the web application. There is information of the

registered platforms and gateway. On the right is the menu to navigate among the different

pages.Figure 23, you can find the main page of the web application. There is information of the

registered platforms and gateway. On the right is the menu to navigate among the different pages.

 Interoperable IoT framework Model and Engine v1

112

Figure 39. INTER-FW web application main view

3.5.2 Platforms view

In the platforms view main page (Figure 40) there is a list of registered platforms with their main

properties. There is a button to add more platforms (Figure 41). Each platform has three buttons to

edit the platform (Figure 41), show device list (Figure 42), and delete the platform.Figure 24) there

is a list of registered platforms with their main properties. There is a button to add more platforms ().

Each platform has three buttons to edit the platform (), show device list (), and delete the platform.

 Interoperable IoT framework Model and Engine v1

113

Figure 40. INTER-FW web application platforms view

Figure 41. INTER-FW web application add platform view

 Interoperable IoT framework Model and Engine v1

114

Figure 42. INTER-FW web application platform's device list view

Figure 43. INTER-FW web application platform's device details view

3.5.3 Gateway view

In the gateway main view main page (Figure 44) there is a list of registered gateways with their main

properties. There is a button to add more gateways (Figure 45). Each gateway has three buttons to

edit the gateway (Figure 45, Figure 41), manage devices (Figure 46), and delete the gateway. Figure

28) there is a list of registered gateways with their main properties. There is a button to add more

gateways (Figure 44). Each gateway has three buttons to edit the gateway , manage devices , and

delete the gateway.

 Interoperable IoT framework Model and Engine v1

115

Figure 44. INTER-FW web application gateway view

Figure 45. INTER-FW web application add gateway view

 Interoperable IoT framework Model and Engine v1

116

Figure 46. INTER-FW web application manage gateway devices view

Figure 47. INTER-FW web application show gateway device details view

 Interoperable IoT framework Model and Engine v1

117

3.5.4 Network view

In the network main view main page (Figure 48) there is a topology of the network with all the

elements. There are three buttons to manage the elements (Figure 49), add new elements (Figure

50) and Quality of service. Figure 41 there is a topology of the network with all the elements. There

are three buttons to: manage the elements, add new elements and Quality of service.

Figure 48. INTER-FW web application network view

 Interoperable IoT framework Model and Engine v1

118

Figure 49. INTER-FW web application manage network elements view

Figure 50. INTER-FW web application add network elements view

 Interoperable IoT framework Model and Engine v1

119

Figure 51. INTER-FW web application network element configuration view

Figure 52 QoS queue configuration

 Interoperable IoT framework Model and Engine v1

120

Figure 53 QoS virtual switch configuration

Figure 54 QoS rules configuration view

 Interoperable IoT framework Model and Engine v1

121

3.5.5 Service view

In the service main view main page (Figure 55), there is a list of registered nodes of Node-RED.

There are two buttons to add or edit nodes (Figure 56) and create or edit flows (Figure 57) through

an embedded version of Node-Red. Each node has a button to delete it. Figure 36), there is a list of

registered nodes of Node-RED. There are two buttons to add or edit nodes and create or edit flows

through an imbibed version of Node-Red. Each node has a button to delete it.

Figure 55. INTER-FW web application service view

Figure 56. INTER-FW web application add node view

 Interoperable IoT framework Model and Engine v1

122

Figure 57. INTER-FW web application add flow view

3.5.6 Semantic view

In the semantic main view (Figure 58 and following), it is shown the configuration of the IPSM

module, including semantic alignments enabled, translation channels, general configuration of the

module (URL, ports) and two repositories, one for ontologies and another for alignments, so that

they can be shared among different instances. Figure 39 and following), it is shown the configuration

of the IPSM module, including semantic alignments enabled, translation channels, general

configuration of the module (URL, ports) and two repositories, one for ontologies and another for

alignments, so that they can be shared among different instances.

 Interoperable IoT framework Model and Engine v1

123

Figure 58. IPSM general configuration view

Figure 59. Ontologies repository view

 Interoperable IoT framework Model and Engine v1

124

Figure 60. IPSM Translation channels view

Figure 61. IPSM Configuration view

 Interoperable IoT framework Model and Engine v1

125

Figure 62.IPSM Alignment configuration view

Figure 63. Alignments repository view

3.5.7 API management view

In the API main view (Figure 64), there is menu to manage all the APIs through an embedded version

of the API Manager.

 Interoperable IoT framework Model and Engine v1

126

Figure 64. INTER-FW web application API management view

3.5.8 Configuration view

In the configuration main view (Figure 65), there are different general configuration issues such the

log and the definition of new types of platforms.

Figure 65. INTER-FW web application configuration view

 Interoperable IoT framework Model and Engine v1

127

 INTER-FW relation with INTER-Layer

The solutions provided by INTER-Layer are focus on specific structures depending of the layer, so

that, to manage these solution from a higher and more abstract global point of view, we propose

INTER-FW.

INTER-FW then, aims to provide mechanisms, tools and helper content to properly manage the

Layer Interoperability Infrastructure (LIIs) and Interoperability Layer Interfaces (ILIs). Each solution

of INTER-Layer will communicate with INTER-FW for managing the instances and the configuration

of them. We will see in more detail how every layer interacts with INTER-FW.

Figure 66 Relation with INTER-Layer diagram

Moreover, each INTER-Layer solution will provide an API to be consumed by INTER-FW in order to

manage the content and configuration located within the solution, as we can see in Figure 66.

Additionally, the INTER-FW API will expose together with its own extra value API calls, the APIs

provided by each layer as a suite for future application to use not only the API provided by a single

solution but several solutions combined.

Regarding how the APIs of each layer will be consumed by the framework, in some cases, as N2N

and AS2AS, INTER-FW will facilitate graphic tools to visualize and manage the interoperability

achieved in the layers and the user will utilize these tools to handle the elements within the solutions.

In other cases, as in D2D and MW2MW the management, not of the element within the solution but

of instances of the solution will be carried out by the framework working with Docker as a virtual

container tool for this management.

We will explain a little bit more how this container tool works and how the solutions will be dockerize

and handled by tools located within the framework.

Docker37i is software container platform that encapsulates applications to run and manage them side-

by-side in isolated containers to obtain better performance and compute density. These containers

37 https://www.docker.com/

 Interoperable IoT framework Model and Engine v1

128

can communicate with each other through a Docker network specifying the direction and port, and

the Docker tool can handle the lifecycle of the containers in a way that this packages of software run

isolated on a shared operating system being started, ran or stopped when needed.

Despite other virtualization methods or machines, containers do not build a full operating system,

instead only libraries and settings required to make the software work as needed.

The solutions implemented in the layers should be wrapped then in Docker containers so that the

lifecycle of them is managed in the framework.

Docker-swarm provides a tool to observe and manage a group of Docker nodes as if it were only

one cluster so that you can start several Docker containers related between them at the same time

and treat them as a whole.

A swarm is a cluster of Docker nodes where the solutions are deployed, with this tool you enable the

initialization of the swarm or you can join a container to an existing swarm. Additionally, a CLI and

an API is included to set commands to manage the swarm nodes.

This tool will be user to clusterize different solutions from the same layer (e.g several virtual

gateways) and manage them as an ensemble. With this Dockerization of solutions INTER-FW also

includes security, managing the Users/Roles that has access to the different containers or cluster of

containers.

Additionally, INTER-FW will provide security mechanisms, as seen in Section 3.4, to provide

exclusive access to the allowed client to each solution, and defining roles with different permits. This

mechanism will be implemented with Cryptex tool as a secure storage and cryptographic key

retrieval for Node.js. Thus, all access and role information will be secretly stored and ciphered in this

tool.

Finally, the main relation between INTER-LAYER and INTER-FW is shown in the Web application

of the frameworks that works as a portal so easy access the functionalities previously described. We

can see this relationship in a more detail manner in the section 3.5 where we describe each of the

tabs used to interact with the INTER-Layer solutions through its APIs. Hence, INTER-FW GUI

structures each one of it modules (tabs) depending on the architecture and components of each

layer solution, showing the structure of each layer and information about the components managed

by them (devices, network elements, platforms, applications, etc). More specifically:

 D2D: the containers running the virtual gateways instances are managed with the GUI

application.

 N2N: the topology of the network is visualized through the applications and the configuration

of the switches, including QoS, are done within the GUI application.

 MW2MW: the different platforms connected to INTERMW are shown. The instance of

INTERMW is unique.

 AS2AS: different containers run one instance of AS2AS for each user.

 DS2DS: the IPSM instance is fully manageable from the Web Console, including

adding/removing channels, alignments and ontologies.

Cross-Layer: All cross-layer functionalities related with the interaction of different layer

solutions will be available through the FW (e.g utilization of the IPSM by the AS2AS

environment).

 Interoperable IoT framework Model and Engine v1

129

4 INTER-API

 API Management

API management is a process that encompasses publishing, documenting and overseeing

application programming interfaces (APIs) in a secure, scalable environment. It allows organizations

that publish their APIs to monitor the interfaces’ lifecycles and also make sure that needs of both

internal and external developers, as well as applications that are using the APIs, are being met. It

thus provides core competencies for ensuring successful API usage in developer engagement,

business insights, analytics, security and protection.

Software that implements API management typically provides the following functions:

 Automation and control of connections between the API and applications that use it.

 Ensuring consistency between multiple API implementations and versions.

 Traffic monitoring from individual applications.

 Wrapping of the API into security procedures and policies, thus protecting it from misuse.

 Memory management and caching mechanisms to improve application performance.

 Sandbox environment for developers. Coupled with good API documentation, it enables

potential customers to try the API out.

Today, APIs are less dependent upon conventional service-oriented architectures (SOA) and more

on lightweight JSON and REST services. It is however possible to convert existing SOAP, JMS or

MQ interfaces into RESTful APIs with JSON content.

Typical components of API management systems are:

 Gateway; a server that acts as an API front-end, which receives API requests and passes

requests to the back-end. It then passes the responses back to the requester. It can modify

the requests and responses on the fly, and it can also provide the functionality to support

authentication, authorization, security, audit and caching.

 Publishing tools; a collection of tools that API providers use to define APIs, for instance using

the OpenAPI or RAML specifications. They also generate API documentation, manage

access and usage policies, and can as well be used for testing and debug purposes.

 Developer portal/API store; a community site that enables user’s access to documentation,

tutorials, sample code, software development kits, and so forth. Here users can also manage

subscription keys and obtain support from the API provider and the community.

 Reporting and analytics; a collection of tools that monitor API usage and load.

 Monetization service; a service that monetizes API usage.

An API management solution could be implemented in three different ways. The first one is as a

proxy, where the API manager “sits” between the API and API’s user, processing all the traffic

between these two. In this way, API manager can implement caching and protection of customer’s

API from traffic spikes. However, a proxy also drives the cost up, as well as introduces additional

 Interoperable IoT framework Model and Engine v1

130

privacy and latency issues. Apigee38, Mashape39 and Mashery40 provide API management solutions

that work as a proxy.

An API management solution could also work as an agent, that integrates itself with user’s server

and doesn’t act as the middleman between the API and the user. API managers that work as agents

typically don’t suffer from latency issues and dependency on a 3rd-party, through which all the traffic

passes. However, on the other end, features like caching are not easy to implement. 3scale offers a

product of this type.

Some API managers work as hybrids, incorporating both a proxy and an agent. For example, the

proxy could be used for caching, and agent for authentication. Apigee and 3scale are moving

towards this solution.

Figure 67. INTER-API manager structure

API management solutions

Many vendors offer their own API management solutions. Microsoft offers Azure API management41,

as well as do Oracle42, IBM43, WSO244 and Red Hat (3scale)45 and others. Majority of solutions are

implemented as proxies, while others are hybrid. Majority of them are directed towards SMEs, except

for WSO2’s API manager, Microsoft’s Azure API manager, Mashape and 3scale, which are also

suitable for enterprises. CA Layer7 API46 manager is unique, as it has advanced support for mobile

applications, while WSO2 API manager is open source. Next to WSO2, open source API managers

are also Kong47 and ApiAxle48.

38 https://apigee.com/api-management/#/homepage
39 https://www.mashape.com/
40 https://www.mashery.com/
41 https://azure.microsoft.com/es-es/services/api-management/
42 http://www.oracle.com/technetwork/middleware/api-manager/overview/index.html
43 http://www-03.ibm.com/software/products/en/api-connect
44 https://wso2.com/api-management/
45 https://www.redhat.com/en/technologies/jboss-middleware/3scale
46 https://www.ca.com/us/products/ca-api-management-saas.html
47 https://getkong.org/
48 http://apiaxle.com/

https://apigee.com/api-management/#/homepage
https://www.mashape.com/
https://www.mashery.com/
https://azure.microsoft.com/es-es/services/api-management/
http://www.oracle.com/technetwork/middleware/api-manager/overview/index.html
http://www-03.ibm.com/software/products/en/api-connect
https://wso2.com/api-management/
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.ca.com/us/products/ca-api-management-saas.html
https://getkong.org/
http://apiaxle.com/

 Interoperable IoT framework Model and Engine v1

131

Different API managers cover different requirements. Some API managers, such as IBM’s,

Microsoft’s and Oracle’s, are part of a product or service, while others, such as WSO2’s, are free.

Some cannot even be deployed on premises, such as Microsoft’s Azure.

For INTER-IoT would like to use an open source API manager, that is highly customizable and

feature-full. Out of handful open source API managers presented above, WSO2 is the most popular

and feature-complete, as well as highly customizable, and is thus an ideal choice for us.

 API description

4.2.1 API Specification tools

API specification and documentation is a key factor for technology adoption, regardless whether the
software is being used internally or by third-parties. With the growth of publicly available APIs, some
de facto standards and tools have been emerging. The top specification formats used are OpenAPI
Specification (Swagger), RAML and API Blueprint. This document will introduce briefly each of them
and will show use examples and possible applications within the domain of INTER-IoT. In their most
basic definition, API specification tools generate HTML and CSS code to display API methods,
parameters, values, requests, responses, code samples, and more.

4.2.1.1 Swagger/OpenAPI Specification

The OpenAPI Specification (formerly known as Swagger49) is both a specification format and a
framework for generating documentation, server and client API code. Because of its wide adoption,
Swagger is becoming a standard for API specification.
Swagger-enabled API allows one to get interactive documentation, client SDK generation and
discoverability. Swagger is language agnostic and uses JSON notation to describe the API
documentation.
Swagger is open source and is widely supported by the developers’ community. It has a strong
ecosystem providing tools, code generators, etc.

4.2.1.2 RAML

RAML50 is a specification that uses YAML notation and is specially intended for REST based APIs.
It is open-sourced and has community support providing tooling and integration.

4.2.1.3 API Blueprint

API Blueprint51 uses Markdown syntax to describe the APIs and the format is also open-sourced.
APIARY, the promoter of API Blueprint format was recently bought by Oracle. The company offers
a set of generators and tools to support the API design and implementation.

4.2.1.4 HYDRA-CG

A Hypermedia description language expressed via standards such as JSON-LD to make it easy to
support Linked Data and interaction with other data sources52.

49 http://swagger.io/
50 http://raml.org/
51 https://github.com/apiaryio/api-blueprint
52 http:// hydra-cg.com

http://swagger.io/
http://raml.org/
https://github.com/apiaryio/api-blueprint
http://hydra-cg.com/

 Interoperable IoT framework Model and Engine v1

132

4.2.2 Comparison

But by far the most mature tool is Swagger with its OpenAPI specification (originally Open Api
Initiative) and the biggest community. Since all three tools use different data formats (JSON, YAML,
Markdown), we can choose a tool that is suited to our other technological choices in INTER-IoT. One
large difference between two primary contenders, Swagger and RAML, that might influence our
decision as well, might be their underlying ideology. Swagger’s is language-agnostic and thus might
be too-constricted, while RAML’s function methodology through usage of nested resources and sub-
resources might appear more aesthetically intuitive, promoting deeper hierarchical understanding of
the API instead of simpler cause-and-effect understanding, as promoted by Swagger.
All four above mentioned API Specification tools encompass the full API life-cycle, though RAML
lacks code-level tooling. All three API Specification tools provide stub generators.
Both Swagger and RAML have rich ecosystems and large communities, while API Blueprint is still
relatively small. By far the biggest community belongs to Swagger, though, due to its versatility and
it being a de-facto standard for API specification. HYDRA, on the other hand, is a completely different
approach since it uses semantic description approach, and can complement the other three.

4.2.3 Other API description languages and solutions

There are other API DL projects, but most of them are still in preliminary phases in terms of adoptions

or functionalities offered. Some of them are:

 Slate53: A tool for documenting the APIs in a neat, attractive way. It uses markdown format

and is open source. It provides a way to document the API but however it fails offering

advanced features such as interactive tools, design tools, code generation or validation.

 I/O Docs54: Interactive documentation tools for REST APIs, it provides documentation

specification based on JSON Schema format.

Several services act as API Directories, offering a unified repository to search API-related

documentation. Some of the most known are:

 ProgrammableWeb55: Biggest, manually curated API directory on the Internet.

 APIHound56: APIHound is continuously examining billions of pages to locate the best API

resources. It currently lists more than 50.000 APIs.

 {API}Search57: An experimental API Search service to help discover APIs on the web. The

service uses the APIs.json proposed discovery format.

There are plenty of tools to test and building REST APIs, available in all platforms and formats.Three

very popular tools are:

 CURL: One of the more popular libraries and command line tools, curl58 allows you to invoke

various protocols on various resources.

 HTTPIE: httpie59 is a very flexible and easy to use client for interacting with

53 https://lord.github.io/slate/
54 https://github.com/mashery/iodocs
55 https://www.programmableweb.com/
56 http://apihound.com/apifinder
57 http://apis.io/
58 https://curl.haxx.se/
59 https://httpie.org/

https://lord.github.io/slate/
https://github.com/mashery/iodocs
https://www.programmableweb.com/
http://apihound.com/apifinder
http://apis.io/
https://curl.haxx.se/
https://httpie.org/

 Interoperable IoT framework Model and Engine v1

133

 Postman60: Full-blown API testing requires the ability to capture and replay requests, use

various authentication and authorization schemes and more. The previous command line

tools allow for much of this but Postman is a newer desktop application that makes these

activities easier for teams of developers.

4.2.4 Conclusions

It seems that currently the three major players on the API description scene are Swagger, RAML
and API Blueprint. Of these three, RAML and Swagger present more features such as interactive or
design tools, whereas API Blueprint competes to be the easiest to deploy for fast prototyping. For
INTER-IoT, any of them could be used, since they provide sufficient support API creation,
documentation and testing.

 API design

Following the reasoning in section 4.2, all Inter-Layer components listed in section 2.4 and INTER-
API will document their API in the Swagger-JSON format. Single layer APIs will be accessed through
an instance of the WSO2 API manager that acts as the main entry point for API management, access
and usage.
The reader interested in a detailed documentation about each API layer is referred to the

documentation in swagger format published as part of deliverable D4.5, where can find a detailed

description if each API REST layer.

An example of the Swagger visualisation and test environment provided through the Swagger Editor

for the IPSM repository component is provided in the following figure:

Figure 68. Swagger editor IPDM component

60 https://www.getpostman.com/

https://www.getpostman.com/

 Interoperable IoT framework Model and Engine v1

134

Below we provide a list of REST methods and model definitions exposed by single layers and the

main functionalities provided.

4.3.1 Inter-Layer REST API Endpoints

Following the identified needs for the exposure of Inter-layer components in 2.5.2 a set of OpenApi

definitions has been delivered for each Inter-Layer component. Those have been integrated in the

WSO2 API manager and published to the INTER-IoT API Store61. There, users can register and gain

access to the Inter-IoT cloud deployment.

In addition to controlled (secure) and harmonised access to all Inter Layer components, the API

Manager solution supports composing of several operation in higher level APIs and possibly

adaptation of endpoints according to user needs.

4.3.1.1 Device Layer Interoperability (D2D) – Gateway API summary

This API is to manage a single instance of the Gateway (understanding instance as a couple of

connected virtual/physical parts of the gateway) and supports the core functionalities of the Gateway.

The current organisation of exposed APIs is Inter-Layer centric, i.e. they directly expose the

functionality of single layers. In the second phase, these will be combined and restructured in a way

to provide a more meaningful set of hierarchical resources from the INTER FW point of View. The

user will thus have a possibility to choose between the two approaches in accordance to the specific

interoperability scenario to be solved.

More functionalities can be added by the means of extensions, these extensions can dynamically

export special API java classes that will be collected and published in the API as new endpoints in

order to expand the interaction with the Gateway.

Tag: virtual

Operation Description

GET /virtual/platform Show IoT Platform Configuration

GET /virtual/config Get the Virtual Gateway configuration

POST /virtual/config Set the Virtual Gateway configuration

GET /virtual/extensions List the available extensions for the virtual gateway

Tag: physical

Operation Description

GET /physical/config Get the Physical Gateway configuration

POST /physical/config Set the Virtual Gateway configuration

GET /physical/extensions List the available extensions for the physical gateway

GET /physical/devices Get a list of devices connected to this Gateway

Tag: device

Operation Description

GET /device/{deviceUid} Get Device Description

GET /device/{deviceUid}/start Connect device

GET /device/{deviceUid}/stop Disconnect device

GET /device/{deviceUid}/read Read last device state

POST /device/{deviceUid}/write Write device state

61 https://vmplsp02.westeurope.cloudapp.azure.com:9443/store/

https://vmplsp02.westeurope.cloudapp.azure.com:9443/store/

 Interoperable IoT framework Model and Engine v1

135

GET /device/{deviceUid}/status Get device status

4.3.1.2 Network Layer Interoperability (D2D)

Tag: Switches

Operation Description

GET /stats/switches List Switches

GET /stats/desc/{id} Switch Basic Description

Tag: Flows

Operation Description

GET /stats/flow/{id} Flow information

POST /stats/flowentry/add Addition of a new flow entry

POST /stats/flowentry/modify Modify flow entry in a switch

POST /stats/flowentry/delete

Tag: Tables

Operation Description

GET /stats/table/{id} Table information

GET /stats/tablefeatures/{id} Table features information

Tag: Ports

Operation Description

GET /stats/port/{id}
Port information

GET /stats/port/{id}/{port}
Port information

POST /stats/portdesc/modify
Modify port description

Tag: Roles

Operation Description

POST /stats/role Set a role

Tag: Queues

Operation Description

GET /qos/queue/status/{id} Get status of the queue

GET /qos/queue/{id} Retrieve the queue configuration

POST /qos/queue/{id} Set a queue into a port

DELETE /qos/queue/{id} Delete the configuration of a queue

Tag: Rules

Operation Description

GET /qos/rule/{id} Retrieve the rules configuration

POST /qos/rule/{id}

DELETE /qos/rule/{id} Delete a Qos Rule

 Interoperable IoT framework Model and Engine v1

136

Tag: Meters

Operation Description

GET /qos/meter/{id} Retrieve the meters configuration

POST /qos/meter/{id}

DELETE /qos/meter/{id} Delete a Qos Meter

4.3.1.3 Middleware Layer Interoperability (INTERMW)

Tag: client

Operation Description

POST /intermw/client/{clientId} Register client

DELETE /intermw/client/{clientId} Unregister client

POST /intermw/pull/{clientId}/{numberOfMessages} Message pull request

Tag: platform

Operation Description

DELETE /intermw/platform/{clientId}/{platformId} Remove platform instance

POST /intermw/platform/{clientId} Register a new platform instance.

Tag: thing

Operation Description

DELETE /intermw/thing/{clientId}/{thingId} Unregister the thing

DELETE /intermw/subscribe/{clientId}/{thingId} Unsubscribe from the thing

POST /intermw/subscribe/{clientId} Subscribes to the thing

POST /intermw/thing/{clientId} Register the thing

4.3.1.4 Application Service Layer Interoperability (AS2AS)

Tag: auth

Authentication and Credentials

Operation Description

GET /auth/login Get the active authentication scheme

POST /auth/token Exchange credentials for access token

POST /auth/revoke Revoke an access token

Tag: settings

Runtime Settings

Operation Description

GET /settings Get the runtime settings

Tag: flows

Active Flow Configuration

Operation Description

GET /flows Get the active flow configuration.

POST /flows Set the active flow configuration

 Interoperable IoT framework Model and Engine v1

137

4.3.1.5 Data and Semantics Layer Interoperability

IPSM API

Tag: Alignments

Operation Description

GET /alignments List alignments

POST /alignments Upload new alignment

DELETE /alignments/{alignmentId} Delete alignment based on the ID

GET /alignments/{alignmentId} Get an alignment based on the ID

Tag: Channels

Operation Description

GET /channels List active IPSM channels

POST /channels Create new channel

DELETE /channels/{channelId} Delete channel based on the ID

Semantics Repository API

Tag: Alignments

Operation Description

GET /alignments List alignments

POST /alignments Upload a new alignment

DELETE /alignments/delete/{alignmentId} Delete alignment based on the ID

GET /alignments/get/{alignmentId} Get an alignment based on the ID

Tag: Ontologies

Operation Description

GET /ontologies List ontologies

POST /ontologies Upload a new ontology

DELETE /ontologies/delete/{ontologyId} Delete ontology based on the ID

GET /ontologies/get/{ontologyId} Get ontology based on the ID

 Interoperable IoT framework Model and Engine v1

138

5 Ethical issues

 Introduction

Ethics is a central consideration to all INTER-IoT planning and development. As requested at the

interim review, an ethical advisory board has been established. This board, within INTER-IoT,

continuously reviews ethical issues. The aim of the committee is to ensure that ethical considerations

and issues are addressed in the conduct of the research and development work undertaken within

the project. The committee seeks to support and encourage the process of ethically conducted

research to maintain the safety and well-being of participants and researchers to promote ethical

values.

 Ethics and INTER-FRAMEWORK

As stated above, INTER-FRAMEWORK is designed to configure, monitor, and manage different

layers within INTER-IoT while providing a REST-like API to enable the use of the interoperable

platform and INTER-IoT features. To provide this type of functionality, ethical consideration must be

made of the types of data being utilised. The backend design must be guided by end user needs

when handling each type of data and reflected in the requirements. The requirements are discussed

in section 2.3. Additionally, the possible uses of INTER-IoT are purposefully wide ranging. This

makes it difficult to exhaustively define all possible requirements. The goal then becomes to provide

the end user with a customisable system capable of handling all sensitivity levels of data.

5.2.1 Data types

Primary focus of the ethical review of data management focuses on personal data and sensitive

personal data.

Personal data means data which relate to a living individual who can be identified –

a) from those data, or

b) from those data and other information which is in the possession of, or is likely to come into

the possession of, the data controller,

and includes any expression of opinion about the individual and any indication of the intentions of

the data controller or any other person in respect of the individual.

Sensitive personal data means personal data consisting of information as to -

a) the racial or ethnic origin of the data subject,

b) his political opinions,

c) his religious beliefs or other beliefs of a similar nature,

d) whether he is a member of a trade union (within the meaning of the Trade Union and Labour

Relations (Consolidation) Act 1992),

e) his physical or mental health or condition,

f) his sexual life,

g) the commission or alleged commission by him of any offence, or

h) any proceedings for any offence committed or alleged to have been committed by him, the

disposal of such proceedings or the sentence of any court in such proceedings.

 Interoperable IoT framework Model and Engine v1

139

It is possible that INTER-IoT and INTER-FW will be used during processing of these types of data,

so appropriate controls have been built into the back end to enable users to do this ethically by

conforming to the data protection act.

5.2.2 Requirements for ethical data processing

The data protection act requires adherence to 8 principles:

1. Personal data shall be fairly and lawfully processed as defined in the data protection act.

2. Personal data shall be obtained only for one or more specified and lawful purposes, and

shall not be further processed in any manner incompatible with that purpose or those

purposes.

3. Personal data shall be adequate, relevant and not excessive in relation to the purpose or

purposes for which they are processed.

4. Personal data shall be accurate and, where necessary, kept up to date.

5. Personal data processed for any purpose or purposes shall not be kept for longer than is

necessary for that purpose or those purposes.

6. Personal data shall be processed in accordance with the rights of data subjects under the

data protection act.

7. Appropriate technical and organisational measures shall be taken against unauthorised or

unlawful processing of personal data and against accidental loss or destruction of, or

damage to, personal data.

8. Personal data shall not be transferred to a country or territory outside the European

Economic Area unless that country or territory ensures an adequate level of protection for

the rights and freedoms of data subjects in relation to the processing of personal data.

Principle 1, 2, 3, 4, 5, 6 and 8 require the active management of end users. Principle 7 is our key

focus with the use cases being the key driver in identifying requirements necessary.

Requirement Principle Actions

System security and privacy
[27, 28]

1, 2, 6, 7 Controlling access to the INTER-FW and other systems
connected to INTER-FW is necessary to allow users to
determine the who can access what data and how it
can be utilized.

Auditability [58] 1, 2, 5, 7,
8

A history including the source of data, modifications to
data, and viewing of data is necessary to ensure that
proper usage is controlled.

Constraints on processing of
personal and health data
[61, 62]

1, 2, 6, 7 Providing the tools so a user can insure that they are
collecting the correct data and the data is being used
only for the purposes the deem appropriate is
necessary to allow appropriate data management for
processing of health and personal data.

Confidentiality [69]

1, 7 Providing the tools to ensure data can be isolate within
the system so no other users will know about it or a
description of it is necessary.

Users manage how their
public data is seen [77]

1, 7 Allowing users to manage how their data is seen,
provides a way to ensure data is processed
appropriately and ethically.

Manage user permission
[260, 262]

1, 2, 7 Access to data needs to be controlled on a per user
basis. Tools for controlling access to specific parts of
INTER-IoT are provided by INTER-FW.

 Interoperable IoT framework Model and Engine v1

140

Access to personal data
needs to be previously
authorized [263]

1, 2, 7 Access to personal and sensitive data needs to be
controlled on a per user basis. Tools for controlling
access to specific parts of INTER-IoT are provided by
INTER-FW.

Provision of authentication
credentials [63]

1, 2, 6, 7 Providing effective methods to prevent unauthorised
access to INTER-FW is necessary and tied closely to
system security.

Table 21 Ethical issues related requirements

INTER-FW cannot guarantee that it’s users will act in accordance with the data protection act and

ethically, however we endeavour to provide them the tools to do so. In addition, to prevent improper

usage of the tooling and the software, a set of rules of conduct or policies will be provided to let the

user act properly. INTER-IoT demonstrators, pilots and proof of concepts will always follow this code

of conduct, avoiding any bad use of the technology.

 Interoperable IoT framework Model and Engine v1

141

6 Conclusions and future work

In this document, a complete analysis and design of the INTER-FW and INTER-API is presented.

This work, which will be reviewed and completed in M30, gives the main features to configure,

administer and manage heterogeneous IoT platforms in scenarios where interoperability is a key

factor, as it will be tested and validated in the three INTER-IoT pilots (INTER-LogP, INTER-Health

and Cross-domain Pilot) and also the Open Calls who joined the project in mid-2017.

The features designed and reported are extracted from an exhaustive process of gathering

requirements and feedback from the project consortium expertise and key stakeholders interviewed

during the first phases of the execution.

As these requirements are also addressed in other technical tasks of this projects, it is worthy to

show the process of fulfilment of these requisites and how they are addresses in different aspects in

the parallel activities of the INTER-IoT project. Annex II show how identified requirements fulfil the

identified use cases. Some of the use cases listed are expected to be analysed in next releases of

the framework because they belong to different functional groups (extension framework,

documentation…).

The identified use cases have been used as a basis to create a full design of the application,

analysing the data model needed, entities relations and components needed to the INTER-FW

managing and configuration tools implementation. The previous sections describe this engineering

process, including the main security mechanisms.

The INTER-IoT project relies in a reference architecture and meta-data model to create IoT

interoperability solutions. These results have been a fundamental baseline to instantiate the software

architecture proposed in this document, as shown in section 3.2.

For the future version of the document, it is expected a full coverage of the use cases derivated of

the software development framework for expansion, which will include the mechanisms to develop

and deploy in runtime new adapters for the different interoperability layers such as D2D, MW2MW

or AS2AS. Furthermore, a complete description of the deployments performed in the pilot scenarios

will also be included, paying special attention to scalability and resilience to failures aspects, critical

in industrial, logistics and health IoT scenarios.

 Interoperable IoT framework Model and Engine v1

142

7 References

[1] D. G. Gavin Mulligan, «What are the advantages/disadvantages of using REST API over

native libraries,» 2003. [En línea]. Available: https://techbeacon.com/how-wrap-legacy-

systems-rest-apis.

[2] V. G. K. Pammi, «Agile User Stories: The Building Blocks for Software Project Development

Success,» Scrum Alliance, 20 September 2013. [En línea]. Available:

https://www.scrumalliance.org/community/articles/2013/september/agile-user-stories. [Último

acceso: 30 August 2017].

[3] Daubert, Jörg; Wiesmaier, Alexander and Kikiras, Panayotis;, «A view on privacy and trust in

IoT».

[4] M. Rouse, «API Management,» 2016. [En línea]. Available:

http://searchmicroservices.techtarget.com/definition/API-management. [Último acceso: June

2017].

[5] R. Johnson & Brian, «Designing Reusable Classes,» Journal of Object-Oriented

Programming, vol. 1(2), pp. 22-35, 1988.

[6] M. W. S. R. E. R. Steve Danielson, «What is API Management?,» 23 01 2017. [En línea].

Available: https://docs.microsoft.com/en-us/azure/api-management/api-management-key-

concepts. [Último acceso: June 2017].

[7] G. Psitakis, «API Management tools: How to find one for you,» 23 March 2015. [En línea].

Available: https://www.developereconomics.com/api-management-tools-how-to-find-the-one-

for-you. [Último acceso: June 2017].

[8] Z. Flower, «A roundup of the leading API management tools,» [En línea]. Available:

http://searchmicroservices.techtarget.com/feature/A-roundup-of-the-leading-API-

management-tools-available-today. [Último acceso: June 2017].

[9] Mulesoft, Inc., «ProgrammableWeb,» [En línea]. Available:

https://www.programmableweb.com. [Último acceso: 2017].

[10] A. Anthony, «Tracking the growth of the API Economy,» [En línea]. Available:

https://nordicapis.com/tracking-the-growth-of-the-api-economy/. [Último acceso: September

2017].

[11] B. Doerrfield, «Ultimate Guide to 30+ API Documentation Solutions,» 30 November 2016. [En

línea]. Available: https://nordicapis.com/ultimate-guide-to-30-api-documentation-solutions/.

[Último acceso: August 2017].

[12] Y. Srikrishnan, «REST API Documentation - Part 1,» 29 December 2015. [En línea].

Available: https://dzone.com/articles/rest-api-documentation-part-1. [Último acceso: June

2017].

 Interoperable IoT framework Model and Engine v1

143

[13] Y. Srikrishnan, «REST API Documentation Part 2 — Swagger, RAML, and Open API,» 2

February 2016. [En línea]. Available: https://dzone.com/articles/rest-api-documentation-part-

2-1. [Último acceso: June 2017].

[14] M. Stowe, «API Spec Comparison Tool,» 4 November 2016. [En línea]. Available:

http://www.mikestowe.com/2014/12/api-spec-comparison-tool.php. [Último acceso: July

2017].

[15] S. Judd, «Documenting REST APIs – a tooling review,» 28 July 2015. [En línea]. Available:

https://opencredo.com/rest-api-tooling-review/. [Último acceso: July 2017].

[16] K. Sandoval, «Top Specification Formats for REST APIs,» 19 March 2016. [En línea].

Available: https://nordicapis.com/top-specification-formats-for-rest-apis/. [Último acceso: June

2017].

[17] R. T. Fielding, «Architectural Styles and the Design of Network-based Software

Architectures,» University of California, Irvine, CA, 2000.

[18] M. B. A. v. B. A. C. W. C. M. F. J. G. J. H. A. H. R. J. J. K. B. M. R. C. M. S. M. K. S. J. S. D.

T. Kent Beck, «Manifesto for Agile Software Development,» 2001. [En línea]. Available:

http://agilemanifesto.org/. [Último acceso: 2017].

[19] R. T. Fielding, «REST APIs must be hypertext-driven,» 28 October 2008. [En línea].

Available: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven. [Último

acceso: June 2017].

 Interoperable IoT framework Model and Engine v1

144

8 Annex I User requirements

Scalability. Computing resources [3]

INTER-FW should be scalable.

Scalability relates to the ability of systems to seamlessly cater for higher demand in computing
resources of data, devices, people and applications.

The implemented mechanisms should ensure low communication overhead, ensuring fast
decision making and high performance.

Scalability has two approaches that must be targeted:

- Allowing an increasing number of devices/platforms in a specific deployment.

- Allowing a flexible deployment strategy to support from a small number of devices/platforms to a
large number of them.

Acceptance criteria:

A scalable system with 500 devices sending real-time data from one or more platforms should be
managed by INTER-FW.

MoSCoW priority: Should have

Extensibility [10]

INTER-FW should be extensible with new functionalities.

The system should expose functionality to the infrastructure maintenance to update the

functionality when needed with new INTER-FW versions, without affecting existing clients.

Acceptance criteria:

INTER-FW must be able to incorporate new functionalities without affecting an existing client that

uses the previous functionality.

MoSCoW priority: Should have

Platform independency [14]

INTER-IoT must be platform independent.

The INTER-IoT products must be able to connect or communicate to any platform by means of a
common procedure which can be supported by any platform.

Acceptance criteria:

At least Linux, Windows, IOs and Android must run as platforms or devices.

MoSCoW priority: Must have

Remote device control [26]

INTER-LAYER could be able to control devices remotely.

 Interoperable IoT framework Model and Engine v1

145

Manufacturer apps must be supported and allowed to take control over their devices.

Acceptance criteria:

A manufacturer app remains functional once the system is connected to INTER-IoT.

Compatible devices must be able to be connected and controlled together.

MoSCoW priority: Could have

System security [27]

INTER-IoT must have system security.

Certain sections or sensors/actuators must be securely shielded from the public.

It is obtained by relevant control functions such as access and transport resource control functions:
authentication, authorization and accounting (AAA).

Acceptance criteria:

Devices cannot be accessible by everyone. Access must be controllable for sensors. The network
layer must provide reliable and secure connectivity as required by the pilots.

Secured environments can be created for designated users, any sensitive data communication
must be secure.

Security levels do not allow third parties to take over control of a private system that is working
over the IoT.

MoSCoW priority: Must have

System privacy [28]

INTER-IoT must provide privacy protection.

Provide privacy protection for accessing information about physical entities, services or platforms
connected to or integrated into INTER-IoT.

To maintain this privacy, third party access to the private data or into the system is not possible.

Also, the identifier or other critical information of a device (e.g., ID of an RFID tag or MAC address
of Wireless Sensor) must not be tracked by unauthorized entities.

Additionally, the avoidance of the integration and interaction of false nodes/sensors, or
unauthorized smart objects must be ensured.

Optional cryptographic mechanisms for information could be conveniently used.

Acceptance criteria:

INTER-IoT provides higher security in device integration and system-device interaction.

Security levels do not allow third parties to take over control of a private system that is working
over the IoT.

The IDs are only sent (and maybe stored) to/in other authorized entities, typically in the same
subsystem, without any tracking purposes.

MoSCoW priority: Must have

Heterogeneous information representation [42]

INTER-FW must provide information from different sources.

 Interoperable IoT framework Model and Engine v1

146

The method of integration of multiple information and knowledge representing the same real-world

sensing object into a consistent, accurate, and useful representation. It helps to fully take the

usage of the IoT information resources for different application and service within an IoT system

or between different information systems.

Acceptance criteria:

Different information representation at different actors of the pilots is able to share information

consistently. A cross-pilot with different information semantics and representation demonstrates

the correct implementation of this requirement.

MoSCoW priority: Must have

API for third-party developers [47]

INTER-FW must provide an API for third-party developers.

INTER-FW shall expose a public API for third-party developers and any potential INTER-IoT user.

This API is the only way to access the functionality offered by all the components in the system.

Acceptance criteria:

API resources can be accessed from external parties (different from the project consortium or the

Open Call participants).

MoSCoW priority: Must have

API for data publication [51]

INTER-FW must provide an API for data publication.

To have access at the application & services layers and at the semantic level from external IoT

platforms. The API should be used for publishing sensor data into an existing IoT platform through

an API without knowing anything about protocols.

Acceptance criteria:

To have an API available for publishing sensor data into an existing IoT platform, specifically into

a previously created sensor registered into the platform.

MoSCoW priority: Must have

API REST [52]

INTER-FW must provide an Rest API.

The public API of the framework follows the RESTful design principles.

Acceptance criteria:

To have a REST API implemented and documented in a swagger-like tool.

MoSCoW priority: Must have

Auditability and Accountability [58]

INTER-FW could be auditable and accountable.

 Interoperable IoT framework Model and Engine v1

147

Configured operations performed in the system must be tracked uniquely to the entity that

generated it.

The platform should allow:

- To retrieve users and/or devices that carried out or are in charge of the activities in the system

and their logged operations.

- Producing an Audit log with trace of the most important data and their values before and after

changes;

- Maintain records for a period not less than six months;

- Provide synchronization technologies in order to keep aligned the date and time recorded in the

logs associated with the access.

The criteria for registration of the aforesaid Log (products so as to not be editable) must at least

enable the identification:

- The event that triggered the log (login, logout, login failure);

- The user, the date and the start / end connection.

- The sensitive data updates (before and after).

Acceptance criteria:

Allow auditability and accountability anytime, to ensure security operational aspects.

MoSCoW priority: Could have

Constraints on processing of personal data [61]

INTER-IoT must comply with the constraints to process personal data.

In the case of processing of personal data, the processing must conform to the rules and criteria
laid down in Directives 95/46/EC and 2002/58/EC and Nationals regulations. These conditions fall
into three categories:

• Transparency (the natural person has the right to be informed when his personal data is being
processed). What we are required to provide, the purpose for which data is treated, all the
information that characterizes the treatment of his data and the rights they enjoy and need to
collect its approval in this regard.

• Legitimate purpose (personal data can only be processed for specified explicit and legitimate
purposes and may not be processed further in a way incompatible with those purposes).

• Proportionality (personal data may be processed only insofar as it is adequate, relevant and not
excessive in relation to the purposes for which they are collected and/or further processed; when
sensitive personal data such as religious beliefs, political opinions, health, sexual orientation, race,
membership of past organisations are being processed, extra restrictions apply.

Acceptance criteria:

Presence of requirements and functions to ensure the rules and criteria of EC and Nationals
regulations.

MoSCoW priority: Must have

Constraints on processing of personal and health data [62] (including 143, 145, 146, 152)

 Interoperable IoT framework Model and Engine v1

148

INTER-Health should conform to personal and health data processing rules.

The processing of Personal and Health data must conform to the rules and criteria laid down in
“Personal Data Protection Code - Legislat. Decree no.196 of 30 June 2003” and in “Measures and
arrangements applying to the controllers of processing operations performed with the help of
electronic tools -27 November 2008”.

For Italian privacy regulation some specific instances are required:

Informed Consent: the person in charge of data processing must collect the informed consent of
the involved person to the processing of data disclosing health status (for more details see
requirement 145).

Information sheet: Art. 13 of the Privacy Codex provides that the people in charge of data
processing or collecting need to be informed orally or in writing about the processing of data (for
more details see requirement 146).

Privacy Codex: The behaviour of healthcare operators must be respectful of the right of personal
dignity and confidentiality of every citizen and it has to be appropriate to various situations in which
benefits are provided according to the Legislative Decree 196/2003 (for more details see
requirement 143).

For United Kingdom regulation some specific instances are required:

Compliance with the Data protection act: Compliance with the data protection act is required in all
cases of personal data collection, usage and storage. Sensitive data (such as health data) require
a higher level of protection (for more details see requirement 151).

Information Security and Information Governance good practice guidelines: The health and social
care information center implements good practice guidelines for use within the NHS. Adoption of
any system by NHS funded organizations requires compliance with best practice guidelines for
information security and governance (for more details see requirement 152).

Acceptant criteria:

Specific functions to ensure the rules and criteria of the Nationals regulations for the Personal
Data Protection (EU Regulation 2016/679 and EU Directive 2016/680).

MoSCoW priority: Must have

Provision of authentication credentials [63]

INTER-FW must provide an authentication access with credentials.

As regards the management of the User credentials, the platform has to:

- allow access only through individual authentication credentials (consisting of a User ID and an

authentication device, e.g. Password);

- prevent the reassignment of User ID to another user;

- allow the definition of access profiles sets that guarantee the principles of "need to know" and

“segregation of duties”;

- allow the extraction of the information required to verify the correct allocation of authentication

credentials and their authorization profiles;

- carry out automatic checks at least monthly of the users inactive for more than six months in

order to suspend, unless the users for which it has been required and authorized a derogation on

the basis of an operational need.

Acceptance criteria:

Have a secure and efficient authentication system.

 Interoperable IoT framework Model and Engine v1

149

MoSCoW priority: Must have

Confidentiality [69]

INTER-FW access should be confidential.

Avoid data falsification or disclosure.

- If the need of data processing ended, such data must be deleted permanently and irreversibly in

order to prevent unauthorized treatment.

- It must be guaranteed the logical isolation of data belonging to different customers on a single

platform. In particular, it must be guaranteed the segregation of single customer views, in order to

allow processing of data only to persons in charge of the processing (preventing access / views

by unauthorized persons).

- Special procedures for extraction and transmission of the data processed by the platform must

be available.

- In order to ensure the confidentiality of data stored in the platform encryption must be provide of

identification codes or other solutions that make health data unintelligible to those who are

authorized to access (i.e. identification data decoupled from health / sensitive ones).

Acceptance criteria:

The different actors can access the objects for which access was granted, and not to those it

hasn't. Besides the normal positive accessibility tests, tests including negative ones, particularly

with colliding device names and other potential issues.

MoSCoW priority: Should have

Easy-to-use user interface [70]

INTER-Health could provide different interface features for different category of end users.

All end user interfaces should be easy to use.

For older people the confidence with the use of smart phones, Internet applications and

information technology in general is very limited.

For younger people the confidence on the use of smartphones Internet technologies and

applications increases.

As services are offered to both types of users, this requirement needs to be considered as a

reference target for the design of web and mobile interfaces

It is assumed that health care providers (doctors, nurses, technicians) have experience with

Internet applications. Access to the management, monitoring and consultation could be done

through a web interface.

Acceptant criteria:

All the offered features should be easy to use by each category of end users.

MoSCoW priority: Could have

Application response time [71]

INTER-Health must guarantee adequate response times.

 Interoperable IoT framework Model and Engine v1

150

The resulting integrated platform should guarantee the same performances of the original

platforms in terms of response time.

Acceptant criteria:

The "navigation" functionalities on different contents by using either Smartphone or Personal

Computer to access to the platform, have to guarantee a response time of a few seconds.

MoSCoW priority: Must have

Users manage how their public data is seen [77]

INTER-FW should allow users to select which of his public data can be seen.

Devices/IoT platforms as data sources are owned by different third parties. The owner of the object

should be able to manage who and when other users have access to their information.

IoT platforms should support data ownership management, data-flow monitoring, and access

management. Data visibility is managed according to owning entities policies. This is managed

globally (platform independent)

At the configuration of an IoT platform registered into INTER-IoT, the software integrator may be

able to specify a list of devices and/or operations which are accessible from external agents

through INTER-IoT, how long, with whom, etc.

Acceptance criteria:

The user has tools to manage the access to their devices and platforms capabilities.

MoSCoW priority: Should have

API for proprietary systems interoperate with other systems [86]

INTER-FW should have an API for interoperability with proprietary systems.

An upgrade or import-export process is necessary to integrate proprietary systems with the new

systems. Could be done with an API from platform to platform or with a firmware upgrade of the

devices.

Acceptance criteria:

API that allow interoperability among platforms.

MoSCoW priority: Should have

Trust management [100]

INTER-IoT could support trust issues.

Trust issues are related to the scenario in which devices and platforms cooperate without previous

collaboration history. Trust management enables to make sure that the shared data are real and

trustworthy, especially with crowdsourced and user generated data.

Acceptance criteria:

Solution proposes mechanism to achieve trust management.

MoSCoW priority: Could have

 Interoperable IoT framework Model and Engine v1

151

Use of standards [123]

INTER-IoT should make use of standards.

Solution should make use of established standards wherever suitable. The use of existing
standards should be envisioned. The extension/adaptation of existing standards should be
preferred for the definition of a proprietary solution.

Acceptance criteria:

Existing standards are used when possible.

MoSCoW priority: Should have

Adaptability [125]

INTER-IoT could be adaptable to changing requirements.

INTER-IoT must be adaptable to changing requirements on availability, performance and

throughput.

It must be suited to be continuously improved with respect to changing user behaviour. Usage

processes, service usage patterns and user feedback should be tracked continuously in order to

detect architectural weaknesses, inappropriate design decisions and inappropriate technologies.

Acceptance criteria:

INTER-IoT provides data for the continuous evaluation of usage patterns and their impact on the

running solution.

MoSCoW priority: Could have

Portability [132]

INTER-FW should be portable to different systems.

Service providers must be able to switch between customers / users.

Acceptance criteria:

Different systems recognize the same user.

MoSCoW priority: Should have

QoS Integration [142]

INTER-FW could provide QoS.

 Interoperable IoT framework Model and Engine v1

152

When appropriate, the IoT architecture should use the Quality of Service (QoS) features supported
by underlying networks. This allows for all underlying networks to offer the same level of quality
thus enhancing homogeneity.

Acceptance criteria:

Identify QoS of all underlying networks and integrate all corresponding QoS features to the entire
system. A checklist of all the QoS features of the system should be drawn.

MoSCoW priority: Could have

Design of required ontologies [186]

INTER-FW must use a common ontology.

Use of required ontologies - a generic ontology of the Internet of Things. Creation of GOIoTP, a
global IoT ontology, providing common understanding of the IoT (generic) meta-structure, and
enabling semantic interoperability. It is required to be designed or chosen from available ones in
order to produce semantic alignment. GOIoTP is based on current main IoT ontologies, such as
W3C SSN, SAREF, etc.

Acceptance criteria:

Within INTER-IoT at least generic ontology of the Internet of Things is available. INTER-LAYER
must offer semantic interoperability through the creation and use of a Central Ontology.

MoSCoW priority: Must have

Integration with legacy systems [188]

INTER-IoT must integrate with legacy systems.

Interfaces toward existing systems must be developed. In order to allow interaction between new
and old developments. It is necessary connect legacy systems with new services through standard
based protocol gateways to free data from proprietary constraints.

Acceptant criteria:

When legacy systems older than 2010 are used, these systems must be able to communicate with
the new INTER-IoT gateways and the rest of the system.

MoSCoW priority: Must have

IDEs and APIs for rapid new applications development [199]

 Interoperable IoT framework Model and Engine v1

153

INTER-IoT must be supported by APIs and IDEs.

The port environment is constantly changing and therefore the need to create new applications.
The products created must have APIs and IDEs that allow easily create new applications. They
also have to be well documented to facilitate an understanding.

Acceptance criteria:

Have simple APIs and IDEs to develop services with complete documentation.

MoSCoW priority: Must have

API for network services [226]

INTER-LAYER must provide an API for network services.

The network layer should provide an API to guarantee that the access to the gateways and devices

could be accomplished in a transparent manner from the upper layers point of view.

Acceptance criteria:

INTER-LAYER must provide the specific available API for the access.

MoSCoW priority: Must have

API Middleware for interoperability between different platforms [237]

Middleware must provide an API for interoperability between platforms.

An exported API by the middleware provides access to the different devices of the platforms

connected to Inter-Layer.

Acceptance criteria:

The correct access and utilization of the functionalities provided by the middleware layer, exposed

through and public API.

MoSCoW priority: Must have

Gateway access API [243]

INTER-LAYER must provide an API for accessing the gateway.

The API is obligatory in order to retrieve virtual object/device data, control of actuators, etc. from

another layer.

Acceptance criteria:

All exposed functions of the gateway are reachable from the API.

MoSCoW priority: Must have

Each data unit is identified univocally [254]

INTER-FW must have unique data units.

 Interoperable IoT framework Model and Engine v1

154

Each minimal unit of meaningful data transmission (e.g. a heart rate measurement or a truck
location event) must contain an identifier allowing retrieve the source of data and the
network/platform for traceability.

Acceptance criteria:

Data transmissions have an identifier for traceability.

MoSCoW priority: Must have

Each sensor has a unique INTER-IoT identifier [256]

INTER-FW devices must have a unique identifier.

An identifier system must be developed to be able to identify each device.

Granularity in identification must reach the device level.

Device-level services are provided at INTER-FW level [22] [33] [34] [35].

Acceptance criteria:

Each device can be uniquely identified. Furthermore, there should not be a limitation to the number
of devices that can be connected due to the lack of identifiers. The amount of identifier codes must
be sufficiently large to accompany all current and future devices.

MoSCoW priority: Must have

The INTER-IoT unique ID is used to find the platform-specific ID of the device [257]

INTER-FW should find a platform-specific device ID from the INTER-IoT unique ID.

The platform specific ID of each element needs to be retrieved from a unique ID assigned in
INTER-IoT. This ensures traceability.

Acceptance criteria:

A platform-specific ID can be retrieved from an INTER-IoT ID.

MoSCoW priority: Should have

Provides a sensor-level interface [259]

INTER-FW must provide functions for interoperability of devices.

Device interoperability can be managed by the INTER-FW with tools/APIs to do it. These APIs

enable to access single devices and perform the different operations about it.

Acceptance criteria:

The device interoperability functions are available at INTER-FW level.

 Interoperable IoT framework Model and Engine v1

155

MoSCoW priority: Must have

Manage user permission [260]

INTER-FW must manage user permission.

User permissions are managed at framework level.

Acceptance criteria:

There is a field for user permission in the user configuration.

MoSCoW priority: Must have

A user knows its permissions [261]

INTER-FW could allow a user to know its permissions.

The permission to access system resources are known by the user at INTER-FW level.

Acceptance criteria:

There is a method to ask the framework about the permissions of the current user.

MoSCoW priority: Could have

Manages group-based permissions [262]

INTER-FW could manage permissions for groups.

Permissions can be managed at group level in order to simplify business processes.

Acceptance criteria:

Users can be managed in groups.

MoSCoW priority: Could have

Access to personal data needs to be previously authorized [263]

INTER-FW must check permission for accessing to personal data.

Access to personal information must be previously authorized by the owner.

Acceptance criteria:

System does not allow access to personal data without previous permission of the owner.

MoSCoW priority: Must have

API allows create/update/remove users [264]

INTER-FW must provide an API to create/update/remove users.

API to allow applications to implement user management tools.

Acceptance criteria:

Allow methods for CRUD users by using the API.

MoSCoW priority: Must have

 Interoperable IoT framework Model and Engine v1

156

API allows device declaration and configuration [265]

INTER-FW must provide an API to declare and configure devices.

API to allow applications to implement device management tools.

Acceptance criteria:

Allow methods for CRUD devices by using the API.

MoSCoW priority: Must have

API allows resources/capabilities discovery [266]

INTER-FW must provide an API to discovery resources.

API allow applications to discover resources and capabilities of the platforms.

Acceptance criteria:

Allow methods for discover devices, platforms and capabilities of them.

MoSCoW priority: Must have

API allows historic data query [268]

INTER-FW should provide an API to query historic data.

API allows to query historic data for reports, charts, etc.

Acceptance criteria:

Allow methods for database-like querying.

MoSCoW priority: Should have

API allows subscription to data streams/queues [270]

INTER-FW must provide an API to subscribe to data streams.

If data streams or queues are available, third parties can discover and connect to them to develop

their own applications.

Acceptance criteria:

Allow methods for subscription to synchronous data sources.

MoSCoW priority: Must have

Stores recent data for recovery [272]

INTER-FW should store recent data for recovery.

A copy of the recent data shared among platforms is stored in a given time window.

Acceptance criteria:

 Interoperable IoT framework Model and Engine v1

157

Shared data must be able to be recovered after a connectivity failure.

MoSCoW priority: Should have

Stores system status for recovery [273]

INTER-FW should store system status for recovery.

The system state and configuration is persisted allowing to recover it after an unexpected failure.

Acceptance criteria:

Status data must be able to be recovered after a platform failure.

MoSCoW priority: Should have

Time triggers [276]

INTER-FW should support time triggers for improving the communications.

It must be possible to provision timers in the protocol stack to indicate when to re-send a packet
that has not been confirmed. These timers should be individually provision according to the
destination address in the packet.

Acceptance criteria:

Time triggers are implemented and working in the prototype, as validated by the pilots. A mock-
up component can be set to not return ACKs and test the functionality.

MoSCoW priority: Should have

Indivisibility [277]

INTER-FW could transfer a sequence of packets as a logical unit.

The protocol must have a means to transfer a sequence of packets as a logical unit, like a firmware
upgrade, a data log, or provisioning information.

Acceptance criteria:

Features are implemented and working in the prototype, as validated by the pilots.

MoSCoW priority: Could have

 Interoperable IoT framework Model and Engine v1

158

Future-proof [278]

INTER-FW should work with previous versions.

Future-proof: Future versions of the protocol must work with prior versions and provide all the
same capabilities as prior versions.

Acceptance criteria:

Features are implemented and working in the prototype, as validated by the pilots. In particular,
the first and second release of the implementations should be backwards compatible, as old use-
cases are tested in the new test-bed.

MoSCoW priority: Should have

Requests filtering [280]

INTER-FW must provide Requests filtering in the API.

When sending a requests to INTER-FW, it is possible to specify filtering: The system shares a

common filter format when possible. This filtering allows:

- Selection of platform(s).

- Selection of device(s).

- Selection of property type(s).

- Selection of property filtering(s).

- Selection of geo-queries (if allowed by the IoT platform).

Acceptance criteria:

All the previous filtering types are accessible in the API and performed to the underlying connected

IoT platforms.

MoSCoW priority: Must have

Map publish/subscription between platforms in the middleware [282]

Middleware could provide publication and subscription between platforms.

The user can configure to map publish/subscription between platforms, by performing a specific

subscription from a source IoT platform and mapping it to be directly published in the target IoT

platform.

Acceptance criteria:

An API allows to set up a subscription from a source IoT platform to the target IoT platform.

MoSCoW priority: Could have

Manage a sensor or actuator [283]

INTER-LAYER should be able to manage actuators.

In addition to receiving information from sensors and actuators, it is necessary to be able to send

configuration changes or specific actions.

 Interoperable IoT framework Model and Engine v1

159

Acceptance criteria:

Development of a method to send an action to a specific actuator.

MoSCoW priority: Should have

 Interoperable IoT framework Model and Engine v1

160

9 Annex II Requirements – use cases mapping

Table 22 Requirements - use cases mapping part I

 Interoperable IoT framework Model and Engine v1

161

Table 23 Requirements - use cases mapping part II

 Interoperable IoT framework Model and Engine v1

162

Table 24 Requirements - use cases mapping part III

 Interoperable IoT framework Model and Engine v1

163

Table 25 Requirements - use cases mapping part IV

 Interoperable IoT framework Model and Engine v1

164

