

D5.2
INTER-Meth: Full-fledged Methodology for IoT Platforms

Integration

December 2017

Ref. Ares(2018)363 - 01/01/2018

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

INTER-IoT

INTER-IoT aim is to design, implement and test a framework that will allow

interoperability among different Internet of Things (IoT) platforms.

Most current existing IoT developments are based on “closed-loop” concepts, focusing

on a specific purpose and being isolated from the rest of the world. Integration between

heterogeneous elements is usually done at device or network level, and is just limited to

data gathering. Our belief is that a multi-layered approach integrating different IoT

devices, networks, platforms, services and applications will allow a global continuum of

data, infrastructures and services that can will enable different IoT scenarios. As well,

reuse and integration of existing and future IoT systems will be facilitated, creating a

defacto global ecosystem of interoperable IoT platforms.

In the absence of global IoT standards, the INTER-IoT results will allow any company to

design and develop new IoT devices or services, leveraging on the existing ecosystem,

and bring get them to market quickly.

INTER-IoT has been financed by the Horizon 2020 initiative of the European

Commission, contract 687283.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

1 / 106

INTER-IoT

INTER-METH: Full-fledged Methodology for IoT
Platforms Integration

Version: Final

Security: Public

31 December. 2017

The INTER-IoT project has been financed by the Horizon 2020 initiative of the European Commission, contract 687283

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

2 / 106

Disclaimer

This document contains material, which is the copyright of certain INTER-IoT consortium parties, and may not

be reproduced or copied without permission.
The information contained in this document is the proprietary confidential information of the INTER-IoT

consortium (including the Commission Services) and may not be disclosed except in accordance with the

consortium agreement.
The commercial use of any information contained in this document may require a license from the proprietor

of that information.
Neither the project consortium as a whole nor a certain party of the consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.
The information in this document is subject to change without notice.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

3 / 106

Executive Summary

INTER-METH is an engineering methodology that aims at supporting the integration process of

heterogeneous IoT platforms to (i) obtain interoperability among them and (ii) allow implementation

and deployment of IoT applications on top of them. It is widely recognized that using an engineering

methodology is fundamental in any engineering application domain (e.g. software engineering,

codesign hardware/software, civil engineering, etc). Moreover, the manual and non-systematic

application of complex techniques, methods and frameworks would very likely lead to an increase of

the degree of errors during integration. Thus, INTER-METH has the objective to avoid such errors.

Specifically, INTER-METH is based on a process that defined and offers the following phases (or

functionalities of a process):

 Analysis phase will support the definition the IoT platform integration requirements (both

functional and non-functional).

 Design phase will produce the design of the integration in terms of design artifacts (e.g.

diagrams) of layer interoperability infrastructures and related interfaces (see INTER-LAYER),

and INTER-FW programming and management patterns, to fulfill the elicited requirements.

 Implementation phase focuses on driving the implementation of the design work-product to

obtain the full-working (hardware and/or software implemented) system.

 Deployment phase involves the support to the operating set-up and configuration of the

integrated IoT platform.

 Testing phase will define the performance evaluation tests to validate the integrated platform

according to the functional and non-functional requirements.

 Maintenance phase will manage the upgrade and evolution of the integrated system.

Each phase produces work-products that are inputs for the successive phase(s). INTER-METH will

be supported by a CASE (Computer Aided Software Engineering) tool (described in D5.3) that will

help automating each aforementioned phase of the integration process and will specifically provide

the following functionalities: (i) integration guidelines management, (ii) graphical facilities, (iii)

engineering patterns automation, and (iv) project data repositories.

This document is organized as follows:

Section 1: provides the aim of the D5.2 deliverable, the definition of basic terms extensively used
throughout the document and the main contributions of the T5.2 activity.

Section 2: analyses the state-of-the-art (SOTA) in depth, by dividing it in general-purpose SOTA and
IoT system integration-specific SOTA.

Section 3: defines functionalities, requirements, uses cases and scenarios of INTER-METH.

Section 4: defines the abstract INTER-METH methodology for IoT platform integration; “abstract”
means applicable to any IoT system integration approach (not only to INTER-IoT).

Section 5: defines the INTER-METH methodology based on INTER-IoT products (especially, INTER-
LAYER and INTER-FW) as well as the INTER-PATTERNS, defined in D5.1.

Section 6: discusses ethics related to INTER-METH methodology.

Section 7: lists the bibliography.

Appendix A: provides a short overview of SPEM (Software & Systems Process Engineering
Metamodel) used to model INTER-METH.

Appendix B: sketches the ontology alignment procedure used in INTER-IoT/METH.

.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

4 / 106

List of Authors

Organisation Authors Main organisations’ contributions

UNICAL (Task

Leader)
G. Fortino, W. Russo, R. Gravina

SOTA analysis, Abstract INTER-METH,

Concrete INTER-METH: Analysis, Design,

Implementation and Maintenance phases

SRIPAS
K. Wasielewska-Michniewska,

R. Tkaczyk

SOTA analysis, Concrete INTER-METH:

ontology alignment (supporting the

Implementation Phase).

PRO M. A. Llorente
SOTA analysis, Concrete INTER-METH:

Deployment phase.

VPF P. Gimenez Salazar
SOTA analysis, Requirements and

Scenarios.

XLAB
F. Fuart, M. Markovic, M. Gorenc

Novak

SOTA analysis, Concrete INTER-METH:

Testing. Internal review.

UPV
R. González Usach, Carlos E.

Palau

SOTA analysis, Concrete INTER-METH:

Deployment. Final Review

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

5 / 106

Change control datasheet

Version Changes Chapters Pages

0.8 First version of the document All 45

0.9 Internal review All 113

1.0 Final version of the document All 108

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

6 / 106

Contents

Executive Summary .. 3

List of Authors ... 4

Change control datasheet ... 5

Contents ... 6

List of Figures ... 9

List of Tables .. 11

Acronyms .. 12

1 Introduction ... 14

1.1 Aim of the document ... 14

1.2 Definitions and terminology ... 14

1.3 Summary of Workpackage Contributions .. 15

2 State-of-the-Art (SotA) Analysis .. 16

2.1 Software Engineering Methodologies ... 16

2.1.1 Waterfall Methodology .. 16

2.1.2 Volere Methodology ... 18

2.1.3 Agent-oriented Methodologies .. 20

2.1.4 IoT Methodologies .. 26

2.1.5 Agile Methodologies ... 29

2.1.6 CMMI (Capability Maturity Model Integration) ... 33

2.1.7 Overall Analysis ... 34

2.2 Integration Techniques and Methodologies for IoT Systems and Systems of Systems 35

2.2.1 IoT Systems Integration: Model-driven Interoperability ... 35

2.2.2 System of Systems (SoS) Integration ... 36

2.2.3 Telecommunication Systems Integration .. 39

2.2.4 Systems Integration Best Practices .. 40

2.2.5 IOT-A Methodology .. 41

2.2.6 Overall Analysis ... 46

3 INTER-METH Functionalities, Requirements, Use Cases, and Scenarios 47

3.1 Functionalities ... 47

3.2 Requirements ... 47

3.3 Use Cases .. 53

3.3.1 IoT Platform Integration Requirements Analysis (IM1) .. 53

3.3.2 IoT Platforms Integration Design (IM2) ... 54

3.3.3 IoT Platforms Integration Implementation (IM3) .. 54

3.3.4 IoT Platforms Integration Maintenance (IM4) .. 55

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

7 / 106

3.4 Scenarios ... 56

3.4.1 Heterogeneous Platforms Methodology-driven Integration ... 56

3.4.2 Re-engineering Integrated IoT platforms .. 57

4 INTER-METH Abstract Process .. 59

4.1 Phase 1: Analysis of Integration Requirements ... 60

4.1.1 Activities ... 60

4.1.2 Work Products.. 62

4.2 Phase 2: Design of the Systems Integration ... 62

4.2.1 Activities ... 63

4.2.2 Work Products.. 64

4.3 Phase 3: Implementation of the Systems Integration .. 65

4.3.1 Activities ... 65

4.3.2 Work Products.. 66

4.4 Phase 4: Deployment of the Integrated Platform ... 66

4.4.1 Activities ... 67

4.4.2 Work Products.. 68

4.5 Phase 5: Testing of the Integrated Platform .. 68

4.5.1 Activities ... 69

4.5.2 Work Products.. 70

4.6 Phase 6: Maintenance of the Integrated Platform ... 70

4.6.1 Activities ... 71

4.6.2 Work Products.. 72

5 INTER-METH based on INTER-IoT .. 73

5.1 Phase 1: Analysis ... 73

5.1.1 Activities ... 73

5.1.2 Work Products.. 77

5.2 Phase 2: Design ... 78

5.2.1 Activities ... 79

5.2.2 Work Products.. 81

5.3 Phase 3: Implementation .. 81

5.3.1 Activities ... 82

5.3.2 Work Products.. 83

5.4 Phase 4: Deployment ... 84

5.4.1 Activities ... 84

5.4.2 Work Products.. 88

5.5 Phase 5: Testing ... 89

5.5.1 Activities ... 89

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

8 / 106

5.5.2 Work Products.. 91

5.6 Phase 6: Maintenance .. 91

5.6.1 Activities ... 91

5.6.2 Work Products.. 93

6 On Methodology and Ethics .. 94

7 References.. 96

Appendix A: SPEM in a nutshell .. 101

Appendix B: Semantic interoperability in the INTER-IoT ... 104

B.1 Semantic translation as an integration method ... 104

B.2 Establishing semantic interoperability ... 105

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

9 / 106

List of Figures

Figure 2.1.1: Depiction of the six steps in the classic Waterfall Methodology. 17
Figure 2.2.1: Depiction of the six steps in the classic Waterfall Methodology. 19
Figure 2.3.1: Iterative process for prototyping ELDA-based MASs. ... 25
Figure 2.5.2: Relations between Agile, Lean and Scrum concepts .. 30
Figure 2.5.2: Kanban board. Source: https://leankit.com/learn/kanban/kanban-board/ 32
Figure 2.6.1: CMMI process .. 33
Figure 2.8.1: IoT-A: from Reference Models to Software Architecture. .. 42
Figure 2.8.2: IoT-A architecture generation process. ... 43
Figure 2.8.3: IoT-A requirements process. .. 44
Figure 2.8.4: IoT-A workflow for requirements implementation. ... 44
Figure 2.8.5: IoT-A Methodology correlating Perspectives and Views. .. 45
Figure 4.1: INTER-METH Abstract Process Schema .. 59
Figure 4.1.1: The Analysis phase described in terms of activities, roles, and work products 61
Figure 4.1.2: The workflow of tasks of the Requirement Analysis activity 62
Figure 4.2.1: The Design phase described in terms of activities, roles, and work products 63
Figure 4.2.2: The workflow of tasks of the Design Integration activity.. 64
Figure 4.3.1: The Implementation phase described in terms of activities, roles, and work products

 ... 65
Figure 4.3.2: The workflow of tasks of the Integration Implementation activity 66
Figure 4.4.1: The Deployment phase described in terms of activities, roles, and work products.... 67
Figure 4.4.2: The workflow of tasks of the Integrated Platform Deployment activity 68
Figure 4.5.1: The Testing phase described in terms of activities, roles, and work products 69
Figure 4.5.2: The workflow of tasks of the Integrated Platform Testing activity 70
Figure 4.6.1: The Maintenance phase described in terms of activities, roles, and work products .. 71
Figure 4.6.2: The workflow of tasks of the Integrated Platform Maintenance activity 72
Figure 5.1.1: INTER-IoT Reference Architecture schema. .. 74
Figure 5.1.2: The INTER-LAYER approach schema. .. 75
Figure 5.1.3: The INTER-IoT-based Analysis phase described in terms of activities, roles, and work

products .. 76
Figure 5.1.4: The workflow of tasks of the INTER-IoT-based Requirement Analysis activity 77
Figure 5.1.5: The Metamodel of INTER-GOM ... 77
Figure 5.1.6: Refinement Process schemes in TROPOS and in INTER-METH 78
Figure 5.1.7: The UML Activity Diagram of INTER-GOM Production ... 78
Figure 5.2.1: The INTER-IoT-based Design phase described in terms of activities, roles, and work

products .. 80
Figure 5.2.2: The workflow of tasks of the INTER-IoT-based Design Integration activity 80
Figure 5.3.1: The INTER-IoT-based Implementation phase described in terms of activities, roles,

and work products ... 82
Figure 5.3.2: The workflow of tasks of the INTER-IoT-based Integration Implementation activity .. 83
Figure 5.3.3: Relationships among the different phases (in bold) and work products (in italic) 83
Figure 5.4.1: The INTER-IoT-based Deployment phase described in terms of activities, roles, and

work products ... 88
Figure 5.4.2: The workflow of tasks of the INTER-IoT-based Deployment activity 88
Figure 5.5.1: The INTER-IoT-based Testing phase described in terms of activities, roles, and work

products .. 90
Figure 5.5.2: The workflow of tasks of the INTER-IoT-based Testing activity 91
Figure 5.6.1: The Maintenance phase described in terms of activities, roles, and work products .. 92
Figure 5.6.2: The workflow of tasks of the Integrated Platform Maintenance activity 92

Figure A.1: The SPEM Process With Method Package Metamodel (from [SPEM08])…. ……….105

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

10 / 106

Figure B.1: Creating alignment process…………………… ………………………………………….107

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

11 / 106

List of Tables

Table 2.3.1: Comparison among simulation-based methodologies for MAS development. 26
Table 2.4.1: System-Level requirements (SLR) .. 27
Table 2.4.2: Things-Level requirements (TLR) .. 27
Table 2.4.3: IoT Methodologies Comparison (Y=Yes, P=Partial, N=No).. 28
Table 2.5.1: Pros and Cons of Agile Methodologies .. 32
Table 2.7.1: Analyzed Methodologies and their main characteristics .. 34
Table 2.8.1: Data and Control choices in SOS (Based on Table 1 from [1]) 37
Table 2.8.2: Summary of template for information pattern matrix (Based on Table 4 from [1]) 37
Table 2.9.1: Analyzed Methodologies and their main characteristics .. 46
Table 2.2.1: Main INTER-METH Requirements .. 47
Table 2.3.1: The main four INTER-METH Use Cases ... 53
Table 4.1.1: Tasks of the Requirements Analysis activity .. 61
Table 4.2.1: Tasks of the Integration Design activity ... 64
Table 4.3.1: Tasks of the Integration Implementation activity .. 66
Table 4.4.1: Tasks of the Integrated Platform Deployment activity .. 68
Table 4.5.1: Tasks of the Integrated Platform Testing activity ... 69
Table 4.6.1: Tasks of the Integrated Platform Maintenance activity ... 71
Table 5.2.1: INTER-IoT Design Patterns, their related INTER-IoT layer and inspiring Pattern

Catalogue ... 81

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

12 / 106

Acronyms

Acronym Definition

GA Grant Agreement

WP Work Product

AOSE Agent-Oriented Software Engineering

IoT Internet of Things

ISO/IEC International Organization for Standardization (ISO) & the International
Electrotechnical Commission (IEC)

SPEM Software & Systems Process Engineering

Metamodel Specification

API Application Programming Interface

DTE Data Terminal Equipment

SotA State of the Art

UML Unified Modeling Language

MaSE Multiagent Systems Engineering

JDE JACK Development Environment

PDT Prometheus Design Tool

MAS Multi-Agent System

EI Electronic Institutions

JAMES Java Based Agent Modeling Environment for DEVS-based Simulation

DEVS Discrete Event Systems Specification

CaseLP Complex Application Specification Environment Based on Logic Programming

SpiM Stochastic PI-calculus Machine

MEASURE Mission Effectiveness Analysis Simulator for Utility, Research and Evaluation

HLA High Level Architecture

MDE Model Driven Engineering

IDK INGENIAS Development Kit

DAS Distributed Agent System

Hw Hardware

Sw Software

SPM Sprint Planning Meeting

CMMI Capability Maturity Model Integration

ARC Appraisal Requirements for CMMI

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SEI Software Engineering Institute

RM-ODP Reference Model of Open Distributed Processing

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

13 / 106

FSM Finite State Machine

IP Internet Protocol

REST Representational State Transfer

SOA Service Oriented Architecture

SoS System of Systems

SSE&I System of Systems Engineering and Integration

ESB Enterprise Service Bus

SI Systems Integration

SEIT Systems Engineering, Integration and Test

SAS System Architecture Skeleton

VDD Version Description Document

ARM Architecture Reference Model

CASE Computer Aided Software Engineering

IM INTER-Meth

GOM Goal-Oriented Model

FG Functional Group

R&D Research & Development

CoI Categories of Integration

QoS Quality of Service

IP Integration Point

UI User Interface

DNS Domain Name Service

IPSM Inter Platform Semantic Mediator

AF Alignment Format

SAT Site Acceptance testing

FAT Factory Acceptance Test

ISTQB International Software testing Qualifications Board

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

14 / 106

1 Introduction

1.1 Aim of the document

The aim of the following document is the definition of INTER-METH based on the SPEM notation.

This document is realized within “T5.2: Definition of a Full-fledged Methodology for IoT Platforms

Integration (INTER-METH)” task:

[from the Project GA]: “In this task, we aim at creating a full-fledged methodology for the integration

of IoT platforms so making them interoperable. The methodology will be based on an iterative

process organized in iterable phases that will systematically incorporate and use all the outcomes of

WP2, WP3, WP4 and Task 5.1. In particular, the integration process will consist of the following

software engineering standard phases: (i) Requirements Analysis: in which, the outcomes will be a

complete set of functional and non-functional requirements according to which IoT platforms (as

obtained in WP2) will be integrated. Here, the functional and non-functional test use cases will be

also defined; (ii) Design: which will produce a complete design of the IoT platforms integration at

each layer and across the layers. The resulting design of the integrated interoperable IoT platforms

will be compliant to the reference meta-architecture for interoperable IoT platforms defined in WP4-

Task 4.1. The design will also include IoT platforms data integration according to the data metamodel

developed in WP4-Task 4.2; (iii) Implementation: aimed at implementing the design object produced

in the design phase. The implementation will be based on the INTER-FW framework APIs and tools,

developed in WP4-Task 4.3-4.4; (iv) Deployment and Testing: the integrated IoT platform will be

deployed and tested (from both functional and non-functional perspectives) according to the

scenarios elicited in WP2; (v) Maintenance: this phase will support debug and evolution of the

developed integrated platform.”

1.2 Definitions and terminology

Term Definition

Software development
methodology

Also known as a system development methodology, software
development life cycle, software development process, software process
is a splitting of software development work into distinct phases (or stages)
containing activities for better planning and management.

Software process A structured set of activities required to develop a software system.

Process model A software process model is an abstract representation of a process. It
presents a description of a process from some particular perspective.

Phase Phase of a software process containing one or more activity. E.g.
Specification phase – defining what the system should do.

Activity Fundamental building blocks of processes, e.g. specifying a data model,
designing a user interface, etc.

Telecommunication system /
Network system

a communications system is a collection of individual communications
networks, transmission systems, relay stations, tributary stations, and
data terminal equipment (DTE) usually capable of interconnection and
interoperation to form an integrated whole.

Internet of Things it is a system of interrelated computing devices, mechanical and digital
machines, objects, animals or people that are provided with unique
identifiers and the ability to transfer data over a network without requiring
human-to-human or human-to-computer interaction.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

15 / 106

System Integration In engineering, system integration is defined as the process of bringing
together the component subsystems into one system and ensuring that
the subsystems function together as a system. In information technology,
systems integration is the process of linking together different computing
systems and software applications physically or functionally, to act as a
coordinated whole.

1.3 Summary of Workpackage Contributions

INTER-METH is, to the best of our knowledge, the first methodology for IoT system integration.

According to our SotA analysis (see section 2), we can state that the lack of methodological

approaches will slow down IoT interoperability even in presence of “many” technological solutions.

The Key Concept is therefore to associate a methodological approach to a more technical solution.

Thus, INTER-IoT will associate INTER-METH (including INTER-PATTERNS, described in D5.1, and

driven by INTER-CASE, which will be fully described in D5.3) to INTER-LAYER and INTER-FW in

order to allow an easier adoption of INTER-IoT technology by a System Integrator (specifically an

IoT system integrator). This association will be implemented by keeping independent INTER-LAYER

and INTER-FW from INTER-METH, while the INTER-IoT instantiation of INTER-METH will reuse

specific results from INTER-LAYER and INTER-FW. Finally, INTER-CASE will make the application

of INTER-METH more effective as it will provide semi-automatic support for its application. INTER-

CASE will be documented in D5.3.

In particular, the contributions of this D5.2 deliverable are organized as follows:

 Section 2 analyzes the state-of-the-art in depth in order to identify characteristics of existing

methodology that could be useful to support the definition of INTER-METH.

 Section 3 reports and discusses a set of functionalities, requirements, use cases, and

scenarios for INTER-METH defined in WP3 and refined here.

 Section 4 fully defines the abstract INTER-METH methodology that could be re-used by

whatever specific approach for IoT interoperability.

 Section 5 customizes the abstract INTER-METH for the INTER-IoT approach.

Finally, it is worth noting that INTER-METH will be exemplified in a real use case, referring to the

INTER-HEALTH use case (see WP6), in D5.3 along with the implementation of INTER-CASE and

its application. Thus, in D5.2 we only provide the methodological definition of INTER-METH.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

16 / 106

2 State-of-the-Art (SotA) Analysis

The aim of this section is to provide background to the research and design of methodologies for

interoperable IoT systems and their integration. State-of-the-art (SotA) analysis includes discussion

of: (i) the definition of methodologies, (ii) relevance of the reviewed methodologies in the IoT domain,

and (iii) characteristics of such methodologies useful for defining INTER-METH.

Specifically, they are organized in two main categories: (a) General-Purpose Software Engineering

Methodologies (see section 2.1) and (b) More Specific Methodologies for System Integration (see

Section 2.2).

For each category, we provide an overview and finally an overall analysis towards INTER-METH

definition, i.e. the characteristics of surveyed methodologies useful to support the definition of

INTER-METH.

2.1 Software Engineering Methodologies

In software engineering, a software development methodology1 (also known as a system

development methodology, software development life cycle, software development process,

software process) is a splitting of software development work into distinct phases (or stages)

containing activities with the intent of better planning and management. It is often considered a

subset of the systems development life cycle. The methodology may include the pre-definition of

specific deliverables and artefacts that are created and completed by a project team to develop or

maintain an application.

Common methodologies include waterfall, prototyping, iterative and incremental development, spiral

development, rapid application development, extreme programming and various types of agile

methodologies. Some people consider a life-cycle "model" a more general term for a category of

methodologies and a software development "process" a more specific term to refer to a specific

process chosen by a specific organization. For example, there are many specific software

development processes that fit the spiral life-cycle model.

2.1.1 Waterfall Methodology

The Waterfall development methodology [W1] is a step-by-step guide to the development of software

(or possibly other) systems. Briefly, it focuses on gathering the features of the final product, designing

it, and then implementing it following that design. The term depicts the idea that only once a higher

step in the process is complete (full of water), it will spill its results in the following step below itself.

This engineering method is one of the first such methods used for the structured production of

software solutions, and is still often used in several industries, though the so called ‘agile’ methods

have displaced the Waterfall method in several areas, in particular in rapidly evolving systems and

start-ups.

1 https://en.wikipedia.org/wiki/Software_development_process

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

17 / 106

Figure 2.1.1: Depiction of the six steps in the classic Waterfall Methodology.

The 6 main steps of the classic Waterfall methodology (see Figure 2.1.1) are the following:

1. Requirements gathering

2. System design

3. Implementation

4. Verification

5. Maintenance

1. Requirements gathering

These steps refer to the gathering and documenting of the desired features, functional and

nonfunctional requirements of the intended solution. It usually includes very detailed documents

explaining use-cases and expected interactions between the users and the system, often in

representations such as the UML standard.

2. System design

Following the complete set of requirements, an architectural system is designed in order to fulfil them

in an efficient manner. Architectural patterns proven in practice to fulfil certain criteria are often used,

and there is a lot of bibliography on the design of systems architectures for different nonfunctional

requirements, such as the Enterprise Bus, Consumer/Producer and lately also patterns to cope with

Big Data and elasticity.

System designs can be depicted by means of an Architecture description language, and different

types of diagrams, such as the Zachman Framework, RM-ODP views, Enterprise Architecture views,

which in turn use different types of UML diagrams to describe different aspects of the final solution,

such as the:

● Logical View (using Class, Activity or State Diagrams),

● Development View (Component and Package diagrams),

● Process View (Activity and Concurrency diagrams),

● Physical View (Deployment and Topological diagrams)

● and sometimes a Use-Case View (Use-Case Diagrams)

Thus, a general architectural design can be enriched with clear descriptions of its components, their

expected behaviour and planned deployment strategy.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

18 / 106

3. Implementation

Making use of the selected programming languages, frameworks and deployment mechanisms, the

implementation is responsible for creating the actual software solution based on the system

architectural design. Different components of the final system can use very different technologies,

and very complex systems can include deployments in different geographical locations.

There are different and complementary techniques to the implementation phase, such as Test-

Driven Development, Contract-based implementation, Micro-services, etc. Regardless of the

techniques used, the solution must be accompanied by documentation describing the behaviour of

each component and functionalities of the expected deployment, and its source code must contain

a clear description of its implementation (which will be particularly necessary during the Maintenance

phase).

4. Verification

Even though the implementation phase already performs some software validation, usually in the

format of unit-tests, in the Waterfall methodology the verification of the functional and nonfunctional

requirements of the system is performed at the end of the implementation phase, when the entire

system can be deployed and evaluated as a whole.

Integration testing and particularly System testing are performed on the final deployed solution to

validate the correct functioning of the system as part of the Quality Assurance process. Finally, an

Operational acceptance test against the defined use-cases corroborates that the system correctly

performs the actions as described in the functional requirements, and the acceptance criteria for the

nonfunctional requirements are met.

5. Maintenance

Once a system is verified and deploy into production, the maintenance phase begins. This phase

includes not only fixing potential errors in the implementation, and might include the following (as per

ISO/IEC 14764):

● Corrective maintenance: refers to the correction of behaviour not fulfilling the specification,

often referred as “bug fixing”.

● Adaptive maintenance: are modifications to the system that adapts its behaviour to new

circumstances or changes in the environment.

● Perfective maintenance: is performed in order to improve the maintainability of the code, or

to improve the performance of the system related to nonfunctional requirements.

● Preventive maintenance: tries to solve non-critical operational faults that represent a potential

hazard, particularly issues related to scalability and security.

Analysis
The waterfall model even though very simple, after enhancing, can be used to support INTER-Meth.

In fact, in the GA, the proposed INTER-Meth process is based on an iterative version of the waterfall

model, as the basic waterfall is too static.

2.1.2 Volere Methodology

The VOLERE methodology [RS12] helps to describe, formalize and track the project market analysis,

requirements, use cases and scenarios in an explicit and unambiguous manner.

VOLERE has been used by thousands of organizations around the world in order to define, discover,

communicate and manage all the necessary requirements for any type of system development (e.g.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

19 / 106

software, hardware, commodities, services, organizational, etc.) VOLERE can be applied in almost

all kinds of development environments, with any other development methods or with most

requirements tools and modelling techniques. To produce accurate and unambiguous requirements,

the VOLERE methodology uses techniques that are based on experience from worldwide business

analysis projects, and are continually improved.

The VOLERE methodology provides several templates to deal with the different techniques and

activities that it includes. In a quick view, the VOLERE Requirement Process that this methodology

suggests can be summarised as in Figure 2.2.1.

Figure 2.2.1: Depiction of the six steps in the classic Waterfall Methodology.

Analysis
The Volere requirements techniques were developed to answer the need for a common language

for discovering requirements and connecting them to solutions. The language needs to be

understandable by business people, customers, business analysts, engineers, designers, suppliers,

testers or anyone else whose input is needed. All of these people have different skills and, not

surprisingly, different views of what is important. A language intended for all of these people must

recognise the differences in peoples’ viewpoints and yet have a consistent way of communicating

and tracing the relevant knowledge. This realisation that requirements is a socio-technical discipline

has a strong influence on the development of the techniques.

The consequent application of the VOLERE methodology is not only useful in the initial phases of

the project but it is also helpful in specifying a reference point for the later stages. During the

implementation and management, it can be used to track and evaluate the progress of the individual

work packages and the overall project. Besides being efficient and easy to use, the VOLERE

methodology provides a mechanism for all partners to specify requirements, needs, use cases and

scenarios in a standard format. Thereby, specifying additional context of an element such as the

rationale and the acceptance criteria helps to build a common understanding of the overall system.

Furthermore, defining priorities helps to clarify the focus of the project.

1. DEFINE THE
PURPOSE OF THE

PROJECT

2. STAKEHOLDERS
IDENTIFICATION
AND ANALYSIS

3. BUSINESS USE
CASES

4. SCENARIOS

5. WRITING THE
REQUIREMENTS

6. VALIDATION OF
REQUIREMENTS

7.COMMUNICATE
THE

REQUIREMENTS

8. REQUIREMENTS
COMPLETENESS

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

20 / 106

2.1.3 Agent-oriented Methodologies

General AOSE (Agent-Oriented Software Engineering) methodologies

2.1.3.1 GAIA

Gaia is a Methodology [ZJW03] specifically tailored to the analysis and design of agent-based

systems. Before giving an overview of Gaia Methodology, it is worth commenting on the

characteristics of domains for which Gaia is appropriate. Gaia is appropriate for the development of

systems with the following main characteristics:

 Agents are coarse- grained computational systems, each making use of significant

computational resources (think of each agent as having the resources of a Unix process).

 It is assumed that the goal is to obtain a system that maximises some global quality measure,

but which may be sub-optimal from the point of view of the system components. Gaia is not

intended for systems that admit the possibility of true conflict.

 Agents are heterogeneous, in that different agents may be implemented using different

programming languages, architectures, and techniques. Gaia makes no assumptions about

the delivery platform;

 The organisation structure of the system is static, in that inter-agent relationships do not

change at run-time.

 The abilities of agents and the services they provide are static, in that they do not change at

runtime.

 The overall system contains a comparatively small number of different agent types (less

than100).

Gaia is intended to allow an analyst to go systematically from a statement of requirements to a design

that is sufficiently detailed that it can be implemented directly. It is worth pointing out that Gaia

authors view the requirements capture phase as being independent of the paradigm used for

analysis and design. For this reason Gaia does not deal with the requirements capture phase but it

considers the requirements statement as an input for the methodology. Analysis and design can be

thought of as a process of developing increasingly detailed models of the system to be constructed

moving from abstract to increasingly concrete concepts. Abstract entities are those used during

analysis to conceptualise the system, but which do not necessarily have any direct realisation within

the system. Concrete entities, in contrast, are used within the design process, and will typically have

direct counterparts in the run-time system.

2.1.3.2 TROPOS

Tropos [GMP02] is an agent-oriented software development methodology created by a group of

authors from various universities in Canada and Italy. One of the significant differences between

Tropos and the other methodologies is its strong focus on early requirements analysis where the

domain stake-holders and their intentions are identified and analysed. This analysis process allows

the reason for developing the software to be captured. The software development process of Tropos

consists of five phases: Early Requirements, Late Requirements, Architectural Design, Detailed

Design and Implementation.

2.1.3.3 MaSe

The goal of Multiagent Systems Engineering (MaSE) [DWS01] is to provide a complete-lifecycle

methodology to assist system developers to design and develop a multi-agent system. It fully

describes the process that guides a system developer from an initial system specification to system

implementation. This process consists of seven steps, divided into two phases: Analisys (Capturing

Goals, Applying Use Cases, Refining Roles) and Design (Creating Agent Classes, Constructing

Conversations, Assembling Agent Classes, System Design). MaSE has extensive tool support in the

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

21 / 106

form of agent Tool. Its latest version implements all seven steps of MaSE. It also provides automated

support for transforming analysis models into design constructs.

2.1.3.4 Prometheus

The Prometheus [PW02] methodology is a detailed AOSE methodology that is aimed at non-experts.

It has been successfully taught to and used by undergraduate students. Prometheus consists of

three phases: System specification (determining the system's environment, and determining the

goals and functionality of the system.), Architectural design (defining agent types, designing the

overall system structure, and defining the interactions between agents) and Detailed design (defining

capabilities, internal events, plans and detailed data structure for each agent type identified in the

previous phase).

Prometheus is supported by two tools:

(a) The JACK Developmen tEnvironment (JDE), developed by Agent Oriented Software (www.agent-

software.com) includes a design tool that allows overview diagrams to be drawn.

(b) The Prometheus Design Tool (PDT) provides forms to enter design entities. It performs cross

checking to help ensure consistency and generates a design document along with overview

diagrams.

2.1.3.5 MESSAGE

The MESSAGE methodology [GGM05] covers MAS analysis and design and is intended for use in

mainstream software engineering departments. MESSAGE integrates into a coherent AOSE

methodology basic agent-related concepts (such as organisation, role, goal, interaction, and task)

that have so far been studied largely in isolation. The MESSAGE notation extends the UML with

agent knowledge-level concepts and diagrams with notations for viewing them. The proposed

diagrams extend UML class and activity diagrams. The MESSAGE analysis and design process is

based on the Rational Unified Process (RUP) [A21]. The methodology distinguishes high-level from

detailed design. An organisation-driven approach is presented for detailed design, where the global

architecture of the MAS is derived from the structure and behaviour of the organisations that interact.

2.1.3.6 A comparison

General AOSE methodologies deal with providing engineering support to systems modelled as multi-

agent systems. Thus, they could be used for general software development support (from analysis

to implementation) for implementing or re-engineering software systems. Nevertheless, some

method they provide could be reused, more in general, to support integration of systems. For

instance, TROPOS proposes a goal-oriented analysis that could be reused to elicit integration

requirements among different components/part of systems/systems. In particular, we reused

TROPOS to identify/refine integration goals among IoT platforms.

Simulation-based Agent-oriented methodologies
The validation phase of software systems can be founded on several techniques such as formal

methods, testing and simulation. In particular, testing requires the real deployment of the software

system under-development whereas formal methods and simulation don’t require the real

deployment. Such considerations can drive the choice of the adopted validation technique especially

if the target execution environment is distributed as it occurs in the case of agent-based systems

executing in Internet-like environments. In fact, agent-based systems are typically constituted by a

huge number of agents executing in a large scale system so testing could be a very inefficient

validation technique; conversely, simulation and formal methods validation techniques can be

effectively used to validate functional and not functional requirements of agent-oriented designs

before their implementations and deployments. Although formal methods are recognized as suitable

validation techniques of agent-based systems, simulation-based ones have recently emerged.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

22 / 106

In fact, to date a few multi agent-based systems development processes have been proposed in the

literature that incorporate simulation to support the agent-based system development lifecycle with

the main focus on the validation and performance evaluation of the designed solution. In the

following, we briefly describe some interesting approaches for the development of agent-based

systems that explicitly incorporate simulation such as Electronic Institutions [S04], DynDEVS/James

[RU04], CaseLP [MMZ99], GAIA/MASSIMO [FGR05], TuCSon/pi [GVO05], Joint Measure

[SBZH01], and Ingenias/RePast [PS06].

2.1.3.6 Electronic Institutions

In [S04] an integrated development environment for the engineering of multi-agent systems (MASs)

as Electronic Institutions (EI) is presented. EIs provide a computational analogue of human

organizations in which intelligent agents playing different organizational roles and interact to

accomplish individual and organizational goals; authors define an EI as a performative structure of

multi agent protocols along with a collection of normative rules that can be triggered off by agents’

actions performed through speech acts.

The development environment, aimed at facilitating the iterated and progressive refinement of the

development cycle of Eis, is composed of a set of tools supporting the design, validation through

simulation, development, deployment and the execution of Eis. In particular, the simulation tool

SIMDEI, allows for the animation and analysis of the rules and protocols specification in an EI.

Moreover, SIMDEI supports simulations of Eis with varying populations of agents to conduct what-if

analysis. The institution designer is in charge of analyzing the results of the simulations and returning

to the design stage if they differ from the expected ones.

2.1.3.7 DynDEVS

In [RU04] a modeling and simulation framework (DynDEVS) for supporting the development process

of MAS from specification to implementation is proposed. Authors advocate the use of controlled

experimentation in order to allow for the incremental refinement of agents while providing rigorous

observation facilities. The exploited framework is JAMES (Java Based Agent Modeling Environment

for DEVS-based Simulation) which is aimed at an agent-oriented model design and execution

supporting a modular and flexible construction of experimental frames for MASs [US98]. In particular,

JAMES aims at exploring the integration of the agents paradigm within a general modeling and

simulation formalism for discrete-event systems, DEVS (Discrete Event Systems Specification).

Such formalism lends itself to an object-oriented model design and execution, facilitating the

construction of experimental frames.

2.1.3.8 CaseLP

In [MMZ99] a logic based prototyping environment for multi-agent systems, CaseLP (Complex

Application Specification Environment Based on Logic Programming) is presented. Authors propose

an architectural description language which can be adopted to describe the prototype at the system

specification level, in terms of agent classes, instances, their provided and requested services and

communication links. Moreover, at the agent specification level, authors propose a rule-based not

executable language which can easily define the behavior of reactive and proactive agents; with

respect to the implementation of prototype, authors propose a platform-independent prolog-based

language in which new primitives have been defined such as communication capabilities and safe

state updates.

It is worth pointing out that from a simulation point of view, CaseLP is a time-driven centralized

simulator with a global time known from all the agents in the system. Moreover, CaseLP integrates

simulation tools for visualizing the prototype execution and for collecting the related statistics; more

in detail, the CaseLP visualizer tool provides documentation about events that happen at the agent

level during the MAS execution. Developers according to their needs can instrument the code of

some agents after it has been loaded by adding probes to the code of agents. In this way, events

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

23 / 106

related to state changes and /or exchanged messages can be recorded and collected for on-line

and/or off-line visualization.

2.1.3.9 TuCSoN/ π-calculus

In [GVO05] authors promote the use of formal tools, such as Stochastic π-Calculus process algebra,

for simulating the dynamics of self-organizing multi agent systems through higher-level models

defined at the early stages of design. In particular, authors assert that this approach appears to be

almost unavoidable in order to foster evolving ideas and design choices, and to effectively tune

parameters of the final system. Moreover, authors promote the use of SpiM (Stochastic PI-calculus

Machine) which can be effectively used to simulate the Stochastic π-Calculus specifications and to

track the dynamics of global system properties in stochastic simulations, validating design directions,

inspiring new solutions, and determining suitable system parameters.

2.1.3.10 Joint Measure

In [SBZH01] a layered architectural framework to support agent-based system development in a

collaborative, multidisciplinary engineering setting is proposed. In particular, such framework

supports incremental specification, design, implementation, and simulation of agent-based systems.

As authors distinguish between performing agents (executing in real-world settings) and simulated

agents (simulated in a virtual environment), the proposed framework is intended to form the basis

for environments that support development of agents, in both performance and simulation modes,

as well as in hybrid combination (both performing and simulated agents interacting at the same time).

Authors assert that for complex systems (e.g., distributed agent-oriented systems) adopting a single

architectural framework, both for simulation and system development, can offer key advantages such

as enable designers to study competing/alternative designs by employing a mixture of “simulated”

and “performing” agents and, therefore, support migration from simulation design to operational

design. The simulation is enabled by Joint MEASURE (Mission Effectiveness Analysis Simulator for

Utility, Research and Evaluation) which is built upon DEVS/HLA, a generic HLA-compliant distributed

simulation environment. It is worth noting that although Joint MEASURE affords a baseline to

consider the requirements for agent development simulation environments, it is not intended to focus

on agents per se.

2.1.3.11 INGENIAS/RePast

In [22] authors propose an agent-oriented methodology aimed to support modelling and simulation

of social systems based on MASs. In particular, with respect to the modelling, they propose the use

of an agent-oriented modelling language to specify MAS models representing complex social

systems. Whereas, with respect to the simulation, authors propose the use of simulation toolkits

(RePast, MASON, etc) that execute code obtained through MAS models transformation according

with Model Driven Engineering (MDE) practices. This methodology is supported by a set of tools

belonging to the IDK (INGENIAS Development Kit), which facilitates the edition of models and the

definition of transformations for automatic code generation. Currently, the defined software

component of IDK aimed at automatic code generation implements the mapping from INGENIAS

models to RePast simulation toolkit.

2.1.3.11 GAIA/MASSIMO

In [FGR05] an integrated approach for the development and validation through simulation of MASs

is proposed. Such approach centers on the instantiation of a software development process which

specifically includes a simulation phase that makes it possible the validation of a MAS before its

actual deployment and execution. In particular, the requirements capture is supported by a goal-

oriented approach based on TROPOS methodology, the analysis and design phases are supported

by the Gaia methodology, the detailed design phase is supported by the Agent-UML and the Distilled

State-Charts formalisms, the implementation phase is supported by the MAO Framework, the

simulation phase is enabled by a Java-based event-driven simulation framework, and the

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

24 / 106

deployment phase is supported by the MAAF framework which allows for the adaptation of the MAO

Framework to programming abstraction provided by specific Java-based agent platforms.

2.1.3.12 ELDAMeth

ELDAMeth [FR12] is a methodology specifically designed for the simulation-based prototyping of

distributed agent systems (DAS). It is based on the ELDA agent model and related frameworks and

tools [F08, F10], and on an iterative development process covering the modelling, coding and

simulation phases of DAS. ELDAMeth can be used both stand-alone and in conjunction/integration

with other agent-oriented methodologies which fully support the analysis and (high-level) design

phases. In particular, the development process of ELDAMeth (see Figure 2.3.1) consists of the

following three phases:

 The Modeling phase produces an ELDA-based MAS design object that is a specification of

a MAS fully compliant with the ELDA MAS meta-model (MMM). This design object can be

produced either by (i) the ELDA-based modeling which uses the ELDA MMM and the

ELDATool [A17], a CASE tool supporting visual modelling and coding of ELDA-based MAS,

or by (ii) translation and refinement of design objects produced by other agent-oriented

methodologies such as PASSI [C05], GAIA [WJK00], MCP [F09], etc. In particular, while the

translation process centers on (semi) automatic model transformations based on the MMM

of the employed methodology and the ELDA MMM, the refinement process is usually carried

out manually by the ELDA-based Modeler by using the ELDATool.

 The Coding phase produces an ELDA-based MAS code object which is a translation of the

ELDA-based MAS design object carried out manually or automatically (by means of the

ELDATool) according to the ELDAFramework, which is a set of Java classes formalizing all

the modelling abstractions of the ELDA MMM.

 The Simulation phase produces the Simulation Results in terms of MAS execution traces and

calculation of the defined performance indices that must be carefully evaluated with respect

to the functional and non-functional requirements. Such evaluation can lead to a further

iteration step which starts from a new (re)modelling activity. In particular, the Simulation

Results come from the execution of the ELDA-based MAS simulation object carried out

through the ELDASim engine (ELDASim is a Java-based event-driven simulation framework

for ELDA agents). The ELDA-based MAS simulation object is obtained by synthesizing the

ELDA-based MAS code object with the simulation parameters and performance indices,

defined on the basis of the requirements, by means of the ELDASim framework.

A comparison

Although all the overviewed methodologies offer different approaches to the modelling and

simulation of MAS, they are centered on the use of simulation to validate and evaluate the design of

the MAS under-development. Actually, few of them represent a full-fledged methodology (i.e.

covering all the MAS development lifecycle) for the simulation-driven development of general-

purpose MAS. Moreover, only INGENIAS and EI offer visual modelling tools for supporting the

development process. In Table 2.3.1, the methodologies are compared with respect to the key

features for the provision of an effective development of distributed agent systems: (i) Agent model

(Mobility, Light-weight Reactive/Proactive agent behavior, Multi-coordination); (ii) Methodology

(Dynamic validation methods before implementation, Integrability with other methodologies); (iii)

CASE Tool. In particular, the ELDAMeth methodology supports all the mentioned features.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

25 / 106

Figure 2.3.1: Iterative process for prototyping ELDA-based MASs.

Analysis
Agent-oriented methodologies are suitable for the development of distributed applications and

systems in terms of multi-agent systems. They can be categorized in basic (Gaia, Message, Tropos,

Mase, Prometheus) and simulation-based (TucSon/Pi, EI, DynDEVS, Gaia/Massimo, JM-

DEVS/HLA, Ingenias, CaseLP, ELDAMeth). However, they do not aim at supporting (hw/sw)

distributed systems integration, thus they cannot directly support the definition of INTER-METH.

Nevertheless, some of the techniques proposed by such methodologies could be reused as basic

techniques for defining INTER-METH:

 Goal-oriented analysis (from Tropos) to analyse integration goals;

 Agent-oriented domain conceptualization (from Gaia and ELDAMeth), to formalize

integration requirements in the form of a high-level agent system design;

 Simulation-based validation (from simulation-based methodologies) to validate integration

(i.e. the high-level agent system design) before its implementation.

PASSI GAIA MCP
Other

Methodologies

ELDA-based
MMM

PASSI-->ELDA

Translation

&Refinement

GAIA-->ELDA

Translation

& Refinement

MCP-->ELDA

Translation

& Refinement

OM-->ELDA

Translation

& Refinement

ELDA-based
Modeller

ELDA

Framework

M
O

D
E

L
L

IN
G

C
O

D
IN

G

ELDA-based

MAS CO

ANALYSIS & DESIGN

ELDASim

Framework

S
IM

U
L

A
T

IO
N

ELDA-based

MAS SO

Simulation
Parameters

&
Performance

Indices

ELDASim

Engine

Simulation
Results

*

Functional
&

Non-functional
Requirements

[iterate]

EVALUATION

MMM MMM MMM MMMs

ELDA Tool

SYNTHESIS

ELDA-based

MAS DO

ELDA-based

MAS DO

ELDA-based

MAS DO

ELDA-based

MAS DO

ELDA-based

MAS DO

MMM

DO

CO

SO

=

=

=

=

MAS Meta-Model

Design Object

Code Object

Simulation Object

Automatic Code
Generation

Simulator
Program
Synthesis

Simulator
Execution

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

26 / 106

Table 2.3.1: Comparison among simulation-based methodologies for MAS development.

 Agent Model Methodology CASE Tool

 Multi-
Coord.

Light-Weight
R/P Behavior

Mobility Dynamic
validation
through
simulation

Integrability

TuCSon/Pi X

EI X X

DynDEVS X X X partial

GAIA/Massimo X X X X

JM-DEVS/HLA X

Ingenias/Repast X X

CaseLP partial X X

ELDAMeth X X X X X X

2.1.4 IoT Methodologies

In the following, we analyse currently available IoT methodologies. We should state that they are

still at an early stage of development with respect to methodologies presented in the previous

section, some of which are indeed well developed and diffused.

2.1.4.1 Requirements for IoT Systems Development
IoT systems are composed of many distributed and interacting components that are usually

heterogeneous in terms of hardware devices, communication protocols, software interfaces,

produced data, and semantics. To effectively support their development, general and specific

requirements need to be defined [I1]. While the general requirements allow effective and flexible

middleware for facilitating IoT system programming, the specific requirements are purposely defined

for a target IoT system by considering its specific application domain. In the following, we focus on

the former that are common to all IoT systems. In particular, we group such requirements in two

categories: System-level (Table 2.4.1), which includes requirements related to the whole distributed

system and its development, and Things-level (Table 2.4.2), which encompasses requirements

particularly referring to the “things”, such as RFID, sensors, actuators, smart objects, mobile devices,

machines, and robots, in an IoT system.

2.1.4.2 IoT Engineering Methodologies
Despite a variety of research efforts that tackle different specific issues within an IoT systems

development process, a full-fledged IoT methodology is missing. There are lots of studies that,

instead of providing a proper methodology, collect domain specific best practices, guidelines,

checklists and templates. For example, Slama et al. [SPMB] and Collins [FR12] build up a repository

of technology-dependent solutions coming from the experience in the industrial/business world and

specifically directed to the IoT makers and enterprises. In fact, they propose reference architectures

and guidelines to make specific purpose devices interoperable (TLR1) through abstraction data

models (SLR5) and high-level software interfaces (SLR3). Differently, some researchers present

general-purpose approaches. IoT-A [B13] is a systematic collection of architectures, reference

models, common definitions and guidelines that can be used to derive a concrete IoT architecture.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

27 / 106

Table 2.4.1: System-Level requirements (SLR)

Requirement Description

SLR1:

Hardware

Devices

(Virtualization)

Devices are usually heterogeneous; in order to facilitate their use, abstractions are needed to virtualize

and let them be used, as they are homogeneous by following a kind of a "plug&play" paradigm [V13].

SLR2:

Communicatio

ns

(Abstractions)

Software components and devices need to communicate with each other. Communication abstractions

are needed to make them interact and cooperate, independently from the available low-level network

protocols [M12].

SLR3:

Software

Interfaces

As software interfaces are usually heterogeneous, they need to be generic and standardized through

higher level mechanisms such that their use is straightforward. Thus, software components based on

such high-level interfaces can be seamlessly accessed [BS11].

SLR4:

Physicality

(Self and

Context

Awareness)

Hardware and software components in IoT systems and entire IoT systems themselves are intrinsically

situated. This implies that they have static or dynamic locations and refer to one or multiple contexts

during their lifecycle. Abstractions are therefore needed to capture the concepts of location and context,

as they are useful in the design and implementation of IoT systems [P14].

SLR5:

Data

(Abstraction)

Different hardware and software components, e.g. sensors, machines, smart objects, and mobile apps,

usually produce data according to different modalities, formats and types. Thus, abstractions are

needed to formalize data streams generated by such components. Continuous data streams, discrete

data and sporadic events should be defined under a common framework. Moreover, the representation

of data types needs to be standardized as it would allow interoperability in data exchange among

heterogeneous components [K08].

SLR6:

Development

Process

(Methodology)

To analyze, design and implement IoT systems, suitable software engineering methods and tools need

to be defined. They should be able to effectively model IoT systems by using high-level modeling

abstractions and fully support their design, implementation, deployment and management [Z16].

Table 2.4.2: Things-Level requirements (TLR)

Requirement Description

TLR1:

Heterogeneity

and

Interoperabilit

y

Applications that use "things" should be programmed independently from vendors-specific "things". For

instance, if an application is based on a "smart chair", it should be able to use smart chairs built by

different vendors. Moreover, applications should be able to exploit "things" to be built in the future. This

implies to adopt a standardized approach or, if not applicable (standardization is a very long process),

to exploit software layering-based dynamic adaptation techniques between application and the "things"

levels [AIM10].

TLR2:

Augmentation

Variation

"Things" usually provide a set of services that can vary in quantity and types both among different

"things" and among similar "things". In particular, different "things" can provide same services whereas

two similar "things" can provide different services. Thus, "things" cannot be crisply classified only by

their type and may expose non-standard interfaces. Augmentation variation of "things" is an important

requirement as it defines how "things" can modify their augmentation by providing diversified services

that can change during their lifecycle. This implies to design not only methods to dynamically

add/modify/remove "things" services but also how they are actually furnished [K10].

TLR3:

Decentralized

Management

An effective management of "things" is crucial in IoT applications where tons of distributed "things" could

potentially interact with each other and/or be used to fulfill a final goal. Applications and "things" should

be therefore able to dynamically adapt as "things" could continuously change for different purposes

(augmentation variation, mobility, failures, etc.). Thus, the matching among "things" services and

application requirements should be often done at run-time. Discovery services are therefore strategic in

such a dynamic context to find and retrieve "things" according to their static and dynamic properties

[M12].

TLR4:

Dynamic

Evolution

Applications and "things" should be simply and rapidly prototyped and upgraded through proper

programming abstractions. The evolution can be driven by programming, learning, or both. In particular,

evolution by learning is usually based on smart self-evolving components (application-level components

and smart "things") able to self-drive their evolution on the basis of some learning models [K10].

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

28 / 106

By means of different views, perspectives and metamodels, IoT-A aims to offer a unified approach

to the development of IoT systems, in order to promote cross-domain interaction (SLR2), to support

interoperability (TLR1) and to reduce fragmentation within an IoT context. Most of the indications

provided by IoT-A have inspired the AIOTI (Alliance for the Internet of Things) [AIOTI] reference

models, specifically the domain model. The latter describes IoT entities and their relationships, by

eliciting all the TLRs in the SO analysis phase. Zambonelli [Z16] proposed a software engineering

methodology centered on the main general-purpose concepts related to the analysis, design and

implementation phases of IoT systems and applications. Such concepts are used to identify the key

software engineering abstractions (SLR1, and SLR3-SLR5) as well as a set of guidelines and

activities that may drive the IoT systems development. The envisioned methodology, however, lacks

the definition of models and tools to represent different conceptual and software artifacts. In brief,

the existing methodologies neither completely support the TLRs and SLRs, nor cover the entire

development process. In [FGRS15], authors propose a metamodel-based engineering approach for

the systematic development of SOs, from analysis to implementation. In particular, (i) to support the

analysis phase and therefore to model the relevant SO aspects, the Smart Object High-Level

Metamodel has been introduced; (ii) to support the design phase and to model the functional

components of the system, their relationships and interactions, the ELDA-based Smart Object

Metamodel (where ELDA stands for Event-driven Lightweight Distilled statecharts-based Agent) and

the ACOSO-based Smart Object Metamodel (where ACOSO stands for Agent-based Cooperating

Smart Objects), respectively based on the ELDAMeth meta-model [F10] [FR12] and on the ACOSO

framework [BPR01] [I19], have been exploited; (iii) to support the implementation phase, the

ACOSO-based Agent Smart Object Metamodel has been specialized with respect to the JADE

platform, resulting in the JACOSO Metamodel. Such methodology fulfills all identified requirements

for IoT systems development (see Section 2.4.1).

Table 2.4.3: IoT Methodologies Comparison (Y=Yes, P=Partial, N=No)

IoT
Methodologie

s
[references]

Development
phase

(Analysis,
Design,

Implementation
)

System-Level-
Requirements

Things-Level-Requirements

 A D I
SLR

1
SLR

2
SLR

3
SLR

4
SLR

5
SLR

6
TLR

1
TLR

2
TLR

3
TLR

4

[SPMB] P N P N N Y N Y P Y Y N N

[CT] P N P N N Y N Y P Y Y N N

[AIOTI] Y P N Y Y N N Y P Y Y N Y

[B13] Y P N Y Y N N Y P Y Y N Y

[Z16] P Y N Y N Y Y Y P Y P P N

[FGRS15] Y Y Y Y Y Y Y Y Y Y Y Y Y

Analysis
Although the overviewed methodologies have been specifically defined for developing IoT systems

totally or partially fulfilling the reference requirements for IoT systems development, they have not

been devised for IoT systems integration and interconnection. Thus, even though some of the ideas

on which they are founded could be reused, such methodologies (as the reviewed agent-oriented

methodologies) have another scope. INTER-Meth could borrow mainly:

 The meta-modeling approach (see ACOSO-Meth [FGRS15]) that is typical of the model-
drive development (MDD) approach;

 The agent-oriented-like approach (see [Z16]) allowing to simplify the definition of
integration requirements analysis;

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

29 / 106

 AIOTI [AIOTI] and IoT-A [I1] meta-models to have reference IoT architectures during the
integration process, in order to align the meta-models of the IoT systems/platforms to be
integrated/interconnected or made interoperable to the reference meta-model.

2.1.5 Agile Methodologies

Agile software development refers to a set of methods and practices based on principles expressed

in Agile Manifesto2. Agile, meaning the ability to create and adapt to changes in the uncertain

environment, was applied as a term characterizing the collection of methodologies in 2001, and since

then it has been widely promoted (e.g. by Agile Alliance3) and applied also to other areas (e.g.

marketing). The common features of agile methods include: close collaboration between the

development team and business stakeholders, frequent delivery of business value, self-organizing

cross-functional teams, quick response to changes and continuous development and integration

(short feedback loop and adaptation cycle). Specifically, Agile is a time-focused, iterative philosophy

that allows to build a product incrementally and deliver it by small increments. Agile projects can be

adapted and modified at almost any step as a result of received feedback or changed market

conditions.

The twelve principles behind Agile Manifesto are the following4:

1. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.
6. The most efficient and effective method of conveying information to and within a development

team is face-to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity--the art of maximizing the amount of work not done--is essential.
11. The best architectures, requirements, and designs emerge from self-organizing teams.
12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

Agile development has been recognized as highly suited to certain types of environments, including
small teams of experts working on innovative projects.

Lean5 is a philosophy (mindset) that was adapted from manufacturing (originally developed by

Toyota in the 1950's) to software development by Mary and Tom Poppendieck6 in 2003. Agile and

Lean philosophies have much in common – adaptive planning and team-orientation. Indeed, Agile

has been influenced by Lean manufacturing from the beginning (Lean is considered a wider

2 http://agilemanifesto.org/iso/en/manifesto.html
3 https://www.agilealliance.org/
4 http://agilemanifesto.org/iso/en/principles.html
5 https://books.google.pl/books?id=hQk4S7asBi4C&pg=PA182&redir_esc=y&hl=en
6 http://www.poppendieck.com/

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

30 / 106

approach). Lean aims at using fewer resources (e.g. time, money) and eliminating waste while

maximizing customer value.

 Lean software development is driven by seven principles:

1. Eliminate waste – everything that does not add value to the customer is treated as a waste
2. Amplify learning - continuous learning process based on iterations (writing code and testing)
3. Decide as late as possible – options-based approach enabling adaptation and correction of

mistakes; decisions based on facts and not predictions
4. Deliver as fast as possible – short iterations ended with product increment delivery result in

sooner feedback that can be considered for the next iteration
5. Empower the team – motivated team with influence on the project planning
6. Build integrity in – the components of the system work together well which is justified by

automated testing
7. See the whole – the need to think about the system not only as a set of components, but as

a product of their interactions

Even though practices for Lean software development differ from Agile software development
practices, there are some similarities. Comparison of Agile and Lean is given here7.

Figure 2.5.2: Relations between Agile, Lean and Scrum concepts8

Scrum
According to Jeff Sutherland Scrum is „a framework within which people can address complex

adaptive problems, while productively and creatively delivering products of the highest possible

7 https://realtimeboard.com/blog/choose-between-agile-lean-scrum-kanban/#.WA7WmiRXJ-B
8 https://agileinsights.wordpress.com/tag/agile-development/

System
Thinking

Lean

Agile

Scrum

https://en.wikipedia.org/wiki/Lean_software_development#Eliminate_waste
https://en.wikipedia.org/wiki/Lean_software_development#Amplify_learning
https://en.wikipedia.org/wiki/Lean_software_development#Decide_as_late_as_possible
https://en.wikipedia.org/wiki/Lean_software_development#Deliver_as_fast_as_possible
https://en.wikipedia.org/wiki/Lean_software_development#Empower_the_team
https://en.wikipedia.org/wiki/Lean_software_development#Build_integrity_in
https://en.wikipedia.org/wiki/Lean_software_development#See_the_whole

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

31 / 106

value”9. The guidelines of Scrum are summarized in the Scrum Guide10, where roles of team

members, events, artifacts and definition of done are described.

The three roles in the Scrum framework are:

1. Product Owner – represents stakeholders (acts on behalf of customers)

2. Scrum Master – ensures that Scrum framework is followed, removes impediments

3. Development Team – cross-functional and self-organizing team that is responsible for

delivering potentially shippable increments

The Scrum workflow is based on sprints (iterations) that form a basic unit of development. They are

usually timeboxed to two weeks. Sprint starts with a sprint planning meeting (SPM) during which a

sprint backlog is created that identifies the work for the sprint, and make an estimated commitment

for the sprint goal. Each sprint ends with a sprint review and sprint retrospective that aim at reviewing

progress and identifying improvements for the next sprints. Scrum emphasizes that a shippable

product increment (defined by sprint goals and definition of done) should be released at the end of

each sprint. Each day at a specified time during a sprint, the team holds a daily scrum (short stand-

up meeting) during which each member summarizes work done yesterday, plan for today and

encountered problems.

Scrum artifacts include:

1. Product backlog - prioritized list of high-level requirements (user stories)

2. Sprint backlog - prioritized list of tasks to complete during the sprint (selected from the product

backlog)

3. Product Increment - the sum of all product backlog tasks completed during a sprint, integrated

with the work of all previous sprints

The extension to core artefacts allow visual tracking of progress – sprint burn-down chart, release

burn-up chart. Scrum is promoted mostly by Scrum.org11 and Scrum Alliance12 organizations. Scrum

can be scaled by implementing Scrum of Scrums (metaScrum)13. It allows to operate with a large

group of people forming multiple teams working on the same product by allowing them to discuss

progress on their interdependencies and focusing on how to coordinate delivering and integration.

Kanban
Kanban is a lean methodology that tracks ‘to do – in progress – done’ activities, however it limits

them by the number of concurrent ‘in progress’ activities (the number is defined by the team manager

and cannot be exceeded). Kanban uses visual work management (Kanban boards) to increase

communication and collaboration. Team members pull work (tickets/cards) as they have capacity,

by moving cards between swimlanes. Board design depends on the context and can vary

significantly e.g. tickets can be grouped by different criteria, additional vertical and horizontal

divisions may be introduced.

9 http://scrumguides.org/scrum-guide.html
10 http://scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf#zoom=100
11 https://www.scrum.org/
12 https://www.scrumalliance.org/
13 https://www.agilealliance.org/glossary/scrum-of-scrums/

https://en.wikipedia.org/wiki/Stand-up_meeting
https://en.wikipedia.org/wiki/Stand-up_meeting

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

32 / 106

Figure 2.5.2: Kanban board. Source: https://leankit.com/learn/kanban/kanban-board/

Kanban methodology focuses on continuous learning and improvement by calculating metrics,

analyzing (performing retrospectives) and optimizing the flow.

Scrum and Kanban share some characteristics as Agile and Lean methodologies, but there are also

some significant differences14. They both deliver software early and often, utilize pull scheduling, limit

work in progress and promote transparency. Kanban, as opposed to Scrum does not require specific

roles, estimation and timeboxing. It works well with maintenance projects.

Analysis
Agile methods are designed for complex systems development with dynamic and non-deterministic

characteristics, where accurate estimates and predictions are often hard to be made in early stages.

See Table 2.5.1 for a comparison.

Table 2.5.1: Pros and Cons of Agile Methodologies

Pros Cons

Adaptive rather than predictive. Changes are
easier accepted and accommodated during the
project.

May be problematic when there is a need to
describe what will happen in the project in the late
future. Planning is less concrete because it is
based on timeboxed delivery.

Agile is very beneficial for projects where the end-
goal is not clearly defined. The final product
shape will come to light as project progresses and
requirements evolve.

More emphasis put on working software than
documentation. Team may feel that it is less
important to focus on documentation. However,
documentation can also be prepared and
delivered within iterative cycles.

Fast and high-quality delivery. In each iteration
an artefact is released that is tested and can be
further integrated.

Team commitment and active involvement is
required to succeed.

Continuous improvement and maximizing the
delivered value by retrospective and re-planning
done after each iteration.

Agile requires that clients participate proactively.
In special cases they can be replaced by Product
Owner.

Well identified pitfall that should be avoided in
order to succeed.

Dedicated terminology that has to be used e.g.
scrum, sprint, velocity, points.

Applicable to various projects from different fields
(the basis are 12 Agile principles that need to be
followed).

Small and maintenance projects are not ideal for
Scrum methodology.

Scalable methodology – Scrum of Scrums.

Many management tools that support working in
Scrum or Kanban methodologies.

Transparency in terms of requirements, tasks
and costs communication.

Strong team interaction.

14 https://www.crisp.se/file-uploads/futureofagile-slides-henrikkniberg.pdf

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

33 / 106

2.1.6 CMMI (Capability Maturity Model Integration)

CMMI (Capability Maturity Model Integration) [C1] is a framework of best practices for process

improvement. The current version, CMMI-DEV, describes best practices in managing, measuring

and monitoring software development processes. The CMMI model does not describe the processes

themselves; it describes the characteristics of good processes, thus providing guidelines for

companies developing or honing their own sets of processes.

CMMI is a methodology which aims to take projects or teams from level 1, "chaotic", to a higher

level, ideally but not necessarily level 5, "optimizing".

It consists of various capabilities, each of which is assigned to a specific level. For example, CMMI

level 2 requires the Project Planning capability. The levels are basically:

1. Chaotic, no real control.

2. Managed, processes at project level, mostly reactive.

3. Defined, processes at organization level, proactive.

4. Quantitative, processes measured and controlled.

5. Optimizing, feedback loops and continuously improving.

An organization cannot be certified in CMMI; instead, an organization is appraised. Depending on

the type of appraisal, the organization can be awarded a maturity level rating (1-5) or a capability

level achievement profile.

Many organizations find value in measuring their progress by conducting an appraisal. Appraisals

are typically conducted for one or more of the following reasons:

1. To determine how well the organization’s processes compare to CMMI best practices, and

to identify areas where improvement can be made

2. To inform external customers and suppliers of how well the organization’s processes

compare to CMMI best practices

3. To meet the contractual requirements of one or more customers

Figure 2.6.1: CMMI process

Appraisals of organizations using a CMMI model must conform to the requirements defined in the

Appraisal Requirements for CMMI (ARC) document.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

34 / 106

The Standard CMMI Appraisal Method for Process Improvement (SCAMPI) is an appraisal method

that meets all of the ARC requirements. Results of a SCAMPI appraisal may be published (if the

appraised organization approves) on the CMMI Web site of the Software Engineering Institute (SEI).

CMMI is completely compatible with other methodologies, since it relates to process improvement,

not determining specific tools to measure, manage or refine the project's development variables.

Instead of specifying processes, CMMI is a model defining a collection of the activities to be expected

of an organization as it sets out to improve its processes. Thus, CMMI must be implemented instead

of applied.

Analysis
Once the INTER-METH process is defined, CMMI could be used to improve it, whereas SCAMPI

could be used to appraise it according to the standard Appraisal Requirements for CMMI (ARC)

procedure.

2.1.7 Overall Analysis

Methodologies: Summary
The first phase the SOTA analysis related to software engineering methodology for IoT identified the

methodologies and types of methodologies reported in Table 2.7.1.

Table 2.7.1: Analyzed Methodologies and their main characteristics

Methodology Interesting Characteristics

Waterfall Well-defined and easily applicable process

Volere Support for systematic elicitation of requirements based on use cases and

scenarios

Agent-oriented

Methodologies

- Conceptualization based on the Agent Paradigm

- Easy analysis of requirements based on goals

- Exploitation of simulation for system validation

IoT Methodologies The use of reference metamodels such as AIOTI, IoT-A, ACOSO-Meth for IoT

System Development

Agile/Scrum Agile process useful for complex projects with dynamic requirements evolution

CMMI Support for Process Improvement and associated appraisal method SCAMPI

(Standard CMMI Appraisal Method for Process Improvement)

An analysis toward INTER-METH
Although the analyzed methodologies have been specifically defined for supporting the

development of software systems, they have not been specifically devised for systems integration

and/or interconnection.

Thus, even though some of the ideas on which they are founded could be reused, such

methodologies (as the reviewed agent-oriented methodologies) have another scope.

However, INTER-METH could profit from some of their characteristics:

 Waterfall (Section 2.1.1): INTER-METH could be based on the abstract Waterfall process as

proposed in the GA of INTER-IoT. However, the process should be made iterative and partly

agile.

 Volere (Section 2.1.2): INTER-METH could profit from the Volere specification of

requirements, needs, use cases and scenarios in a standard format.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

35 / 106

 Agent-oriented methodologies (Section 2.1.3): The agent-oriented-like approach can simplify

integration requirements analysis (see TROPOS). The meta-modeling approach (see

ACOSO-Meth) can support high-level and detailed-design of IoT systems integration.

Moreover, agent-based simulation could be used to validate system integration.

 IoT systems development methodology/approaches (Section 2.1.4): AIOTI and IoT-A meta-

models could be used as the reference IoT architectures during the integration process.

Specifically, in order to align the meta-models of the IoT system/platform to be

integrated/interconnected or made interoperable to the reference meta-model.

 Scrum (Section 2.1.5): It has in general pros and cons with respect to more static

methodologies. The possible benefits towards INTER-METH definition should be identified.

 CMMI (Section 2.1.6): Once the INTER-METH process is defined, CMMI could be used to

improve it, whereas SCAMPI could be used to appraise it according to the standard Appraisal

Requirements for CMMI (ARC) procedure.

2.2 Integration Techniques and Methodologies for IoT Systems and

Systems of Systems

2.2.1 IoT Systems Integration: Model-driven Interoperability

In the referred papers [GPS16][GP14], the main aim is to collect and analyse data from IoT world.

This requirement brings a common problem, namely Interoperability. Things are highly

heterogeneous networked devices employing different protocols (HTTP, MQTT, DDS) and different

data formats (binary, XML, JSON). Such devices can then be composed with cloud-based

infrastructure services or Cloud Platform services for further processing, analysis and storage.

Interoperability is managed in an ad-hoc manner, but remains a significant burden on developers to

understand and identify interoperability problems and then implement and test solutions accordingly.

In their research, they seek to reduce this burden using “model-driven development“ tools and

techniques. In particular, there are three key contributions:

 Interoperability models are reusable, visual software artefacts that model the behavior of

services in a lightweight and technology independent manner; these models are a

combination of architecture specification and behavior specification and are based upon

Finite State Machines (FSM);

 A graphical development tool to allow the developer to create and edit interoperability

models and to also execute tests to report interoperability issues;

 The Interoperability monitoring and testing framework captures systems events (REST

operations, middleware messages, data transfers) and transforms them into a model

specific format that can be used to evaluate and reason against required interoperability

behavior.

Hence, such model-driven development approach allows the developer to create, use and re-use

“models of interoperability” to reduce development complexity in line with the following requirements

to ensure interoperability is correctly achieved.

To evaluate the tool, they utilize a case-study based approach:

 FIWARE provides a marketplace of independently developed Future Internet Services

(approximately 30) that can be composed to build IoT and cloud applications; these are

loosely coupled REST services without formal interface or behavioral specifications, and

hence achieving interoperability remains a significant task for developers.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

36 / 106

Different stakeholders are defined in the engineering methodology:

 Interoperability testers create new IoT applications and services to be composed with one

another;

 Application developers model the interoperability requirements of service compositions.

They create interoperability models to specify how IoT applications should behave when

composed. These models are re-usable abstractions that can be edited, shared and

composed;

 Service or API developers model the compliance requirements of their new service API;

 Specification compliance testers test compliance of their specification implementation.

With these models it is then possible to automate the interoperability testing processes and better

support service composition. This approach explores models that focus solely on interoperability;

the specification of the exchanges between IoT services with rules defining the required behavior

for interoperability to be guaranteed. There are two types of model:

 The interoperability model used by application developers and interoperability testers;

 Specification models and compliance testers.

An interoperability model is specified as a finite state machine. A state represents a state of a

distributed application waiting to observe an event. A transition represents a change in state based

upon an observed event matching a set of rules regarding the required behavior. A compliance

model is specified as a finite state machine using the same elements as the interoperability model

and added two extra elements:

 Trigger state: this is an active state as opposed to an observing state;

 Trigger transition: this is a transition from one state of the distributed system caused by the

sending of a new message.

Analysis
This research could provide some contribution to the INTER-IoT project regarding how an application

interoperate with cloud and IoT services and then how easy it is to migrate a given application to a

new service. In particular, it discusses about interoperability of IoT

services/systems/(virtualized)devices and is fundamental in the CASE-driven integration

methodology (INTER-METH) supporting the integration process of heterogeneous IoT platforms to

obtain interoperability among them and allow implementation and deployment of IoT applications on

top of them. Then an added value is the case study based on FIWARE, because the approach is

based on the deployment of enablers and integration of services. It includes several components to

integrate IoT and services. The middleware solutions allowing multiple technologies to be deployed

and then supporting developers address further application and middleware interoperability

problems. Specifically, the modelling of the interoperability requirements can be used by INTER-

METH to define/formalize the integration requirements of IoT applications/systems/platforms. As

INTER-METH is based on another method, this is indeed taken as future work for INTER-METH.

2.2.2 System of Systems (SoS) Integration

As in [KR13]: “SoS is a set of systems that are cooperating and interoperating while the different

systems are simultaneously working as independent entities (and thus not only as parts of the

integrated system).”

As in [MMW96]: SoS is an assemblage of components which individually may be regarded as

systems, and which possesses five additional properties:

1. Operational Independence of the Components

2. Managerial Independence of the Components

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

37 / 106

3. Evolutionary Development

4. Emergent Behavior

5. Geographic Distribution

As in [SOS6]: “A set or arrangement of systems that results when independent and useful systems

are integrated into a larger system that delivers unique capabilities”.

Unlike traditional systems where systems are created based on a specific user requirements, SoS

is composed of multiple constituent systems at various stages within their lifecycles (e.g. emerging

systems, systems in-development, legacy systems) to satisfy needed mission capabilities.

Differences between SoS and traditional systems are summarized in Table 1 in [VK16].

Summary of [KR13]
Authors propose methods to improve the way in which an IT architect addresses the integration

problem. In classic publications such as [C02] and [HW04], generic approaches to integration

problem are presented (often making implicit assumptions). Here, authors focus on how to select

the best integration approach in SoS context depending on the features of the environment and

systems to be integrated. In case of SoS the integration can happen on different layers e.g.

database, UI, business logic, for each some developments (e.g. SOA for services) are already

available. The amount of available generic and layer specific design patterns makes it more difficult

to choose the best solution.

In this paper, a technique is presented in which the architect needs to perform initial analysis

based on predefined categories. The classification helps to understand and describe design

constraints for SoS.

First of all, the form of integration to be achieved will influence the form of the design pattern

chosen. Two main aspects of integration shall be considered: how data will be shared and how

control will be managed (See Table 2.8.1).

Table 2.8.1: Data and Control choices in SOS (Based on Table 1 from [1])

Control / Data Shared Isolated

Hierarchical Information system based on
call-return paradigm with
shared memory

Traditional information system
based on call-return paradigm

None Data-centric system e.g.
warehouse

Agent-based system

Next, the categorization summarized in Table 2.8.2 is proposed.

Table 2.8.2: Summary of template for information pattern matrix (Based on Table 4 from [1])

 Attribute Possible Values

SoS Context SoS Scope System of Systems, System

Development Context Greenfield, Brownfield, Closed Source

Integration Purpose One-Directional Information Exchange, Bi-Directional
Information Exchange, Control, Negotiation

LISI (Levels of
Information Systems
Interoperability)

Isolated, Connected, Functional, Domain, Enterprise

PAID Procedures, Applications, Infrastructure, Data

Technical
Categorization

Integration Level Information Exchange, Basic Behavior Interaction,
Complex Behavior Interaction, User Interface Sharing

Data Abstraction Level Structural, Syntactic, Semantic

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

38 / 106

Data Level Integration File-Transfer, Message-Exchange, Streams, Common
Data

Interaction Style Send, Call, Call-Return, Call/Call-Back, Time-Based,
Multi-Call Protocols

Quality Attributes of
Integration

Reliability, Performance, Security, Availability, In-
teroperability, Scalability, Manageability, Consistency

Finally, a few design patterns from popular patterns catalogs are analyzed with respect to the

proposed classification. They were assigned values for the attributes in the pattern integration

matrix template. In this way, on one hand, the integration context can be described and on the

other patterns can be analyzed, compared and chosen to match the context. From this approach

emerges a process for creating SoS based on patterns as a central architectural concept. Authors

suggest the following sequence of steps:

1. “Choose/prioritize architecturally significant requirements, focusing on the driving quality

attributes.

2. Catalog the technological, budget, schedule, and organizational constraints that will limit

the set of possible architectural options.

3. Choose data and control strategies that reflect the requirements of the interoperating

systems.

4. Based on the requirements, constraints, and data/control strategies, choose one or more

patterns.

5. Tailor and combine any chosen patterns.

6. Finally, choose technologies to implement and realize these patterns. Enterprise

frameworks, for example, will realize many of the patterns described in this report at

relatively low-cost to the project.”

Summary of [DJ11]
This paper presents time-sequence wave model representing SoS systems engineering (SE)

based on guideline by U.S. Department of Defence on SE of SoS [6]. Main characteristics of the

model are:

 Multiple overlapping iterations of evolution

 Ongoing analysis

 Continuous input from external environment

 Architecture evolution

 Forward movement with feedback

Model elements are:

 Initiate SoS – fundamental information to start the SoS process,

 Conduct SoS analysis – analysis of the „as is” SoS by establishing SoS baseline and

developing initial plans for SoS evolution,

 Develop and evolve SoS architecture – adjustment of the technical framework to address

SoS evolution and identify risks,

 Plan SoS update – plan the next SoS update cycle,

 Implement SoS update – monitoring, implementation and testing,

 Continue SoS analysis – ongoing analysis as a basis for future SoS evolution.

Authors have also identified the artifacts that are associated with the model along with the

information where they are created, updated and used in the wave model. This publication is

complimentary to [6] where SoS core elements are defined and application of system engineering

processes in the context of SoS and identified focus area are described.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

39 / 106

Summary of [VK16]
Author of the paper introduces System of Systems Engineering and Integration (SSE&I)

methodology that describes planning, analyzing and integrating of systems into SoS. The process

is based on the V-Model that is adapted to represent SoS lifecycle. The following phases were

identified:

1. SoS Architecture and Requirements Development – user needs are defined; includes

capability collection/customer interface, capability assessment and analysis, SoS

architecture development and analysis, SoS requirements and allocation;

2. Systems Design and Development – engineering activities performed within the constituent

systems;

3. SoS Governance and Analysis – establishing the set of rules, policies, and decision-making

criteria;

4. Mission Assurance; activities complementary to SoS Architecture and Requirements

Development including SoS interoperability and certification, deployment, operations and

maintenance; this phase assures constant collaboration and coordination of activities for

the successful development and integration of the SoS.

Detailed descriptions of the phases are available in [VK16].

Analysis
While methods from [KR13] shall be considered to classify available design patterns that can be

applied in SoS / INTER-IoT context, methods in [DJ11, SOS6, VK16] present approaches to SoS

engineering and methodology that are based on the V-Model [SOS7] that is not adopted by INTER-

METH.

Therefore, our analysis of INTER-IoT features has shown that it shares many characteristics with

the concept of SoS. It enables interoperability between systems that operate independently, which

results in the development of additional functions that do not reside in any of the integrated

components. These characteristics challenge the application of traditional software engineering

approaches, since it is more difficult to define boundaries and requirements, and to control the

development environment.

2.2.3 Telecommunication Systems Integration

There are three main methods for telecommunication system integration: horizontal integration,

vertical integration, and star integration. For the specific case of network and communication system

integration, from the IoT environment perspective, it is desirable to achieve seamless integration and

avoid the existence of silos. Therefore system integration should be done by means of the method

of horizontal integration. To achieve a true Internet of Things we need to move away from such

small-scale, vertical application silos, towards a horizontal infrastructure on which a variety of

applications can run simultaneously. This is only possible if connecting a thing to the Internet of

Things becomes as simple as plugging it in and switching it on. Such plug and play functionality

requires an infrastructure that supports it, starting from the networking level.

Horizontal integration - in opposition to vertical integration, “layered”, horizontal integration provides

“seamless” integration. Integration based on a horizontal infrastructure on which a variety of

applications can run simultaneously.

In the following some well-known methods are listed and commented.

 Enterprise Service Bus (ESB) is an integration method in which a specialized subsystem is

dedicated to communication between other subsystems. This allows cutting the number of

connections (interfaces) to only one per subsystem which will connect directly to the ESB.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

40 / 106

The ESB is capable of translating the interface into another interface. This allows cutting the

costs of integration and provides extreme flexibility. With systems integrated using this

method, it is possible to completely replace one subsystem with another subsystem which

provides similar functionality but exports different interfaces, all this completely transparent

for the rest of the subsystems. The only action required is to implement the new interface

between the ESB and the new subsystem. The horizontal scheme can be misleading,

however, if it is thought that the cost of intermediate data transformation or the cost of shifting

responsibility over business logic can be avoided.

 By means of the creation of Virtual Networks, network and telecommunication systems can

be seamless integrated in the overall IoT system, within the Virtual Network. The term

“network virtualization” means the operation of multiple networks with different characteristics

and functions over the same physical network. The new communication control technology

has two key features: (1) The optimal allocation of virtual network capacity based on

communication traffic, and (2) The optimization of virtual network routes. This technology will

enhance the efficiency of network use in terms of the data communication speed and capacity

required for each application, and enable telecommunication operators to provide high-speed

communication to a larger number of users. The virtualization technology copes with network

congestion caused by a heavy traffic load in a particular part of network by connecting

automatically to other types of network, thereby increasing the potential for services to

continue operating.

 The M2M platform and gateways are required to handle completely new telecommunication

protocols, and connect networks reliably. Networks with different technologies require

protocol translation. Also it should be considered data format translation. A common data

format is an integration method to avoid every adapter having to convert data to/from every

other applications' formats, Enterprise application integration (EAI) systems usually stipulate

an application-independent (or common) data format. The EAI system usually provides a

data transformation service as well to help convert between application-specific and common

formats. This is done in two steps: the adapter converts information from the application's

format to the bus's common format. Then, semantic transformations are applied on this

(converting zip codes to city names, splitting/merging objects from one application into

objects in the other applications, and so on).

Other methods for system integration (not devised as deemed not appropriate for IoT environments)

are vertical integration and star integration.

2.2.4 Systems Integration Best Practices

Systems Integration (SI) [BP1] is a process of assembly of constituent parts of a system. It includes
comprehensive system execution check and a full functional check-out. Together with Systems Test
(verification that the system meets requirements and validation that the system performs in
accordance with the expectations) and Systems Engineering it forms the Systems Engineering,
Integration and Test (SEIT) process.

However, SEIT practices are in most cases highly inconsistent and error-prone, following the so-
called Big Bang Integration model. In this model, all components of the system arrive for integration
more-or-less simultaneously and tests are conducted either when integration is finished or on the
day before delivery, whichever comes first. Thus, integration starts way too late, it is expected to
occur instantaneously and its focus is on the components, rather than system capabilities.

Better alternative to the Big Bang Integration model is the Continuous Integration model, which
establishes integration rhythm that is essentially independent of the development team. It utilizes a
dedicated team of systems integration engineers who know the systems requirements. Together
with design and test engineers they create a System Architecture Skeleton (SAS) very early in the
process of the development and use it as the framework for the integration of subsystems and

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

41 / 106

components. SAS enables incremental subsystem integration (subsystems represent end-to-end
function threads that satisfy a set of requirements for capabilities and performance), while it also
provides an environment for component verification. With the help of SAS it is possible to
demonstrate early, concrete milestones to the customer and it allows witnessed subsystem
verification, before the whole system is finished.

The process of integration in the Continuous Integration model thus overlaps with development,
while its success is based upon completion and verification of integrated subsystems end-to-end
against system-level requirements. Internal and/or external automated test tools are created, which
greatly reduce the emphasis on man-in-the-loop testing, while the whole process is augmented with
requirements-driven testing, which includes stress testing and long mission threads testing.

In order to aid the process of integration, Continuous Integration model partitions specifications and
procedures into three categories; requirements, design and verification. Requirements are divided
into system requirements and derived requirements, design is divided into high-level and detailed
design, while verification is divided into system requirements verification and component checkout.
In the case of simple and low-risk items, these specifications and requirements are simple and
coarse, while for complex and/or high-risk items, these are more detailed.

As is the case for development process, the Continuous Integration process also runs independently
of component checkout and release for subsystem integration. Software Version Description
Document (VDD) accompanies each new release, as well as informal readiness integration review.
The focus is on successful integration and end-to-end verification against system-level requirements
of each new release, to the extent that is possible within the SAS and currently integrated
subsystems. Stress testing and long mission thread testing also commences in parallel to
verification; the former includes processor and storage measurements in various system conditions,
'corner condition' testing, testing system operation beyond required system capacities and
endurance /'woodpecker' testing, while the latter consists of testing in operationally relevant
scenarios and user testing (in the form of focus groups) – in order to ensure suitability.

The system is ready, when all subsystems are integrated, when all subsystem threads are exercised
successfully, and the system is robust and ready for formal requirements verification.

Analysis
In the context of INTER-IoT we can reuse the notion of continuous integration and testing, parallel
to the development. Alongside with continuous integration we could also have continuous stress
testing and verification, which the resulting system at that stage of development conforms to the
requirements. Continuous integration process continues independently from component checkout
and releases for subsystem integration.

We can introduce the notion of SAS (System Architecture Skeleton), around which we can form our
CASE tool for automated application of INTER-METH methodology.

Requirements traceability will be maintained between requirements, design and verification
specifications at all levels of development and integration; through the Informal Integration
Readiness Review.

2.2.5 IOT-A Methodology

A major benefit of the IoT-A ARM (Architecture Reference Model) [B13] is the capability of generating

architectures for specific systems. This architecture generation is done by providing best practices

and guidance for helping translating the ARM into concrete architectures. The benefit of such a

generation scheme for IoT architectures is not only a certain degree of automatism of this process,

and thus the saved R&D efforts, but also that the decisions made follow a clear, documented pattern.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

42 / 106

Reference Model and Reference Architecture Definition
A reference model is, according to the OASIS [IOTA1] definition: “A reference model is an abstract

framework for understanding significant relationships among the entities of some environment. It

enables the development of specific reference or concrete architectures using consistent standards

or specifications supporting that environment. A reference model consists of a minimal set of unifying

concepts, axioms and relationships within a particular problem domain, and is independent of

specific standards, technologies, implementations, or other concrete details. A reference model may

be used as a basis for education and explaining standards to non-specialists”.

While an architectural reference model (ARM) is a term extensively used in IOT-A and defined in

this document as an architectural pattern in [B07]: “Architectural reference model is a description of

element and relation types together with a set of constraints on how they may be used.”

Finally, the definition of reference architecture used in this document is the following (also taken from

[B07]): “A reference architecture is a reference model mapped onto software elements (that

cooperatively implement the functionality defined in the reference model) and the data flows between

them”.

Figure 2.8.1: IoT-A: from Reference Models to Software Architecture.

Architecture Generation
The process described in [IOT3] is used to describe each of the following seven views:

● Physical Entity view

● Deployment view

● Operational view

● IoT Context view

● IoT Domain Model

● Functional view

● Information view

And the process to execute is:

1. Create Physical Entity view. It refers to the Physical Entity in the IoT Domain Model [IOT3]. A

Physical Entity is “any physical object that is relevant from a user or application perspective”.

IoT-A does not provide a solution for this definition. Activities related to this are the analysis

of devices to be connected, the definition of the type of measurements and the physical

communication links to use.

2. Create IoT Context view. The context view describes “the relationships, dependencies, and

interactions between the system and its environment (the people, systems, and external entities

with which it interacts)”. The concerns addressed by the context view are:

 System scope and responsibilities

 Identity of external entities and services and data used

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

43 / 106

 Nature and characteristics of external entities

 Identity and responsibilities of external interfaces

 Nature and characteristics of external interfaces

 Other external interdependencies

 Impact of the system on its environment

 Overall completeness, consistency and coherence

According to the IOT-A deliverables, the IoT Context View is composed of the context view and the

IoT Domain Model. It provides a semantic and ontological overlay for the context view in that it

provides guidance on which entities make up an IoT system and how they relate to each other. It

also helps to identify system boundaries, which is one of the main questions to be addressed in the

context view.

3. Requirements process: For IOT-A, the requirements can be categorized according to the action

that the reference raised: 1) view requirements (i.e. requirements that directly inform one of the

architectural views), 2) qualitative requirements and 3) design constraints. This process is

supported by the definition of the so-called “Unified Requirements” template and follows

extended methodologies such as ISO 9001. The requirements are named in that way because

they follow a standard way of definition such as a template.

4. Derive other views: IOT-A suggest to derive from the previous activities, at least the following

views: functional view, the information view, the operational view and the deployment view. This

activity is contingent on the requirements process and is also guided by the Physical Entity View

and the IoT Context View. For instance, the IoT Context View might indicate that, due to the

different ownership of parts of the system, a communication firewall is needed (functional view).

In another example, the Physical Entity View might indicate that, due to the fragility of the

Physical Entity, all devices attached need to be installed all at once (deployment view).

Fig. 2.8.2 (extracted from [IOT3]) depicts the architecture generation process (and where the steps

are described in the mentioned book).

Figure 2.8.2: IoT-A architecture generation process.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

44 / 106

Fig. 2.8.3 describes the requirements process.

Figure 2.8.3: IoT-A requirements process.

In the workflow depicted in Fig. 2.8.4, the process of how to use the requirements in the different

views construction is defined.

Figure 2.8.4: IoT-A workflow for requirements implementation.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

45 / 106

Design choice and development methodology
The IOT-A methodology classifies the design choices into the following depending on the

perspectives they address. A perspective is a collection of activities, tactics, and guidelines that are

used to ensure that a system exhibits a particular set of related quality properties that require

consideration across a number of the system's architectural views.

Figure 2.8.5: IoT-A Methodology correlating Perspectives and Views.

Figure 2.8.5 depicts the relation of the IOT-A defined perspective and the architectural views.

These perspectives are:

● Evolution and interoperability. This perspective addresses the fact that requirements

change and software evolves sometimes rapidly. The activities related to this perspective

are:

○ Characterize the evolution needs

○ Assess the current ease of evolution

○ Consider the evolution trade-offs

○ Rework the architecture

And the tactics related:

- Create extensible interfaces, Apply design techniques that facilitate change

- Apply metamodel-based architectural styles

- Build variation points into the software, Use standard extension points

● Performance and scalability. The tactics related to this perspective are:

○ Replication

○ Prioritize Processing

○ Distribute Processing Over Time

○ Minimize Used of Shared Resources

○ Reuse Resources and Results

○ Scale Up or Scale Out

○ Degrade Gracefully

● Trust, security and privacy, with the following tactics associated:

○ Harden Root of Trust (trust)

○ Ensure High Quality of Data (trust)

○ Infrastructural Trust and Reputation Agents (trust)

○ Provide High System Integrity (trust)

○ Avoid Leap of Faith (trust)

○ Subject Authentication (security)

○ Use Access Policies (security)

○ Secure Communication Infrastructure (security)

○ Secure Peripheral Networks (security)

○ Pseudonymisation (privacy)

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

46 / 106

○ Avoid Transmitting Identifiers in Clear (privacy)

○ Minimize Unauthorized Access to Implicit Information (privacy)

○ Enable the User to Control the Privacy Settings (privacy)

○ Privacy-Aware Identification (privacy)

● Availability and resilience

○ Use High Availability Clustering

○ Load Balancing

○ Etc.

Analysis
IOT-A ARM and methodology can be used to support INTER-METH. Specifically, we re-used the

functional architecture (Functional View) during the INTER-METH Analysis Phase.

2.2.6 Overall Analysis

Techniques and Methodologies: Summary
The second phase of the SOTA analysis, related to systems integration methodologies for IoT and

SoS, identified the methodologies and techniques in Table 2.9.1.

Table 2.9.1: Analyzed Methodologies and their main characteristics

Methodology/Techniques Interesting Characteristics

Model-driven Interoperability - Interoperability models for IoT systems/services integration

System of Systems (SoS)

Integration

- Methods for the classification of available design patterns for SoS

engineering/integration

- Approaches to SoS engineering and methodology that are based on

the V-Model

Telecommunication Systems

Integration

- Enterprise service bus

- Systems Virtualization

Systems Integration Best

Practices

- Continuous Systems Engineering, Integration and Test (SEIT) process

- System Architecture Skeleton (see also IOT-A Methodology)

IOT-A Methodology - Architecture Reference Model (ARM)

- Unified Requirements

- Architectures generation model

An analysis toward INTER-METH
The analyzed methodologies and techniques directly address the issue of systems integration by

adopting different approaches. Some of them are purposely related to IoT systems integration but

they do not provide any systematic methodology that, starting from two or more systems to

integrate, provides a clean process (along which tools for each phase) to support the integration.

However, INTER-METH could profit from or incorporate some of their characteristics:

 IoT Systems Integration: Model-driven Interoperability: Interoperability models.

 System of Systems (SoS) Integration: Approaches to SoS engineering and methodology

that are based on the V-Model.

 Telecommunication Systems Integration: ESB and virtualization techniques.

 Systems Integration Best Practices: Continuous SEIT and System Architecture Skeleton.

 IOT-A Methodology: ARM, Unified requirements and architectures generation techniques.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

47 / 106

3 INTER-METH Functionalities,

Requirements, Use Cases, and

Scenarios

3.1 Functionalities

INTER-METH is an engineering methodology that aims at supporting the integration process of

heterogeneous IoT platforms to (i) obtain interoperability among them and (ii) allow implementation

and deployment of IoT applications on top of them. It is widely recognized that using an engineering

methodology is fundamental in any engineering application domain (e.g. software engineering, co-

design hardware/software, civil engineering, etc). Moreover, the manual and non-systematic

application of complex techniques, methods and frameworks would very likely lead to an increase of

the degree of errors during integration. Thus, INTER-METH has the objective to avoid such errors.

Specifically, INTER-METH is based on a process that defines and offers the following phases (or

functionalities of a process):

1. Analysis phase enables the definition of the IoT platform integration requirements (both
functional and non-functional).

2. Design phase produces the design of the platform integration in terms of: a) design artifacts
(e.g. diagrams) of layer interoperability infrastructures and related interfaces (see INTER-
LAYER), and b) INTER-FW programming and management patterns, to fulfil the elicited
requirements.

3. Implementation phase focuses on driving the implementation of the design work-product to
obtain the fully-working (hardware and/or software implemented) system.

4. Deployment phase involves the support to the operating set-up and configuration of the
integrated IoT platform.

5. Testing phase defines the performance evaluation tests to validate the integrated platform
according to the functional and non-functional requirements.

6. Maintenance phase manages the upgrade and evolution of the integrated system.

Each phase produces work-products that are inputs for the successive phase(s). INTER-Meth will

be supported by a CASE (Computer Aided Software Engineering) tool that will help automating each

aforementioned phase of the integration process and will specifically provide the following

functionalities: (i) integration guidelines management, (ii) graphical facilities, (iii) engineering patterns

automation, and (iv) project data repositories.

3.2 Requirements

The INTER-METH-related requirements elicited in the INTER-IoT requirements analysis phases are

reported in Table 2.2.1. Details of the requirements are given below (more information can be found

in D2.3).

Table 2.2.1: Main INTER-METH Requirements

ID Name Type

74 Ontology support Functional

162 Specification of unique attributability Functional

161 Model-driven support Functional

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

48 / 106

160 CASE-tool support Functional

159 Development support for systematic IoT platforms
integration/interconnection

Functional

120 Effectiveness and Optimization Non Functional

119 Maintainability Non Functional

118 Legal and licensing issues avoidability Non Functional

117 Security and Trust Management Functional

116 Privacy Functional

115 Scalability Preserving Non Functional

114 Extensibility and Customization Non Functional

113 Error minimization Non Functional

112 Compliance Non Functional

111 Documentation Non Functional

110 Usability Non Functional

109 Stability Non Functional

108 Open Source Non Functional

74: Ontology support

Category: Functional; Type: Semantics; Priority: Must

Rationale: INTER-METH should provide support for the management of the ontologies of heterogeneous IoT
platforms.

Description: INTER-METH provides mechanisms to support through design semantic interoperability
between: (i) platform(s) with explicitly defined ontology (or, at least, taxonomy); (ii) platform(s) with no
explicitly defined ontology/taxonomy.

Acceptant criteria: INTER-METH supports the design of inter-platform semantic interoperability.

162: Specification of unique attributability

Category: Functional; Type: Functionality; Priority: Should

Rationale: Within a unique system of transparently interconnected IoT platforms, it should be possible to

identify the different components affecting or contributing to the integrated system functionalities.

Description: INTER-METH is the methodology supporting the interconnection/interoperability of

heterogeneous IoT platforms. However, it may happen that for different reasons there is the need of

identifying the single platform contribution to the system functionalities (e.g. two interconnected platforms

provide the same service but the user have to choose a particular service provider).

Acceptant criteria: IoT platforms identities and functionalities are distinguishable.

161: Model-driven support

Category: Functional; Type: Interoperability; Priority: Must

Rationale: The exploitation of common meta-models increases the compatibility between systems and

simplifies the development processes.

Description: Model Driven Engineering (MDE) raises the level of abstraction in systems/programs

specifications, facilitates the understandability of the main system concepts and increases automation in

systems/programs development. INTER-METH approach is based on meta-models that are defined at

different levels of abstraction to support the development phases of analysis, design, integration, and

validation.

Acceptant criteria: Meta-models are available to support each development phase.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

49 / 106

160: CASE-tool support

Category: Functional; Type: Requirement; Priority: Medium

Rationale: A CASE tool supporting the integrators (or developers of the platform integration) all over the

integration process may facilitate the analysis, design, integration, realization and testing of high-quality and

maintainable integrated heterogeneous IoT platforms.

Description: INTER-METH is supported by INTER-CASE (Computer Aided Software Engineering tool for

integration) in order to foster the effective and efficient integration of different heterogeneous IoT platforms. It

will help to automate each phase (analysis, design, implementation, deployment, test, maintenance) of the

integration process by using INTER-METH, thus providing guidelines, graphical facilities, engineering

patterns and methods, and data repositories. The need of a CASE-tool supporting and, if possible,

automating such processes has been underlined by several stakeholders (e.g. Telefonica, DGCONNECT,

ISECO, DISI-UNIBO, Symblote, etc.).

Acceptant criteria: The CASE-tool is developed according to the above mentioned functionalities.

159: Development support for systematic IoT platforms integration/interconnection

Category: Functional; Type: Interoperability; Priority: Must

Rationale: In order to avoid the proliferation of isolated silos, the IoT platforms integration/interconnection

processes must be driven by a well-defined, organic and full-fledged methodology.

Description: It is widely recognized that using an engineering methodology is fundamental in any engineering

application domain, since the manual and non-systematic application of complex techniques, methods and

frameworks would very likely lead to an increase of the degree of errors during integration. INTER-METH

provides a methodology to systematically support the development of voluntary interoperability among

heterogeneous IoT platforms (even belonging to different domains). In this direction, by means of different

guidelines, models, facilities and tools, INTER-METH supports the systematic IoT platforms

integration/interconnection in the development phases of analysis, design and implementation. The needs of

a “systematic methodology and a well-defined approach to support IoT interoperability at any level of

abstraction and within every application domain" have been underlined by several stakeholders (e.g.

THINGS, XLAB, SRIPAS, ABC, VEMCO, etc.).

Acceptant criteria: Integration of different platforms is driven by a common and well-defined methodology.

120: Effectiveness and Optimization

Category: Non Functional; Type: Functionality; Priority: Must

Rationale: INTER-METH must positively impact the IoT platforms integration processes.

Description: As highlighted by several stakeholders (CSE, ISECO, NEWAYS, INFOPORT, UNICAL), INTER-

METH is expected to have a high-impact on “reducing development time and cost” but at the same time

“enhancing effectiveness, agility and quality”. The IoT platforms integration processes must be optimized and

strengthened by the INTER-METH application.

Acceptant criteria: INTER-METH makes IoT platforms integration processes faster, higher quality and lower

resource waste.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

50 / 106

119: Maintainability

Category: Non Functional; Type: Functionality; Priority: Must

Rationale: Modifications/Updating efforts are reasonable.

Description: The IoT scenario is highly dynamic and INTER-METH aims to play an important role even in the

next years. With reference to integrated platforms, the effort needed to isolate and correct defects, to make

future focused modifications or to cope with a changed environment/standard must be reasonable.

Acceptant criteria: Modification/Updates do not require unreasonable efforts.

118: Legal and licensing issues avoidability

Category: Non Functional; Type: Legality; Priority: Could

Rationale: Avoid third-part legal hassles.

Description: There may be legal issues involving privacy of information, intellectual property rights, export of

restricted technologies, patent-infringement, etc. As suggested by the DISI-UNIBO stakeholder, the

methodology should made heterogeneous IoT platforms and products interoperable but in a manner that it

“takes care of the all technological, organizational, ethical and legal constraints”.

Acceptant criteria: No complaints for patent/license/privacy violation are raised.

117: Security and Trust Management

Category: Functional; Type: Security; Priority: Should

Rationale: The driving idea for including security among the requirements for the INTER-METH product is

the concept of “security-by-design” by which data, hardware and software protection should be embedded

throughout the entire life cycle of the system development (or integration).

Description: INTER-METH takes into account security-related concerns, namely the set of hardware,

software, procedures, and policies components for defending and controlling access to integration of

devices, networks, data/information, and software against malicious entities and attacks. Here security is

related to the integrated platforms. For example, trust issues refer to scenarios in which different

integrated/interconnected platforms cooperate without previous collaboration history. Trust management

enables to make sure that the shared data and services/operations are real and trustworthy, especially with

crowdsourcing generated data and machine generated data.

Acceptant criteria: INTER-METH guides the integration of IoT systems/platform so preserving the overall

security, trustability and protection to their devices, data, information, and software.

116: Privacy

Category: Functional; Type: Privacy; Priority: Should

Rationale: The driving idea for including privacy among the requirements for the INTER-METH product is the

concept of “privacy-by-design” by which privacy and data protection should be embedded throughout the

entire life cycle of the system development (or integration).

Description: INTER-METH takes into account the constraints deriving from the processing of personal and

health data. INTER-METH defines and implements privacy policies to determine which information can be

revealed in the integrated platform, who can access to such information, and for what purposes such

information may be used.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

51 / 106

Acceptant criteria: INTER-METH guides integration of IoT systems/platforms that successfully provides

different degree of freedom defining appropriate privacy policies and eventually guarantee high end-to-end

privacy levels.

115: Scalability Preserving

Category: Non Functional; Type: Architecture; Priority: Could

Rationale: INTER-METH should drive the integration of heterogeneous IoT systems/platforms in order to

obtain the maximum degree of scalability.

Description: Scalability is a fundamental feature of any distributed platform/system. Thus, INTER-METH will

provide support by-design to drive an integration of platforms that will result into an integrated platform that

will preserve the maximum level of scalability.

Acceptant criteria: INTER-METH supports an integration of heterogeneous platforms that preserves

scalability.

114: Extensibility and Customization

Category: Non Functional; Type: Usability; Priority: Should

Rationale: The methodology should be easily extensible and customizable for dealing with the integration of

a wide spectrum of (even very different) IoT platforms.

Description: A robust methodology aiming at integrating different IoT platforms should be easily adaptable to

any specific platform to be integrated. The extensibility and personalization features of such engineering

methodology should allow a simple and fast integration among different heterogeneous non-interoperable

IoT solutions.

Acceptant criteria: Fast and easy customization to different IoT platforms.

113: Error minimization

Category: Non Functional; Type: Functionality; Priority: Must

Rationale: Minimize errors (e.g. during system integration) is crucial to develop/implement valuable

integrated IoT systems. The methodology should therefore comprise (formal) models and tools to guide

designers/integrators in building correct-by-construction integrated system representations.

Description: At methodological level, the way to minimize errors is to follow a “correct-by-construction”

approach such that the methodology itself helps the IoT system designer/integrators to construct a (formal)

model before that any implementation/integration detail is produced. The model is used to reason about the

proposed solutions, ensuring that all the required functional and non-functional requirements will be fulfilled

and the correct behaviour of the integrated system exhibited.

Acceptant criteria: Testing procedures should be devoted to validate the correct-by-construction platforms

integration and eventually conceptual errors should not be found at all in the designed system model.

112: Compliance

Category: Non Functional; Type: Functionality; Priority: Could

Rationale: Reuse of existing proven working standards.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

52 / 106

Description: Over the years, several organizations (ISO, IEEE, IPC, OMG, etc.) provided successful

standards and protocols. Some of them may be maintained and exploited from INTER-METH, as different

stakeholders highlighted (e.g. OGC, CSE, PRO, Intel, AYAC, Agile, or SPEM). In fact, they may represent

useful starting points and represent source of interoperability, avoiding unnecessary duplication of efforts.

Acceptant criteria: INTER-METH complies with standards considered consistent with the methodology itself.

111: Documentation

Category: Non Functional; Type: Usability; Priority: Must

Rationale: Documentation should be available to improve INTER-METH usability.

Description: As several stakeholders have highlighted (e.g. VPF, ABC, SRIPAS), INTER-METH should be

supplied with a detailed documentation (in terms of “know-how knowledge, guidance, step-by-step

instructions”) to improve its usability. Documentation will be based on standard notations for software/system

engineering methodologies (e.g. SPEM by OMG).

Acceptant criteria: Complete and detailed documentation is delivered also according to a standard notation.

110: Usability

Category: Non Functional; Type: Usability; Priority: Must

Rationale: Understandability, learnability and attractiveness facilitate a broad adoption of an engineering

methodology.

Description: INTER-METH must be as much as possible easy to be understood, learned and used. This

implies that the users’ training effort must be reasonable. Moreover, INTER-METH must be attractive in order

to positively influence other organizations to reach a broad adoption. Several stakeholders such as UPV and

GIS (multinational solutions provider for government and institutions) highlighted this important aspect.

Acceptant criteria: The methodology is usable according to well-established usability evaluation procedures.

109: Stability

Category: Non Functional; Type: Functionality; Priority: Should

Rationale: The methodology core will be stable over time and will not need immediate changes.

Description: INTER-METH must be released in a (reasonably) stable version in order to avoid frequent

changes and to provide long-term support to IoT systems/platforms integration/interconnection and to

integrated/interconnected IoT systems/platforms.

Acceptant criteria: INTER-METH released version is stable.

108: Open Source

Category: Non Functional; Type: Commercial, Usability; Priority: Must

Rationale: European Commission prefers Open Source project.

Description: An extract of the European Commission strategy in matter of software products is here reported:

“Software produced by the Commission services, in particular software produced with the objective of being

used outside the Commission, will be open sourced and published on the Join up platform and will use the

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

53 / 106

European Union Public License (EUPL)”. In general, open source projects may rely on wide and active

communities of users and developers (in particular, THINGS underlines the need of “Open API” to improve

usability, extensibility and interoperability). According to this vision the INTER-Meth documentation, the

INTER-CASE software tool and related documentation should be open.

Acceptant criteria: Source code of the INTER-CASE tool is available on INTER-IoT website.

3.3 Use Cases

Four main use cases, reported in Table 2.3.1, have been identified for INTER-METH. In the following

subsections the use cases will be described in detail. The use cases provide the abstract

activities/tasks to be performed in the INTER-METH process phases.

Table 2.3.1: The main four INTER-METH Use Cases

Id Use Case

IM1 IoT Platform Integration Requirements Analysis

IM2 IoT Platforms Integration Design

IM3 IoT Platforms Integration Implementation (including deployment and
testing)

IM4 IoT Platforms Integration Maintenance

3.3.1 IoT Platform Integration Requirements Analysis (IM1)

Description: Given two or more IoT platforms/systems to be integrated, the integration requirements

need to be elicited. On the basis of the elicited requirements, the design of the IoT platforms

integration could be then carried out.

Involved Platform Layers: Data & semantics, Service, Middleware, Network, Device, Cross-layer

Objectives: To elicit the requirements for the integration of IoT platforms/systems.

Actors: The actors are:

(a) The developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms;

(b) The platform Owner, who will obtain the integrated platform;

(c) The involved Platforms to be integrated.

Pre-conditions: Two or more heterogeneous IoT platforms (available) to be

interconnected/integrated.

Trigger: The need to integrate/interconnect identified heterogeneous IoT platforms

Expected results: Set of (functional and non-functional) requirements for the integration of the

identified IoT platforms/systems

Notes and Issues: The involved IoT platforms should be well-documented and/or the IoT platform

developer/s should be available to provide technical support.

Main execution:

1. Each platform is analysed according to the functional and non-functional viewpoints of the five

IoT platform layers (device, networking, middleware, application services, data & semantics)

and of the cross-layering.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

54 / 106

2. According to the Step 1, the requirements of integration among the layers of the platforms to be

integrated are defined according to an iterative process.

The execution could be supported by the INTER-CASE tool.

Requirements: [74][159-162][108-120] (see Section 3.2)

3.3.2 IoT Platforms Integration Design (IM2)

Description: Given two or more IoT platforms/systems that have been analysed according to the use

case IM1, design specifications have to be produced. On the basis of the design specifications, the

implementation of the IoT platforms integration could then be carried out.

Involved Platform Layers: Data & semantics, Service, Middleware, Network, Device, Cross-layer.

Objectives: To define the design specifications for the integration of IoT platforms/systems.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms;

(b) the platform Owner, who will obtain the integrated platform;

(c) the involved Platforms to be integrated.

Pre-conditions: Two or more heterogeneous IoT platforms (available) to be

interconnected/integrated, analyzed through the use case IM1.

Trigger: Availability of the specific requirements for the integration of the involved IoT

platforms/systems elicited through the use case IM1 (or even through another

methodology/process).

Expected results: Set of design specifications for the integration of the identified IoT

platforms/systems.

Notes and Issues: The involved IoT platforms should be well-documented (or even open-source)

and/or the IoT platform developer/s should be available to provide technical support.

Main execution:

1. For each layer (and cross-layer), on the basis of the elicited requirements in IM1, an initial
design specification is produced.

2. Each design specification produced in Step 1 is iteratively refined.
3. A global integration design is defined on the basis of the outcome of Step 2.

The execution could be supported by the INTER-CASE tool.

Requirements: [74][159-162][108-120] (see Section 3.2).

3.3.3 IoT Platforms Integration Implementation (IM3)

Description: Given two or more IoT platforms/systems, whose integration has been designed

according to the use case IM2, the integration implementation (deployment and testing/validation)

has to be performed. On the basis of the actual deployed and tested implementation, the

maintenance of the integrated IoT platforms could then be realised.

Involved Platform Layers: Data & semantics, Service, Middleware, Network, Device, Cross-layer.

Objectives: To integrate/interconnect, deploy and test the IoT platforms/systems to be

integrated/interconnected.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

55 / 106

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms;

(b) the platform Owner, who will obtain the integrated platform;

(c) the involved Platforms to be integrated.

Pre-conditions: Two or more heterogeneous IoT platforms (available) to be

interconnected/integrated, whose integration design specification are analyzed through use case

IM2.

Trigger: Availability of the design integration specifications of the involved IoT platforms/systems

defined through the use case IM2 (or even through another methodology/process).

Expected results: The integrated, deployed and tested IoT platform/system.

Notes and Issues: The involved IoT platforms should be well-documented (or even open-source)

and/or the IoT platform developer/s should be available to provide technical support.

Main execution:

1. For each layer (and cross-layer), the design specifications produced in IM2 are actually
implemented.

2. On the basis of Step 1, a full-fledged integration (namely Integrated Platform) among the
involved IoT platforms/system will be obtained.

3. The Integrated Platform is deployed.
4. The Integrated Platform is validated through testing.

The execution could be supported by the INTER-CASE tool.

Requirements: [74][159-162][108-120] (see Section 3.2)

3.3.4 IoT Platforms Integration Maintenance (IM4)

Description: Given an integrated platform obtained from the integration of two or more IoT

platforms/systems, such platform needs to be maintained.

Involved Platform Layers: Data & semantics, Service, Middleware, Network, Device, Cross-layer.

Objectives: To maintain and make evolve an integrated IoT platform.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms;

(b) the platform Owner, who will obtain the integrated platform;

(c) the involved Platforms to be integrated;

(d) the integrated Platform.

Pre-conditions: An integrated platform implemented (and deployed and tested) through use case

IM3.

Trigger: Availability of an integrated platform defined through the use case IM3 (or even through

another methodology/process).

Expected results: Continuous maintenance of the integrated IoT platform.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

56 / 106

Notes and Issues: The involved integrated IoT platform should be well-documented (or even open-

source) and/or the IoT platform developer/s and integrator/s should be available to provide technical

support.

Main execution:

1. Identification of a list of bugs and/or a list of evolution points.
2. Correction of bugs and/or implementation of new functionalities.

The execution could be supported by the INTER-CASE tool.

Requirements: [74][159-162][108-120] (see Section 3.2)

3.4 Scenarios

In this section, we report two main scenarios: a) integration of two (or more) platforms, illustrating

the integration activities to obtain an integrated platform from two heterogeneous ones; b) reverse

engineering of the integration of two (or more) platforms by integrating them also at another different

integration layer.

3.4.1 Heterogeneous Platforms Methodology-driven Integration

Business Scenario

Scenario ID

METH#1

 Scenario Name

Heterogeneous Platforms Methodology-driven Integration

Illustration of

system’s

behaviour in a

specific

situation, flow

of events

Mark is a System Integrator and is in charge to integrate two IoT platforms for
exploiting the features of both platforms to develop novel IoT applications. Mark
therefore uses INTER-METH, following its process made up of interconnected
phases. Each phase is a workflow of task that Mark needs to execute. Thus,
Mark needs to: 1-Analysis) analyze the two platforms in order to elicit the
functional and non-functional requirements according to the integration goals; 2-
Design) design the integration solution based on the elicited requirements; 3-
Implementation) implement the design to obtain the integrated platform; 4-
Deployment) configure and execute the integrated platform; 5-Testing) test the
deployed integrated platform according to test cases to validate functional and
non-functional requirements; 6-Maintenance) maintain the integrated platform,
i.e. bug fixing and platform evolution.
User/users: The user is an IoT System Integrator.

Setting /
context

The context is represented by a System-of-System context
based on the IoT platforms to be integrated.

Interacting
system

The technical environment is strongly dependent on the IoT
platforms to be made interoperable (or to be integrated).

Users’ goals The user’s aim is to integrate two or more IoT platforms.
Interaction

The IoT System Integrator uses the methodology. The
methodology is not a system with which it is possible to
interact. However, INTER-METH will support the IoT System
Integrator step-by-step to fulfill its integration goals.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

57 / 106

Initial status The initial conditions are the availability of the IoT platforms to
be integrated and the integration goals of the IoT System
Integrator.

Workproduct The workproducts of the methodology are different at the
different phases. Considering the whole process: from non-
integrated IoT platforms and integration goals to integrated
platforms ready to be deployed and tested.

Motivation To create a more capable and powerful IoT platform starting
from two or more heterogeneous ones.

Time The integration takes place according to specific needs so
timing is not fixed but random.

Interoperability

Role

Interoperability role is by goal, i.e. heterogeneous platforms are integrated
according to integration goals. Thus, the interoperability role is the key enabling
factor in INTER-METH.

Market and

usage data

available

To the best of our knowledge, no methodology for IoT systems/platforms

integration is available.

Business

model

The business model can be built around the IoT System Integrator as a new ICT

professional job to support the IoT world.
Missing

technical know

how / input

None.

Partner

specific

interests

Definition of a general-purpose methodology for IoT system integration.

Product:

INTER-METH

Identified by:

UNICAL

Registration Date:

1/12/2016

1/12/2016

3.4.2 Re-engineering Integrated IoT platforms

Business Scenario

Scenario ID

METH#2

 Scenario Name

Re-engineering Integrated IoT platforms

Illustration of

system’s

behaviour in a

specific

situation, flow

of events

Mark is a System Integrator and is in charge to an integrated IoT platform, i.e.
obtained according to the Scenario METH#1. Specifically, Mark has an
additional set of Integration Goals. During the Analysis phase, Mark will identify
one or more new integration points according to the integration goals and
translate them into new functional and non-functional requirements. With
reference to the INTER-IoT approach, the new identified integration goals could
refer to one or more layers to be integrated.

User/users: The user is an IoT System Integrator that uses INTER-METH.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

58 / 106

Setting /
context

IoT Platforms integrated using INTER-METH.

Interacting
system

A specific integrated IoT platform.

Users’ goals Upgrade the Integrated IoT Platform by considering additional
IoT layers.

Interaction

Use of INTER-METH

Initial status The Integrated IoT Platform and an additional set of integration
goals

Workproduct All new workproducts to be produced due to the fulfillment of
the new integration.

Motivation To upgrade an integrated IoT with new capabilities.

Time The integration upgrade takes place according to specific
needs so timing is not fixed but random

Interoperability

Role

Interoperability of the upgraded integrated IoT platform must be kept.

Market and

usage data

available

To the best of our knowledge, no methodology for IoT systems/platforms

integration is available. Thus, no upgrade method for integrated platform is also

available.

Business

model

The business model can be built around the IoT System Integrator as a new ICT

professional job to support the IoT world.

Missing

technical know

how / input

None.

Partner

specific

interests

Definition of a general-purpose methodology for IoT system integration.

Product:

INTER-METH

Identified by:

UNICAL

Registration Date:

1/12/2016

1/12/2016

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

59 / 106

4 INTER-METH Abstract Process

The engineering methodology INTER-METH aims at supporting the integration process of

heterogeneous IoT platforms to obtain interoperability among them and allow implementation and

deployment of IoT applications on top of them. To date, no proposals in the IoT area provided a

systematic methodology driving the integration of heterogeneous IoT platforms. It is widely

recognized that using an engineering methodology is fundamental in any engineering application

domain (e.g. software engineering, co-design hardware/software, systems of systems, civil

engineering, etc.). In fact, the manual and non-systematic application of complex techniques,

methods and frameworks would very likely lead to an increase of the degree of errors during the

integration process.

In this section we introduce the abstract process of INTER-METH whose SPEM-based schema is

shown in Figure 4.1. SPEM overview provided in Appendix A supports the reader in understanding

SPEM diagrams. The process is envisioned as iterative waterfall, including the following six phases:

Analysis, Design, Implementation, Deployment, Testing and Maintenance. Each phase produces

work-products (requirements, design diagrams, coded platforms, system deployment, and validation

results) that are inputs for the successive phase/s. Iteration could involve single phases, set of

successive phases or the whole process, thus assuring adaptability to new requirements.

Figure 4.1: INTER-METH Abstract Process Schema

In particular:

 The Analysis phase formalizes the integration requirements, both functional and non-functional
(e.g. real-timeliness, reliability, security, privacy, trust).

 The Design phase produces the design of the integration in terms of diagrams of (i)
interoperability layer infrastructures and related interfaces, and (ii) programming and
management patterns, to fulfil the elicited requirements.

 The Implementation phase focuses on the implementation of the design work-product/s to obtain
the full-integrated (hardware and/or software) system.

 The Deployment phase involves the definition of the operating set-up and of the configuration of
the integrated IoT platform.

 The Testing phase allows defining and performing tests to validate the integrated platform
according to the functional and non-functional requirements.

 The Maintenance phase manages the upgrade and evolution of the system.

The proposed abstract process could be associated to any specific IoT systems integration

approach. The instantiation of such process for INTER-IoT (thus strongly connected to INTER-

LAYER and INTER-FW) is presented in Section 4.

In the following subsections each phase will be detailed.

Analysis Design Implementation Deployment Testing Maintenance

Requirements

Integration
Goals

Single Phase, Multiple Phase, Whole Process Iteration

Design Artifacts
Validation

Results
Deployed
Platform

Integrated
Platform

Bugs & Re-
engineerinng goals

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

60 / 106

4.1 Phase 1: Analysis of Integration Requirements

Description: Given two or more IoT platforms/systems to be integrated, the integration requirements

need to be elicited. On the basis of the elicited requirements, the design of the IoT platforms

integration could be then carried out.

Objectives: To elicit the requirements for the integration of IoT platforms/systems.

Actors: The actors are:

(a) The developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) The platform Owner, who will obtain the integrated platform;

(c) The involved Platforms to be integrated.

Expected results: Set of (functional and non-functional) requirements for the integration of the

identified IoT platforms/systems.

Main execution:

1. On the basis of the Integration Goals, each platform is analysed according to the functional and

non-functional viewpoints of the five IoT platform layers (device, networking, middleware,

application services, data & semantics) and of the cross-layering.

2. According to the Step 1, the requirements of integration among the layers of the platforms to be

integrated are defined according to iterative tasks enclosed in activities.

4.1.1 Activities

The Requirements Analysis activity, which is the only main activity of the Analysis phase, is

subdivided into three main tasks that are performed by the Integrator (see Figure 4.1.1 and Table

4.1.1) according to the workflow depicted in Figure 4.1.2:

1. IoT Platforms Analysis: each platform/systems to be integrated/interconnected is analyzed in

terms of the 5 reference layers (device, networking, middleware, application services, and

data & semantics) and of the cross-layer functionalities. Such analysis will produce a well-

formalized analysis document (Analyzed Platforms Document).

2. Functional Requirements Elicitation: On the basis of the Integration Goals document and of

the Analyzed Platforms Document, the functional requirements are elicited and included in

the Functional Requirements document.

3. Non-functional Requirements Elicitation: On the basis of the Integration Goals document, the

IoT Platforms Analysis document, and the Functional Requirements document, the non-

functional requirements are elicited and included in the Non-functional Requirements

document.

The functional and non-functional requirements are finally merged by the task Requirements Merger

in the Functional and non-functional document final activity work-product.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

61 / 106

Figure 4.1.1: The Analysis phase described in terms of activities, roles, and work products

Table 4.1.1: Tasks of the Requirements Analysis activity

Activity Task Task description Role involved

Requirement
Analysis

IoT Platforms Analysis Analysis of the
platform/systems to be
integrated/interconnected

Integrator

Requirement
Analysis

Functional Requirements
Elicitation

Definition of the Functional
Requirements for IoT
platforms integration

Integrator

Requirement
Analysis

Non-functional Requirements
Elicitation

Definition of the Non-
functional Requirements for
IoT platforms integration

Integrator

Requirement
Analysis

Requirements Merger Merging the function and non-
functional requirements into
the final work-product

Integrator (or
automatic)

Requirements
Analysis

Functional
Requirements

Elicitation

Non-functional
Requirements

Elicitation

IoT Platform
Analysis

Integrator

<<input>>

<<
in

p
u

t>
>

<<output>>

IoT Platforms

<<performs, primary>> <<performs, primary>>

<<performs,
primary>>

Functional and

non-functional

Requirements

Integration
Goals

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

62 / 106

Figure 4.1.2: The workflow of tasks of the Requirement Analysis activity

4.1.2 Work Products

The final output work-product is a formalized document containing the functional and non-functional

integration requirements. The document format is not specified now as it will be specified by the

specific instantiation of the abstract INTER-METH methodology (see Section 5). Intermediate work-

products are: (a) the Analyzed Platforms Document, containing the layer-oriented analysis of the

platform to be integrated/interconnected (this work-product will be also used as input in the Design

phase); (b) the Functional Requirements Document; (c) the Non-functional Requirements Document.

Also the specification format of the Analyzed Platforms Document is not given now.

4.2 Phase 2: Design of the Systems Integration

Description: Given two or more IoT platforms/systems that have been analysed according to the

Analysis phase, design specifications have to be produced. On the basis of the design specifications,

the implementation of the IoT platforms integration could then be carried out.

Objectives: To define the design specifications for the integration of IoT platforms/systems.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) the platform Owner, who will obtain the integrated platform;

(c) the involved Platforms to be integrated.

Expected results: Set of design specifications for the integration of the identified IoT

platforms/systems.

Integrator

<<mandatory,
input>>

<<mandatory, input>>

IoT Platforms

IoT Platform
Analysis

Functional
Requirements

Elicitation

Non-functional
Requirements

Elicitation

<<mandatory, input>>

<<mandatory,
output>>

[iteration]

Requirements
Merger

<<mandatory,
input>>

<<mandatory,
input>>

<<mandatory,
Intermediate

output>>

<<mandatory,
Intermediate

output>>

<<mandatory,
Intermediate

output>>

Functional

Requirements

Analyzed

Platforms

Document

Non-functional

Requirements

Functional and

non-functionl

Requirements

Integration
Goals

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

63 / 106

Main execution:

1. For each layer, on the basis of the elicited requirements in IM1, an initial design
specification is produced.

2. Each design specification produced in Step 1 is iteratively refined.
3. A global integration design (including the cross-layer) is defined on the basis of the

outcome of Step 2.

4.2.1 Activities

The Integration Design activity, which is the only main activity of the Design phase, is subdivided

into two main tasks that are performed by the Integrator (see Figure 4.2.1 and Table 4.2.1)

according to the workflow depicted in Figure 4.2.2:

1. Layer Integration Design Specification: on the basis of the Functional and non-functional

Requirements Document, the Analyzed Platforms Document, and the IoT Platforms

documentation, for each layer (device, networking, middleware, application services, and

data & semantics) a layer integration specification is iteratively defined. Such task will

produce five specifications: device integration specification, networking integration

specification, middleware integration specification, application services integration

specification, and data & semantics integration specification.

2. Full Integration Design Specification: On the basis of the five specification produced in the

previous task, a full-fledged specification is iteratively produced, incorporating the cross-layer

functionalities and properties.

Figure 4.2.1: The Design phase described in terms of activities, roles, and work products

Integration
Design

Full Integration
Design Specification

Integrator

<<input>>

<<
in

p
u

t>
>

<<output>>

IoT Platforms

<<performs, primary>> <<performs, primary>>

Integration
Design

Specification

Analyzed

Platforms

Document

Functional and

non-functional

Requirements

<<input>>

Layer Integration
Design Specification

Device Integration
Specification

Networking Integration
Specification

Middleware Integration
Specification

App Service Integration
Specification

Data&Semantics
Integration

Specification

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

64 / 106

Table 4.2.1: Tasks of the Integration Design activity

Activity Task Task description Role involved

Integration
Design

Layer Integration Design
Specification

A layer integration
specification is iteratively
defined for each layer

Integrator

Integration
Design

Full Integration Design
Specification

A full-fledged integration
specification is produced
including the five layers and
the cross-layering

Integrator

Figure 4.2.2: The workflow of tasks of the Design Integration activity

4.2.2 Work Products

The final output work-product is a formalized specification containing the design of the integration of

the IoT platforms/systems to be interconnected/integrated. The document format is not specified

now as it will be specified by the specific instantiation of the abstract INTER-METH methodology

(see Section 5). Intermediate work-products are the five layer integration specifications. Also the

format of such specification is not given now.

Modeler

<<mandatory, output>>

<<mandatory, input>>

Functional and
Non-Functional
Requirements

Device Integration
Specification

Networking Integration
Specification

Middleware Integration
Specification

App Service Integration
Specification

Data&Semantics
Integration

Specification

Full Integration
Design Specification

IoT Platforms

Analyzed

Platforms

Document

Structured
WPKind

Structured
WPKind

Structured
WPKind

Structured
WPKind

Structured
WPKind

Integration
Design

Specification

[ITERATION]

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

65 / 106

4.3 Phase 3: Implementation of the Systems Integration

Description: Given two or more IoT platforms/systems, whose integration has been designed

according to the Design phase, the integration implementation has to be performed.

Objectives: To integrate/interconnect the considered IoT platforms/systems.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) the platform Owner, who will obtain the integrated platform;

(c) the involved Platforms to be integrated.

Expected results: The integrated IoT platform/system.

Main execution:

1. The full-fledged design specification work-product produced in the Design phase is actually
implemented according to multiple refinement steps.

4.3.1 Activities

The Integration Implementation activity, which is the only main activity of the Implementation

phase, is subdivided into one main task that is iteratively performed by the Integrator (see Figure

4.3.1 and Table 4.3.1) according to the workflow depicted in Figure 4.3.2:

1. Systems Integration: on the basis of the Integration Design Specification, the heterogeneous

IoT platforms/systems are integrated by the Integrator in an iterative activity (see workflow in

Figure 4.3.3) aimed at obtaining the final integrated platform.

Figure 4.3.1: The Implementation phase described in terms of activities, roles, and work
products

Integration

Implementation

Systems

Integration

Integrator

<<input>> <<
in

pu
t>

>

<<output>>

IoT Platforms

<<performs,
primary>>

Integrated

Platform

Integration
Design

Specification

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

66 / 106

Table 4.3.1: Tasks of the Integration Implementation activity

Activity Task Task description Role involved

Integration
Implementation

Systems
Integration

Heterogeneous platforms are integrated
according to the integration specifications

Integrator

Figure 4.3.2: The workflow of tasks of the Integration Implementation activity

4.3.2 Work Products

The final output work-product is the integrated platform. The integrated platform will be based on the

specific IoT platforms/systems to be integrated/interconnected and on the instantiation of the

abstract INTER-METH methodology (see Section 5) and thus based specifically on INTER-LAYER

and INTER-FW.

4.4 Phase 4: Deployment of the Integrated Platform

Description: Given two or more IoT platforms/systems, whose integration has been implemented

according to the Implementation phase, the deployment of the integrated platform has to be

performed.

Objectives: To deploy the integrated IoT platforms/systems.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) the platform Owner, who will obtain the integrated platform; the Owner is an active

performer.

(c) the involved Platforms to be integrated.

Integrator

<<mandatory,
input>>

<<mandatory, input>>

IoT Platforms

Systems

Integration

[iteration]

<<mandatory,
output>>

Integration
Design

Specification

Integrated

Platform

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

67 / 106

Expected results: The deployed IoT platform/system.

Main execution:

1. The Integrated Platform is deployed according to deployment goals and requirements.

4.4.1 Activities

The Integrated Platform Deployment activity, which is the only main activity of the Deployment

phase, is subdivided into two main tasks that are performed by the Integrator and/or the Owner

(see Figure 4.4.1 and Table 4.4.1) according to the workflow depicted in Figure 4.4.2:

1. Deployment Configuration Definition: to enable system deployment, the configuration of the

integrated platform obtained in the previous Implementation phase has to be defined. The

outcome of this task is a full-fledged specification of the configuration of the deployed

system/platform.

2. Deployment & Run: the Integrated IoT Platform is actually deployed and run.

Figure 4.4.1: The Deployment phase described in terms of activities, roles, and work
products

Integrated Platform

Deployment

Deployment

Configuration

Definition

Integrator

<<input>>

<<output>>

<<performs,
primary>>

Integrated

Platform

Deployed
Platform

Owner

Deployment & Run

<<performs,
primary>>

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

68 / 106

Table 4.4.1: Tasks of the Integrated Platform Deployment activity

Activity Task Task description Role involved

Integrated
Platform
Deployment

Deployment Configuration
Definition

Definition of the configuration
for the integrated platform
deployment

Integrator and/or Owner

Integrated
Platform
Deployment

Deployment & Run Actual deployment and
execution of the integrated
platform

Integrator and/or Owner

Figure 4.4.2: The workflow of tasks of the Integrated Platform Deployment activity

4.4.2 Work Products

The final output work-product is the deployed platform. The deployed platform will be set-up

according to the defined configuration and then run.

4.5 Phase 5: Testing of the Integrated Platform

Description: Given two or more IoT platforms/systems, whose deployment has been carried out

according to Deployment phase, the testing/validation has to be performed.

Objectives: To test the deployed integrated IoT platforms/systems.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) the platform Owner, who will obtain the integrated platform; the Owner is an active

performer.

(c) the involved Platforms to be integrated.

Expected results: The test results on the integrated and deployed IoT platform/system.

Main execution:

1. The integrated and deployed platform is executed and validated through testing according to
well-defined test cases.

Integrator

<<mandatory,
input>>

Deployment

Configuration

Definition

[iteration]

<<mandatory,
Intermediate

output>>

Deployment
Configuration

Integrated

Platform

Owner

Deployment & Run

Deployed
Platform

<<mandatory,
output>>

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

69 / 106

4.5.1 Activities

The Integrated Platform Testing activity, which is the only main activity of the Testing phase, is

subdivided into two main tasks that are performed by the Integrator and/or the Owner (see Figure

4.5.1 and Table 4.5.1) according to the workflow depicted in Figure 4.5.2:

1. Test Cases Definition: the definition of test cases is fundamental to test the integrated

deployed platform defined in the Deployment phase. Specifically, functional and non-

functional test cases are defined to respectively validate functional and non-functional

requirements.

2. Platform Testing: the test cases are executed by the platform and results collected

according to well-formalized analysis documents.

Figure 4.5.1: The Testing phase described in terms of activities, roles, and work products

Table 4.5.1: Tasks of the Integrated Platform Testing activity

Activity Task Task description Role involved

Integrated
Platform
Testing

Test Cases Definition Definition of the Test Cases to
validate the integrated
platform

Integrator and/or Owner

Integrated
Platform
Testing

Platform Testing Validation of the platform by
executing the defined Test
Cases

Integrator and/or Owner

Integrated Platform

Testing

Test Cases

Definition

Integrator

<<input>>

<<output>>

<<performs,
primary>>

Deployed
Platform

Validation
Results

Owner

Platform Testing

<<performs,
primary>>

<<in
p

u
t>>

Functional and

non-functional

Requirements

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

70 / 106

Figure 4.5.2: The workflow of tasks of the Integrated Platform Testing activity

4.5.2 Work Products

The final output work-product is the results of the validation in terms of the defined Test Cases

parameters.

4.6 Phase 6: Maintenance of the Integrated Platform

Description: Given an integrated platform obtained from the integration of two or more IoT

platforms/systems according to the previous phases, such platform needs to be maintained.

Objectives: To maintain and make evolve an integrated IoT platform.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) the platform Owner, who will obtain the integrated platform; the Owner is an active

performer.

(c) the involved Platforms to be integrated;

(d) the integrated Platform.

Expected results: Continuous maintenance of the integrated IoT platform.

Main execution:

1. Identification of a list of bugs and/or a list of evolution points.
2. Correction of bugs and/or implementation of new functionalities (go back to the Analysis or

Design phases).

Integrator

<<mandatory,
input>>

Test Cases

Definition

[iteration]

<<mandatory,
Intermediate

output>>

Test Cases
Deployed

Platform

Owner

Platform Testing

Validation
Results

<<mandatory,
output>>

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

71 / 106

4.6.1 Activities

The Integrated Platform Maintenance activity, which is the only main activity of the Maintenance

phase, is subdivided into two main tasks that are performed by the Integrator and/or Owner (see

Figure 4.6.1 and Table 4.6.1) according to the workflow depicted in Figure 4.6.2:

1. Change Identification: this task aims at identifying bugs and/or evolution points of the

integrated platform.

2. Change Implementation: actual implementation of the changes, i.e. bug fixing or analysis,

design, implementation, deployment, and validation of new functionalities; the latter implies

to re-execute, totally or partially, the integration process.

Figure 4.6.1: The Maintenance phase described in terms of activities, roles, and work
products

Table 4.6.1: Tasks of the Integrated Platform Maintenance activity

Activity Task Task description Role involved

Integrated
Platform
Maintenance

Change Identification Identification of changes in
the integrated platform

Integrator and/or Owner

Integrated
Platform
Maintenance

Change Implementation Implementation of changes in
the integrated platform

Integrator and/or Owner

Integrated Platform

Maintenance

Change

Identification

Integrator

<<input>>

<<output>>

<<performs,
primary>>

Deployed
Platform

Maintained
Platform

Owner

Change

Implementation

<<performs,
primary>>

<<input>>

Functional and

non-functional

Requirements

<<in
p

u
t>>

Validation
Results

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

72 / 106

Figure 4.6.2: The workflow of tasks of the Integrated Platform Maintenance activity

4.6.2 Work Products

The final output work-product is the results of the maintenance activity, i.e. bug-fixing and/or

evolution of the integrated platform.

<<mandatory,
input>>

Change

Identification

[iteration]

<<mandatory,
Intermediate

output>>

Identified
Changes

Deployed

Platform

Change

Implementation

Maintained
Platform

<<mandatory,
output>>

Functional and

non-functional

Requirements

Validation
Results

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

73 / 106

5 INTER-METH based on INTER-IoT

In this Section, the INTER-METH instantiation process is shown. In particular, the Abstract phases

of Analysis, Design, Implementation, Deployment, Testing and Maintenance, are customized with

the aim of showing how the integration process between two heterogeneous IoT platforms/systems

can be concretely carried out by exploiting the INTER-METH guidelines and INTER-IoT products, in

particular, INTER-LAYER and INTER-FW. As in Section 4, for each phase of the instantiated

process, an overall description is reported along with the list of performed activities and obtained

work products.

5.1 Phase 1: Analysis

Description: Given two or more IoT platforms/systems to be integrated, the integration requirements

need to be elicited. On the basis of the elicited requirements, the INTER-IoT-based design of the IoT

platforms integration could be then carried out.

Objectives: To provide a model of the requirements for the integration of IoT platforms/systems.

Actors: The actors are:

(a) The developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) The platform Owner, who will obtain the integrated platform;

(c) The involved Platforms to be integrated.

Expected results: INTER-GOM (Goal-Oriented Model), a final model that will represent the formal

requirements models.

Main execution:

1. On the basis of the Integration Goals, each platform is analysed according to the INTER-IoT

Reference Architecture (see D4.1/D4.2) and the requirements of integration among the layers

of the platforms to be integrated are defined according to iterative tasks enclosed in activities.

2. According to the Step 1, the requirements of integration among the layers of the platforms to be

integrated are defined according to iterative tasks enclosed in activities.

5.1.1 Activities

The analysis phase of the concrete instantiation consists of three main tasks that are performed by

the Integrator (see Figure 5.1.3) according to the workflow depicted in Figure 5.1.4.

IoT Platforms Analysis: receives two heterogeneous IoT systems inputs: A and B. According to the

INTER-IoT Reference Architecture, they are analyzed, thus producing the Analyzed Platforms

Document. This step allows heterogeneous IoT platforms/systems with even notably different

architectures to be compared by means of a common set of architectural solutions and building

blocks. In particular, the INTER-IoT Reference Architecture is based on IoT-A (see Deliverable

D4.2), which represents the most known and adopted IoT reference architecture. Aiming at the

creation of an architectural reference model along with the definition of an initial set of key building

blocks for enabling the emerging IoT, the IoT-A reference architecture provides views and

perspectives on different architectural aspects that are of concern to stakeholders of the IoT. IoT-A

functional architecture consists in the following Functional Groups: Device (technical artefact meant

to provide an interface between the digital and the physical worlds), Communication (with regards to

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

74 / 106

the plethora of communication technologies that the IoT ARM needs to support, the need for a

Communication FG is identified), Service Organization and IoT Process Management (requirements

expressed by stakeholders regarding the possibility to build services and applications on top of the

IoT are covered by the IoT Process Management and Service Organisation FGs), Virtual Entity IoT

Service and Application (derived from the main abstractions identified in the Domain Model),
Security (to address consistently the concern expressed about IoT Trust, Security and Privacy, the

need for a Security transversal FG is identified) and Management (to address consistently the

concern expressed about IoT Trust, Security and Privacy).

The INTER-IoT Reference Architecture based on IoT-A is portrayed in Fig. 5.1.1.

Figure 5.1.1: INTER-IoT Reference Architecture schema.

The INTER-IoT Reference Architecture contains 11 Functional Groups (FGs): the Application FG,

the Device FG and the IoT Platform FG are out-of-scope of the INTER-IoT Reference Architecture,

because they represent external groups that are going to be interoperated through the INTER-IoT

and have been represented in yellow color. The five longitudinal FGs (Device Interoperability,

Semantics, Service Interoperability, Platform Interoperability, Device Access) are represented in light

blue color. The Management FG and the Security FG are transversal Functionality Groups and are

shown in dark blue color. These transversal groups provide functionalities that are required by any

of the longitudinal groups. In particular:

 Service Interoperability FG: supports the Application & Service to Application & Service

(AS2AS) interoperability through the definition and execution of new compound services that

make use of already existing services in the underlying IoT Platforms. Its goal is to use

services from different IoT and create new services based on them.

 Semantics FG: addresses the challenges related to semantic interoperability of IoT

Platforms. It provides support for the other FGs dealing with interoperability about IoT: The

Service Interoperability FG, the Platform Interoperability FG and the Device Interoperability

FG.

 Platform Interoperability FG: interacts with the different IoT Platforms to be interconnected.

It is the responsible for accessing the IoT Platforms, not for implementing any of the features

that the IoT Platforms provide.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

75 / 106

 Device Interoperability FG: addresses the challenges of making legacy devices and non-real

IoT Platform interoperable with other IoT Platforms and systems.

 Device Access FG: is responsible for offering a common interface to services and virtual

entities that represent and expose functionality of physical devices. It abstracts all the

necessary functions for managing the devices and interacting with them.

 Management FG: considers all the functionalities needed to rule the interoperability among

different IoT Platforms. It is responsible for initializing, monitoring and modifying the operation

of the interoperability among IoT Platforms.

 Security FG: is responsible for ensuring all the security aspects involved in the interoperability

of IoT Platforms.

1. Integration Layer Identification: receives in input the Analyzed Platform Document and a set

of Integration Goals. In output, produces the document Categories of Integration (CoI), a set

of INTER-IoT integration layers and of the cross-layering.

The INTER-LAYER (INTER-IoT layered-oriented approach) architecture (see WP4) is

reported in Fig. 5.1.2.

Figure 5.1.2: The INTER-LAYER approach schema.

As extensively reported, INTER-IoT presents a layer-oriented solution for interoperability, to

provide interoperability at any layer and across layers among different IoT systems and

platforms. This layer-oriented solution is achieved through INTER-LAYER and includes

several interoperability solutions dedicated to specific layers. The different layers are:

 Device: allows the seamless inclusion of novel IoT devices and their interoperation

with already existing ones.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

76 / 106

 Network(ing): aims to provide seamless support for smart objects mobility and

information routing.

 Middleware: enables seamless resource discovery and management system for

the IoT devices in heterogeneous IoT platforms.

 Application & Services: enables the use of heterogeneous services among

different IoT platforms.

 Semantics & Data: allows a common interpretation of data and information among

different IoT systems and heterogeneous data sources, achieving semantic

interoperability.

 CROSS-LAYER: covers and guarantees non-functional aspects that must be

present across all layers: trust, security, privacy, and quality of service (QoS).

2. INTER-GOM Production: receives the Analyzed Platform Document, a set of High-Level

Integration Goals and the Categories of Integration, and produces, according to the GOM

Meta Model, the INTER-GOM (Goal-Oriented Model) as output. To obtain the final model

that will represent the formal requirements model and will drive the INTER-IoT-based Design

Phase, the INTER-GOM Production Task can be iterated one or more time.

Figure 5.1.3: The INTER-IoT-based Analysis phase described in terms of activities, roles,
and work products

Requirements
Analysis

Integration Layer
Identification

INTER-GOM
Production

IoT Platform
Analysis

Integrator

<<input>>

<
<

in
p

u
t>

>

<<output>>

IoT Platforms

<<performs, primary>> <<performs, primary>>

<<performs,
primary>>

INTER-GOM

Integration
Goals

INTER-IoT
Reference

Architecture

<<input>>

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

77 / 106

Figure 5.1.4: The workflow of tasks of the INTER-IoT-based Requirement Analysis activity

5.1.2 Work Products

The final output work-product is the INTER-GOM, a final model (compliant to the Metamodel reported

in Figure 5.1.5) that will represent the formal requirements model and will drive the INTER-IoT-based

Design Phase.

Figure 5.1.5: The Metamodel of INTER-GOM

The Metamodel of INTER-GOM is reported in Fig. 5.1.5 and is composed of four main elements. In

particular:

 Analyzed Platform Document: comparing the platforms using a homogeneous and shared

architectural representation (see above), allows to identify the integration points between

the platforms.

 Integration Point: Tropos defines the concept of Refinement. A refinement of an Element

(e.g., a Goal) is a conjunction of the sub-elements that are necessary to achieve it. We

will call these points of refinement, Integration Points (see Fig. 5.1.6). They put together

parts of the platforms according to the layer-based architectural model. It is possible to

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

78 / 106

define a general and a specific level of refinement, according to INTER-IoT Reference

Architecture: the first level identifies the Functional Groups, the second level the

Functional Components (see Figure 5.1.1).

For each Integration Point, there are one or more:

o Requirement: represents desired states we want the Integration Point to achieve.

They are progressively refined into intermediate goals, until the process produces

actionable goals (tasks) that need no further decomposition and can be executed.

One or more requirements can be associated to a single Integration Point.

o Category of Integration (CoI): identifies the level of interoperability in a set of INTER-

IoT integration layers and of the cross-layering.

Figure 5.1.6: Refinement Process schemes in TROPOS and in INTER-METH

According to the Analyzed Platform Documents and a set of Integration Points, the GOM is defined,

following an iterative procedure as shown in the activity diagram in Fig. 5.1.7. The execution of the

activity diagram is as follows:

1. The first activity is the Integration Point Identification. According to the transition

conditions, the activity flow loops according to the need of choosing other integration

points, otherwise it moves to the next activity: Integration Point (IP) Requirement

Identification;

2. The second activity identifies one or more IP requirements before proceeding to the final

GOM generation;

3. Finally, if no further IP requirement has to be identified, the GOM document is generated

and the process ends.

Figure 5.1.7: The UML Activity Diagram of INTER-GOM Production

5.2 Phase 2: Design

Description: Given two or more IoT platforms/systems whose formal integration requirements are

reported in INTER-GOM model (generated as output of INTER-IoT-based Analysis Phase), a set of

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

79 / 106

INTER-IoT DESIGN PATTERNS have to be produced. On the basis of the INTER-IoT DESIGN

PATTERNS (documented in D5.1), the implementation of the IoT platforms integration could then

be carried out by INSTANTIATION.

Objectives: To define the INTER-IoT DESIGN PATTERNS for the integration of IoT

platforms/systems

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) the platform Owner, who will obtain the integrated platform;

(c) the involved Platforms to be integrated.

Expected results: Set of INSTANTIATED INTER-IoT DESIGN PATTERNS for the integration of the

identified IoT platforms/systems.

Main execution:

1. For each layer, on the basis of the elicited requirements reported in the INTER-GOM, an
initial INTER-IoT DESIGN PATTERN is produced.

2. Each INTER-IoT DESIGN PATTERN produced in Step 1 is iteratively refined.
3. A global integration design (including the cross-layer) is defined on the basis of the

outcome of Step 2 (and iteratively refined, if needed).

5.2.1 Activities

The Integration Design activity, which is the only main activity of the INTER-IoT-based Design phase,

is subdivided into two main tasks that are performed by the Integrator (see Figure 5.2.1 and Table

5.2.1) according to the workflow depicted in Figure 5.2.2:

1. INTER-IoT Layer Integration Design Specification: on the basis of the INTER-GOM and

Analyzed Platforms Document, for each INTER-IoT Layer (Device, Network, Middleware,

Application, Service, Data & Semantics) a layer integration specification is iteratively defined

by exploiting the INTER-LAYER product (D2D, N2N, MW2MW, AS2AS, DS2DS). Such task

will produce six INSTANTIATED INTER-IoT Design Patterns, one for each INTER-IoT layer.

2. INTER-IoT Full Integration Design Specification: On the basis of the six INSTANTIATED

INTER-IoT Design Patterns from the previous task, a full-fledged specification is iteratively

produced by incorporating the CROSS-LAYER and INTER-FW INTER-IoT Design Patterns.

In particular, INTER-IoT PATTERNS (or INTER-PATTERNS) are design patterns directly

corresponding to the integration solutions already achieved in the WP3 (particularly, according to

INTER-LAYER) and WP4 (particularly, according to the INTER-FW for contextualize solutions in

different application domains, e.g. m-Health, Transportation and Logistics) and they aim at furnishing

well-formalized domain-specific guidelines. Note that WP5 depends on WP3 and WP4 outcomes,

while WP3 and WP4 are independent from WP5. The defined set of INTER-PATTERNS comprises

the element listed in Table 5.2.1, where is reported also their related INTER-IoT layer and inspiring

Pattern Catalog (if any).

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

80 / 106

Figure 5.2.1: The INTER-IoT-based Design phase described in terms of activities, roles, and
work products

Figure 5.2.2: The workflow of tasks of the INTER-IoT-based Design Integration activity

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

81 / 106

Table 5.2.1: INTER-IoT Design Patterns, their related INTER-IoT layer and inspiring Pattern
Catalogue

Layer Name of INTER-IoT PATTERN Inspiring PATTERN CATALOG

D2D INTER-IoT Gateway Event Subscription. IoT Patterns, Enterprise Integration
Patterns, Agent Design Patterns.

D2D D2D REST Request/Response. Reactive Patterns, IoT Patterns,
Integration Patterns.

N2N INTER-IoT Orchestration of SDN Network Elements.

MW2MW INTER-MW Simple Component Pattern. Reactive Patterns.

MW2MW INTER-MW Message Broker. Integration Patterns, IoT Patterns.

MW2MW INTER-MW Self-contained Message. Reactive Patterns, SOA Patterns.

MW2MW INTER-MW Message Translator. Integration Patterns.

AS2AS AS2AS Flow Based Service Composition.

AS2AS INTER-AS2AS Service Orchestration. Service Orchestration.

AS2AS AS2AS Discovery of IoT Services. IoT Patterns, SOA Patterns.

DS2DS Alignment-based Translation Pattern. Integration Patterns, Agent Design
Patterns.

DS2DS Translation with central ontology. Integration Patterns, Agent Design
Patterns.

CROSS INTER-IoT SSL CROSS-Layer secure access Security Patterns, IoT Patterns.

INTER-FW Configuration delegation pattern. Object-oriented Patterns.

INTER-FW API façade.

INTER-
HEALTH

INTER-Health Pilot Integration. Enterprise Integration Patterns.

INTER-
HEALTH

Integrated deployment in security-constrained
environments.

Security Patterns.

INTER-LogP Geofencing pattern.

As it could be noted, three patterns catalogs have inspired the INTER-PATTERNS: IoT Patterns

(which is obvious choice, because it describes the IoT solutions), Reactive Patterns (mainly because

of its responsive and simple solutions) and Integration Patterns Catalog (mainly because of its

effective and common message solutions). Regardless to their functionality, the template-based

approach of describing all the INTER-IoT PATTERNS comprises twelve properties (as extensively

reported in D5.1) Pattern name, Identifier, Inspired by, Related patterns, Intent, Problem & Solution,

Applicability, UML representation, Implementation, Known uses, Identified by, Registration date.

5.2.2 Work Products

The work product of this phase is a set of INSTANTIATED INTER-IoT Design Patterns to be

exploited for driving the implementation phase. Each INSTANTIATED INTER-IoT Design Pattern is

described in a xml file according to the template previously reported, containing, among others, the

UML representation attribute that contains an URL to graphical resources (formal diagrams, e.g.,

UML diagram, generated through an external tool).

5.3 Phase 3: Implementation

Description: Given two or more IoT platforms/systems whose integration has been designed

according to the INSTANTIATED INTER-IoT Design Patterns, the Inter-IoT based integration

implementation has to be performed.

Objectives: To concretely integrate/interconnect the considered IoT platforms/systems.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

82 / 106

(b) the platform Owner, who will obtain the integrated platform;

(c) the involved Platforms to be integrated.

Expected results: The Inter-IoT based integrated IoT platform/system.

Main execution:

1. The INSTANTIATED INTER-IoT Design Patterns produced in the INTER-IoT based Design
phase are actually implemented according to successive refinement steps.

5.3.1 Activities

The INTER-IoT based Integration Implementation activity, which is the only main activity of the

Implementation phase, includes one main task that is iteratively performed by the Integrator (see

Figure 5.3.1) according to the workflow depicted in Figure 5.3.2:

1. INTER-IoT based Systems Integration: on the basis of the INSTANTIATED INTER-IoT

Design Patterns, the heterogeneous IoT platforms/systems are integrated by the Integrator

in an iterative activity aimed at obtaining the final integrated platform. At this step, we can: (i)

configure the components of the Integrated Platform by means of the INTER-FW; (ii) extend

the components of the Integrated Platform (e.g., a new functionality enabled by the

integration needs to be implemented); and (iii) to implement, in terms of software bridges

connected to INTER-LAYER, the INTER-IoT based INTER-LAYER design patterns. As

results of each these three sub-activities, the Integration Design Specifications are updated.

Figure 5.3.1: The INTER-IoT-based Implementation phase described in terms of activities,
roles, and work products

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

83 / 106

Figure 5.3.2: The workflow of tasks of the INTER-IoT-based Integration Implementation
activity

5.3.2 Work Products

The final output work-product is the INTER-IoT-based Integrated Platform. If needed, an ontology

alignment may be performed at this step through the IPSM tool, which will be presented in detail in

D5.3 (INTER-CASE Tool). Such process consists in finding of correspondences between two or

more ontologies. The result of this process is an alignment of a set of correspondences between

entities (atomic alignment) or groups of entities and sub-structures (complex alignment) from

different ontologies. A correspondence can be either a predicate about similarity, called a matching,

or a logical axiom mapping. In Appendix B, we provide the methodological base of INTER-IoT

ontology alignments.

At this point, the heterogeneous IoT platforms/systems are integrated according to the INTER-IoT

approach, thus obtaining interoperability among them and allow implementation and deployment of

IoT applications on top of them.

Figure 5.3.3 reports the relationships that are established among the different phases and work

products.

Figure 5.3.3: Relationships among the different phases (in bold) and work products (in
italic)

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

84 / 106

5.4 Phase 4: Deployment

Description: Given two or more IoT platforms/systems, whose integration has been implemented

according to the Implementation phase, the deployment of the integrated platform has to be

performed.

Objectives: To deploy the integrated IoT platforms/systems.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) the platform Owner, who will obtain the integrated platform; the Owner is an active

performer.

(c) the involved Platforms to be integrated.

Expected results: The deployed IoT platform/system.

Main execution:

1. The Integrated Platform is deployed according to deployment goals and requirements. In
particular, the INTER-FW web framework is the entry point to the INTER-IoT Configuration
and Management Framework (CMF), one of the three main software results of WP4, together
with INTER-API and the Software Development Framework. The use of INTER-FW CMF
(from now on, INTER-FW for shortness) is baseline for the IoT Platforms deployment phase
in the scope of INTER-METH. Thus, the INTER-IoT-based Deployment Phase of INTER-
METH is strongly dependent on INTER-FW. The first version of the INTER-FW has eight
sections (or modules), from which six of them are directly involved in the deployment of
interoperable IoT Platforms. INTER-IoT treats the five defined interoperability layers in
separate concerns, so five of these modules correspond 1-to-1 to these concerns. The sixth
module is related to AAA (Accountability, Authorization and Authentication).

5.4.1 Activities

The INTER-IoT based Deployment activity, which is the only main activity of the Deployment phase,

comprises six main tasks that are performed by the Integrator/Configurer (see Figure 5.4.1)

according to the workflow depicted in Figure 5.4.2 (in particular, the activities are strongly connected

to the UI functionalities of the different modules based on INTER-FW and so will be described):

 Platform Configuration: this task (connected to the Platforms module) deals with the

deployment of complete IoT Platforms for interoperating them towards rich applications.

Although the technical focus of this module is the deployment of interoperable middlewares

of platforms, the whole content (i.e., the platform) has been assumed to the concept of

'middleware' since the IoT platforms are univocally bound to the concept of platform (there

are few or none platforms without a middleware, while there are middlewares not linked with

specific platforms, though). To instantiate and deploy an IoT Platform Middleware in the

INTER-FW to enable middleware interoperability, the following steps are followed:

0. A bridge of the platform to interoperate must be available. INTER-IoT provides a series of

reference bridges. If the platform is not in the list of reference implementations, this must

be done following the “developing new bridges” instructions that will be publicly available

by the end of the project in the project site in GitHub. These instructions will extensively

use the Software Development Framework of the project.

1. Deploy the platform following the deployment instructions of the platform

vendor/developer. The platform must be reachable in a public endpoint (via DNS or IP).

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

85 / 106

2. Access the Platforms module (through its GUI)

3. Add a new Platform

4. Provide the following information (through filling in a given form), according to the following

fields:

4.1. Name: the name of the Platform (arbitrary)

4.2. Type: the type of Platform selected from the reference implementations in INTER-IoT

4.3. Bridge: the bridge applicable to the platform. One platform can be interfaced through

different bridges (e.g. different versions or different natively unavailable method

implementations).

4.4. Security: the security approach used to connect with the Platform, chosen from a list.

4.5. Owner: the user that allows the property of the data and the responsibility of them. It

must be a user already registered in INTER-FW.

4.6. URL and port: the endpoint to reach the public instance of the Platform. The GUI

allows checking whether or not the introduced endpoint is reachable from the location

where INTER-FW is deployed.

5. Save the all the information (i.e. the form). If all the fields are filled properly, the Platform

should now be available in the INTER-FW environment. The platform will appear in a list in

the main section of the Platforms module.

To explore the list of devices registered in a platform, its entry can be properly selected in

the list of platforms. This view contains two tabs: a) the first entry “Platform” shows the details

of the platform; b) the second entry “Entities” has a list of devices connected to the platform.

New devices can be registered (e.g. by using the “Add” button). Entities can be explored or

deleted from the list.

 Gateway Configuration: this task (connected to the Gateways module) focuses on the device

to device interoperability, addressed in the scope of INTER-IoT in the D2D Layer through the

“Gateway Event Subscription” and “REST Request/Response” patterns (as described in

D5.1). The steps to add a new gateway are:

1. A gateway with the gateway software of INTER-IoT must be available. The hardware must

be compatible with the INTER-IoT Gateway software. The compatibility list will be published

in the INTER-IoT Gateway development site in GitHub.

2. Select the Gateways module in the INTER-FW

3. Add a new Gateway

4. Providing the following information (by filling in the GUI form), containing the following

fields:

4.1. Name: the given name of the physical Gateway

4.2. URL and port: the endpoint to reach the public instance of the Gateway. The form

allows checking if the introduced endpoint is reachable from the location where INTER-

FW is deployed.

4.3. Owner: the user that allows the property of the data and the responsibility of them. It

must be a user already registered in INTER-FW.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

86 / 106

5. Save the provided information. Once the Gateway is created, if the data are correct and

the gateway is reachable, the gateway will appear in the list of physical gateways. A virtual

instance of the gateway is automatically created following the pattern “Digital Twin”.

To explore the list of devices registered in a gateway, select the list of registered gateways

in its entry. This view contains three entries: the first “Gateway” shows the details of the

gateway; the second “Physical” has a list of devices connected to the platform; the third, “Api”

links to the API of the layer interoperability implementation. Entities can be explored or

deleted from the list.

 Networking Configuration: in this task (connected to the Networking module), the network

interoperability, achieved via network virtualization and “Virtual Network Orchestration”

pattern is configured and managed, supporting the needs of the N2N layer of INTER-IoT in

terms of implementation and deployment. The module of Network is divided in three

subsections (or views):

1. Topology: an informative view aimed to show the emulated network topology.

2. Statistics: It has two functions: one to manage (read, create, modify, remove) network ports

and another to manage network flows.

3. QoS: where the statistics of the different network devices and segments are displayed.

This view offers the possibility to set up new queues and new network rules and related

metrics. All these elements can be managed from their respective lists, allowing editing or

removing.

 Application Services Configuration: this task (connected to the Application Services module)

includes a graphic tool for service orchestration, the underlying interoperability mechanism

for AS2AS Layer (see D3.2). This is one of the less intrusive views in the INTER-FW, since

the implementation tool, the open source project “node-red” has a powerful user interface

which allows this service orchestration from a visual perspective. The initial view in INTER-

FW of the Services section shows a list of already existing workflows.

1. To create a new workflow, it must be clicked the “Add” button, while existing ones can be

modified by clicking their entry in the list or clicking the “Remove” button to delete them.

2. Adding a new node creates a new instance of the “node-red2 tool enhanced by INTER-

IoT.

3. To set up a new workflow in the UI of the service orchestrator, components must be

dragged and dropped to the canvas and connected via virtual wires.

4. Double clicking each component gives access to the configuration of the services.

5. To deploy new orchestrated services, the deploy button is to be clicked. If no error has

been raised, the new workflow will start working immediately.

 Semantics Configuration: in this task (connected to the Semantics module), all the

configurable parameters and processes related to the semantics interoperability (all

mechanism present in the DS2DS layer, see D3.2) are configured for the deployment of

interoperable IoT platforms. The view contains five sections.

1. To add a new mediator instance, the IPSM (Inter Platform Semantic Mediator)

Configuration tab needs to be selected and then a “Register IPSM instance” created, the URL

and port of the instance where the IPSM instance to be deployed will be requested.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

87 / 106

2. To create new IPSM alignments, a new alignment instance has to be created through “Add

Alignment”. A form asking for the possible combinations will be used. After filling the

information, the new alignment will be created. The created alignments can be administered

(modify, remove) from the same tab. The catalogue of available alignments is populated from

the IPSM authoring tool, currently not available in the INTER-FW, which will be created in the

context of the INTER-CASE tool (see T5.3).

3. To set up translation channels (to improve performance), “Add channel” functionality is

used. Channels are managed from the same view.

4. To explore the available ontologies, “Ontology repository” tab can be selected. Ontologies

can be added by using “Add Ontology”.

 User management Configuration: this task (connected to the User management module)

contains configurations valid for all the previous modules (or sections); in particular, it

configures and manages the users of the INTER-FW and the authorized access of them to

the IoT resources connected in INTER-IoT. To add a new user, the following steps must be

followed:

0. The current user must have administration permissions.

1. Select the “Users management” view. In this view, all the users of INTER-FW are listed.

From this view they can be managed.

2. Add a new user.

3. Complete the form that contains the following fields:

3.1. Username: the INTER-FW login name for the application.

3.2. Password: the secret key for the user.

3.3. Name: the complete name of the user (optional)

3.4. Email: a valid email for the user. Communications will be issued to this address, so it

must be valid. A verification mechanism (validator + two-step sign-up) checks that the user

has introduced a valid email.

3.5. Company: The company of the user.

3.6. INTER-FW App role: The initial role. The role is applicable for the views that are

initially rendered for the users.

4. Once the user is created, authorization to IoT artifacts connected through INTER-IoT can

be granted/revoked by using the specific User entry and accessing the “Permissions” tab.

5. Specific policies for the user can be also assigned by using the Policies tab in the same

view.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

88 / 106

Figure 5.4.1: The INTER-IoT-based Deployment phase described in terms of activities, roles,
and work products

Figure 5.4.2: The workflow of tasks of the INTER-IoT-based Deployment activity

5.4.2 Work Products

The work product refers to the configured and deployment integrated IoT platform.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

89 / 106

5.5 Phase 5: Testing

Description: Given two or more IoT platforms/systems, whose deployment has been carried out

according to Deployment phase, the testing/validation has to be performed.

Objectives: To test the deployed integrated IoT platforms/systems.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) the platform Owner, who will obtain the integrated platform; the Owner is an active

performer.

(c) the involved Platforms to be integrated.

Expected results: The test results on the integrated and deployed IoT platform/system.

Main execution:

1. The integrated and deployed platform is executed and validated through testing according to
well-defined test cases. Acceptance testing is a test conducted to determine if the
requirements of a specification are met [TE1]. In systems engineering it may involve black-
box testing performed on a system, such as for example for software modules. International
Software testing Qualifications Board (ISTQB), which is a software testing qualification
certification organisation, defines acceptance as formal testing with respect to user needs,
requirements, and business processes conducted to determine whether a system satisfies
the acceptance criteria [TE2]. There can be many types of acceptance testing for a system,
service or product. The acceptance test can be performed multiple times in the case of defect
resolving or when test cases are not executed within a single test iteration. In INTER-IoT
acceptance testing is performed in two phases: Factory Acceptance Testing (FAT) and Site
Acceptance testing (SAT) [TE3]. Factory Acceptance Test (FAT) and Site Acceptance Test
(SAT) are performed to test and evaluate the INTER-IoT-based integrated system
implemented in the Implementation Phase (see section 5.3) and deployed in the Deployment
Phase (see section 5.4). During development, units and components are tested by the
developers. After the integration of the tested and validated components in the system, the
FAT will be executed in order to indicate if there are needs for improvements. After the
successful execution, the system can be tested in the field and undergo the SAT.

5.5.1 Activities

The Testing activity, which is the only main activity of the INTER-IoT-based Testing phase, is

subdivided into four main tasks that are performed by the Integrator/Tester (see Figure 5.5.1 and

Table 5.5.1) according to the workflow depicted in Figure 5.5.2:

 Factory Acceptance Testing (FAT) Task. The FAT is performed to test and prove the system

in a lab environment and tests if solution meets the specifications and if it is functional before

it is deployed in the field. FAT tests can be performed by simulation or a functional test. FAT

describes the system, test setup, tooling, test strategy, test activities and test results for the

lab setup. During FAT testing the readiness of the system is shown to the customer. The

readiness of the system is shown to the costumer, which can use the system in actual system

setup for the first time. During the testing process, the operators and maintenance personal

can get insight into the operated and maintained system. Minor irregularities can be detected

which lead to minor changes in the INTER-IoT system before the system is deployed in the

field.

 Site Acceptance Testing (SAT) Task. SAT takes place after integration at the customer site

and tests if the solution has been correctly integrated into the customer's environment and

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

90 / 106

meets all the requirements. The solutions are tested on: Integration, Performance, User

acceptance, conformance to specifications. During the SAT testing process the actual

deployed system is tested and proven. SAT process are similar like FAT process, except is

describes and tests the system integrated in the customer systems. For each of the use-

case/pilots a FAT and SAT testing will be performed.

 Test Environment Task. The test environment is usually designed to be identical, or as close

as possible, to the anticipated production environment. In order to test the IoT

system/framework in “real world” as much as possible, representative test systems are

needed where pilot test setups must be created and verified, which includes all facilities,

hardware, software, firmware, procedures and/or documentation intended.

 Defect Reporting Task. For the defect reporting purpose, each integration project can be

planned, tracked and reported in organized manner. During the integration testing new issues

can be found, for which it has to be determined whether they are actually a defect or not. The

defect has to be resolved by either developer, project manager or software architect. After

the defect has been resolved, the solution will be integrated into the next release and tested

during the next integration test.

Figure 5.5.1: The INTER-IoT-based Testing phase described in terms of activities, roles, and
work products

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

91 / 106

Figure 5.5.2: The workflow of tasks of the INTER-IoT-based Testing activity

5.5.2 Work Products

The FAT and SAT indices documents will constitute the output work products of such phase.

5.6 Phase 6: Maintenance

Description: Given an INTER-IoT-based integrated platform obtained from the integration of two or

more IoT platforms/systems according to the previous phases, such platform needs to be

maintained.

Objectives: To maintain and make evolve an integrated IoT platform.

Actors: The actors are:

(a) the developer of the integration (aka Integrator), who carries out the integration

interconnection of heterogeneous IoT platforms; the Integrator is an active performer.

(b) the platform Owner, who will obtain the integrated platform; the Owner is an active

performer.

(c) the involved Platforms to be integrated;

(d) the integrated Platform

Expected results: Continuous maintenance of the integrated IoT platform.

Main execution:

1. Identification of a list of bugs and/or a list of evolution points at specific INTER-IoT layers
and/or products.

2. Correction of bugs and/or implementation of new functionalities (go back to the Analysis or
Design phases).

5.6.1 Activities

The Integrated Platform Maintenance activity, which is the only main activity of the Maintenance

phase, is subdivided into two main tasks that are performed by the Integrator and/or Owner (see

Figure 5.6.1) according to the workflow depicted in Figure 5.6.2:

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

92 / 106

1. Change Identification: this task aims at identifying bugs and/or evolution points of the

integrated platform. Identification will be done at each layer (Device, Networking, Middleware,

App Services, Data & Semantics) and cross-layer of the integrated platform (i.e. at INTER-

LAYER) and at framework level (i.e. at INTER-FW).

2. Change Implementation: actual implementation of the changes, i.e. bug fixing or analysis,

design, implementation, deployment, and validation of new functionalities; the latter could

imply to re-execute, totally or partially, the integration process.

Figure 5.6.1: The Maintenance phase described in terms of activities, roles, and work
products

Figure 5.6.2: The workflow of tasks of the Integrated Platform Maintenance activity

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

93 / 106

5.6.2 Work Products

The final output work-product is the results of the maintenance activity, i.e. bug-fixing and/or

evolution of the integrated platform.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

94 / 106

6 On Methodology and Ethics

INTER-METH is a general-purpose methodology for supporting the integration of heterogeneous IoT

platforms/systems. INTER-METH is the therefore Ethics-agnostic as Ethics come into play when

dealing with specific application domains. Nevertheless, when INTER-METH is employed in such

specific application domains where Ethics has an important role, Ethics need to be considered in the

integration process. Specifically, the concrete instantiation of INTER-METH (see Section 5), i.e.

INTER-METH based on INTER-IoT, is mainly centred on the INTER-IoT products, INTER-LAYER

and INTER-FW.

Thus, in the following, we summarize Ethics related to INTER-IoT products as strongly related to

INTER-METH applications.

INTER-LAYER
INTER-LAYER is designed to enable the interoperability of existing IoT systems at different levels.

Ethical considerations are taken into account from two different perspectives:

 From the systems being connected,

 From the inner workings of each layer that provide such interoperability.

INTER-LAYER cannot deal with the proper ethical handling of data and security within each

connected/integrated IoT system, but it can and must assure that the connection/integration enabled

by INTER-LAYER follows ethical procedures and behavior. In addition, the inner logic of the

components in each layer of INTER-LAYER must comply with the proper ethical handling of data

and security, as per the requirements and principles described in D3.2.

INTER-FW
INTER-FW is designed to configure, monitor, and manage different layers within INTER-IoT while

providing a REST-like API to enable the use of the interoperable platform and INTER-IoT features.

To provide this type of functionality, ethical considerations were made on the types of data being

used. In particular, the backend design should be guided by end user needs when handling each

type of data and reflected in the requirements. Additionally, the possible exploitations of INTER-IoT

are purposely wide ranging. This makes it difficult to exhaustively define all possible requirements.

The goal then becomes to provide the end user with a customisable system capable of handling all

sensitivity levels of data, even though specific contexts could require to introduce new ad-hoc

mechanisms. Details on INTER-FW ethics are given in D4.2.

Finally, specific Ethics need to be taken in to account when using INTER-METH in specific and

Ethics-sensible application domains like: health-care, people surveillance, people monitoring, etc.,

i.e. in all contexts where “humans” are central to the IoT systems. Specifically, in INTER-IoT the

main use cases INTER-HEALTH and INTER-LOGP, as well as the INTER-DOMAIN use case

connected to INTER-LOGP, are considered. They are “human”-centered (INTER-HEALTH more

specifically) so the application of INTER-METH in such domains needs to be Ethics aware. This

mainly affects the Analysis phase as the Design and Implementation (and Deployment) phases are

well-supported by INTER-LAYER and INTER-FW. In particular, specific Ethics could affect the

identification of the “Integration Points” and their refinement (see Section 5.1). As an example,

consider the integration of two e-Health platforms (such as the ones we employed in INTER-

HEALTH: UniversAAL and BodyCloud). In particular, one platform (e.g. BodyCloud) is based on

Google App Engine and therefore uses the public Google cloud to store all data whereas the other

platform (e.g. UniversAAL) uses a private cloud. According to Ethical requirements, data should be

stored only on private clouds/data centers. This affects the identification of the “Integration Point”,

therefore resulting in a specific solution: the public cloud of the first platform (e.g. BodyCloud) is not

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

95 / 106

used and the integration is performed at Middleware layer by integrating the platform through a

private cloud-side server, which directly receives data streams from smartphones of monitored

people, so bypassing the public Google cloud infrastructure. As one can see, according to domain-

specific Ethics, the execution of the Analysis phase of INTER-METH could be affected and therefore

directed to be complaint with the Ethics rules to be enforced.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

96 / 106

7 References

[A17] ELDATool, documentation and software, http://lisdip.deis.unical.it/software/eldatool.

[A21] https://en.wikipedia.org/wiki/Rational_Unified_Process.

[AB12] “EDOAL: Expressive and declarative ontology alignment language.”

http://alignapi.gforge.inria.fr/edoal.html.

[AIM10] Atzori, Luigi, Antonio Iera, and Giacomo Morabito. "The internet of things: A survey."

Computer networks 54.15 (2010): 2787-2805.

[AIOTI] AIOTI - Report on High-Level Architecture (HLA)

http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=11812.

[B04] Bresciani, Paolo, et al. "Tropos: An agent-oriented software development methodology."

Autonomous Agents and Multi-Agent Systems 8.3 (2004): 203-236.

[B07] Bass, Len. Software architecture in practice. Pearson Education India, 2007.

[B13] Bassi, et al., “Enabling things to talk”, Springer, 2013.

[BP1] Best Practices for Systems Integration, November 2011, Presented by Pete Houser

Manager for Engineering & Product Excellence, Northrop Grumman Corporation,

www.dtic.mil/ndia/2011system/13007_HouserThursday.pdf

[BPR01] Bellifemine, Fabio, Agostino Poggi, and Giovanni Rimassa. "Developing multi-agent

systems with a FIPA-compliant agent framework." Software-Practice and experience 31.2 (2001):

103-128.

[BS11] Bandyopadhyay, Debasis, and Jaydip Sen. "Internet of things: Applications and challenges

in technology and standardization." Wireless Personal Communications 58.1 (2011): 49-69.

[C02] Clements, Paul C. "Software architecture in practice." Diss. Software Engineering Institute

(2002).

[C05] Cossentino, Massimo. "From requirements to code with the PASSI methodology." Agent-

oriented methodologies 3690 (2005): 79-106.

[C1] Cynertia Consulting http://www.cynertiaconsulting.com/en/IT-services/audit-IT-process-

improvement-CMMI-ITIL

[CT] Collins, Tom. "A Methodology for Building the Internet of Things.",

http://www.iotmethodology.com/.

[D11] David, Jérôme, et al. "The alignment API 4.0." Semantic web 2.1 (2011): 3-10.

[DJ11] Dahmann, Judith, et al. "An implementers' view of systems engineering for systems of

systems." Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.

[DWS01] DeLoach, Scott A., Mark F. Wood, and Clint H. Sparkman. "Multiagent systems

engineering." International Journal of Software Engineering and Knowledge Engineering 11.03

(2001): 231-258.

[F08] Fortino, Giancarlo, et al. "Modeling multi-agent systems through event-driven lightweight

DSC-based agents." Università della Calabria, Via P. Bucci cubo 41c 87036 (2008).

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

97 / 106

[F09] Fortino, Giancarlo, et al. "A multi-coordination based process for the design of mobile agent

interactions." Intelligent Agents, 2009. IA'09. IEEE Symposium on. IEEE, 2009.

[F10] Fortino, Giancarlo, et al. "Using event-driven lightweight DSC-based agents for MAS

modelling." International Journal of Agent-Oriented Software Engineering 4.2 (2010): 113-140.

[FGR05] Fortino, Giancarlo, Alfredo Garro, and Wilma Russo. "An integrated approach for the

development and validation of multi-agent systems." International Journal of Computer Systems

Science & Engineering 20.4 (2005): 259-271.

[FGRS15] Fortino, Giancarlo, et al. "Towards a development methodology for smart object-

oriented IoT systems: A metamodel approach." Systems, Man, and Cybernetics (SMC), 2015 IEEE

International Conference on. IEEE, 2015.

[FR12] Fortino, Giancarlo, and Wilma Russo. "ELDAMeth: An agent-oriented methodology for

simulation-based prototyping of distributed agent systems." Information and Software Technology

54.6 (2012): 608-624.

[FRR14] Fortino, Giancarlo, Francesco Rango, and Wilma Russo. "Eldameth design

process." Handbook on Agent-Oriented Design Processes. Springer Berlin Heidelberg, 2014. 115-

139.

[FS18] Fortino, Giancarlo, et al. "Towards Multi-layer Interoperability of Heterogeneous IoT

Platforms: The INTER-IoT Approach." Integration, Interconnection, and Interoperability of IoT

Systems. Springer, Cham, 2018. 199-232.

[G16] Ganzha, Maria, et al. "Semantic Technologies for the IoT-An Inter-IoT Perspective."

Internet-of-Things Design and Implementation (IoTDI), 2016 IEEE First International Conference

on. IEEE, 2016.

[G16] Ganzha, Maria, et al. "Tools for ontology matching—practical considerations from INTER-

IoT perspective." International Conference on Internet and Distributed Computing Systems.

Springer International Publishing, 2016.

[G17] Ganzha, Maria, et al. "Streaming semantic translations." System Theory, Control and

Computing (ICSTCC), 2017 21st International Conference on. IEEE, 2017.

[G18] Ganzha, Maria, et al. "Towards semantic interoperability between Internet of Things

platforms." Integration, Interconnection, and Interoperability of IoT Systems. Springer, Cham, 2018.

103-127.

[GG17] Ganzha, Maria, et al. "From implicit semantics towards ontologies—practical

considerations from the INTER-IoT perspective." Consumer Communications & Networking

Conference (CCNC), 2017 14th IEEE Annual. IEEE, 2017.

[GGG17] Ganzha, Maria, et al. "Semantic interoperability in the Internet of Things: an

overview from the INTER-IoT perspective." Journal of Network and Computer Applications 81

(2017): 111-124.

[GGM05] Garijo, Francisco J., Jorge J. Gomez-Sanz, and Philippe Massonet. "The MESSAGE

methodology for agent-oriented analysis and design." Agent-oriented methodologies 8 (2005): 203-

235.

[GMP02] Giunchiglia, Fausto, John Mylopoulos, and Anna Perini. "The tropos software

development methodology: processes, models and diagrams." Proceedings of the first

international joint conference on Autonomous agents and multiagent systems: part 1. ACM, 2002.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

98 / 106

[GMP02] Giunchiglia, Fausto, John Mylopoulos, and Anna Perini. "The tropos software

development methodology: processes, models and diagrams." Proceedings of the first

international joint conference on Autonomous agents and multiagent systems: part 1. ACM, 2002.

[GP14] Grace, Paul, et al. "Taming the interoperability challenges of complex iot systems."

Proceedings of the 1st ACM Workshop on Middleware for Context-Aware Applications in the IoT.

ACM, 2014.

[GPS16] Grace, Paul, Brian Pickering, and Mike Surridge. "Model-driven interoperability:

engineering heterogeneous IoT systems." Annals of Telecommunications 71.3-4 (2016): 141-150.

[GVO05] Gardelli, Luca, Mirko Viroli, and Andrea Omicini. "On the role of simulation in the

engineering of self-organising systems: Detecting abnormal behaviour in MAS." (2005).

[HW04] Hohpe, Gregor, and Bobby Woolf. Enterprise integration patterns: Designing,

building, and deploying messaging solutions. Addison-Wesley Professional, 2004.

[I1] The IoT-A Unified Requirements list, <<http://www.iot-

a.eu/public/requirements/copy_of_requirements>>

[IOTA1] http://docs.oasis-open.org/soa-rm/RS12.0/soa-rm.pdf

[K08] Katasonov, Artem, et al. "Smart Semantic Middleware for the Internet of Things." ICINCO-

ICSO 8 (2008): 169-178.

[K10] Kortuem, Gerd, et al. "Smart objects as building blocks for the internet of things." IEEE

Internet Computing 14.1 (2010): 44-51.

[K10] Kawsar, Fahim, et al. "Design and implementation of a framework for building distributed

smart object systems." The Journal of Supercomputing 54.1 (2010): 4-28.

[KR13] Kazman, Rick, et al. "Understanding patterns for system of systems integration." System of

Systems Engineering (SoSE), 2013 8th International Conference on. IEEE, 2013.

[M12] Miorandi, Daniele, et al. "Internet of things: Vision, applications and research challenges."

Ad Hoc Networks 10.7 (2012): 1497-1516.

[MAK12] Münch, Jürgen, et al. "Process Modeling Notations and Tools." Software Process

Definition and Management. Springer Berlin Heidelberg, 2012. 111-138.

[MMW96] Maier, Mark W. "Architecting principles for systems‐of‐systems." INCOSE

International Symposium. Vol. 6. No. 1. 1996.

[MMZ99] Martelli M., Mascardi, V. and Zini, F., Specification and Simulation of Multi-Agent

Systems in CaseLP, Appia-Gulp-Prode Joint Conf. on Declarative Programming, L'Aquila, Italy.

M.C. Meo and M. Vilares-Ferro (eds), pp. 13-28, 1999.

[P14] Perera, Charith, et al. "Context aware computing for the internet of things: A survey."

Communications Surveys & Tutorials, IEEE 16.1 (2014): 414-454.

[PS06] Pavón, Juan, Candelaria Sansores, and Jorge Gómez-Sanz. "Modeling of social systems

with Ingenias." Proc. of 1st Workshop on Multi-Agent Systems and Simulation (MAS&S’06). 2006.

[PW02] Padgham, Lin, and Michael Winikoff. "Prometheus: A methodology for developing

intelligent agents." Proceedings of the first international joint conference on Autonomous agents

and multiagent systems: part 1. ACM, 2002.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

99 / 106

[RS12] Robertson, Suzanne, and James Robertson. Mastering the requirements process: Getting

requirements right. Addison-wesley, 2012.

[RU04] Röhl, Mathias, and Adelinde M. Uhrmacher. "Controlled Experimentation with Agents-

Models and Implementations." ESAW. 2004.

[S04] Sierra, Carles, et al. "Engineering multi-agent systems as electronic institutions." European

Journal for the Informatics Professional 4.4 (2004): 33-39.

[SBZH01] Sarjoughian, Hessam S., Bernard P. Zeigler, and Steven B. Hall. "A layered

modeling and simulation architecture for agent-based system development." Proceedings of the

IEEE 89.2 (2001): 201-213.

[SGPPW] Paweł Szmeja, Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, and

Katarzyna Wasielewska. Declarative Ontology Alignment Format for Semantic Translation.

[SOS6] OUSD AT&L. Systems Engineering Guide for Systems of Systems. Washington,

D.C.: Pentagon, August 2008.

[SOS7] http://www.ieee-stc.org/proceedings/2009/pdfs/JOC2249.pdf

[SPEM08] SPEM 2.0 specifications at http://www.omg.org/spec/SPEM/

[SPMB] D. Slama, F. Puhlmann, J. Morrish, R. Bhatnagar, “Enterprise Internet of Things,”

available at http://enterprise-Internet of Things.org/book/enterprise-Internet of Things/

[TE1] “Acceptance Testing,” [Online]. Available: https://en.wikipedia.org/wiki/Acceptance_testing.

[Accessed 16 11 2017].

[TE2] “Standard glossary of terms used in Software Testing, Version 2.1. ISTQB. 2010.,” [Online].

Available: https://en.wikipedia.org/wiki/Acceptance_testing#cite_ref-ISTQB_Glossary_2-0.

[Accessed 16 11 2017].

[TE3] “D6.1 System Integration Plan,” 2017.

[TSGPSN] Rafał Tkaczyk, Paweł Szmeja, Maria Ganzha, Marcin Paprzycki, Bartłomiej Solarz-

Niesłuchowski. From relational databases to an ontology – practical considerations.

[US98] Uhrmacher, Adelinde M., and Bernd Schattenberg. "Agents in discrete event simulation."

European Simulation Symposium-ESS. Vol. 98. 1998.

[V13] Vlacheas, Panagiotis, et al. "Enabling smart cities through a cognitive management

framework for the internet of things." IEEE communications magazine 51.6 (2013): 102-111.

[VK16] Vaneman, Warren K. "The system of systems engineering and integration" Vee" model."

Systems Conference (SysCon), 2016 Annual IEEE. IEEE, 2016.

[W1] Waterfall methodology: https://en.wikipedia.org/wiki/Waterfall_model

[WJK00] Wooldridge, Michael, Nicholas R. Jennings, and David Kinny. "The Gaia

methodology for agent-oriented analysis and design." Autonomous Agents and multi-agent

systems 3.3 (2000): 285-312.

[WJK00] Fortino, Giancarlo, et al. "An agent-based middleware for cooperating smart

objects." International Conference on Practical Applications of Agents and Multi-Agent Systems.

Springer, Berlin, Heidelberg, 2013.

[Z16] Zambonelli, Franco. "Towards a General Software Engineering Methodology for the

Internet of Things." arXiv preprint arXiv:1601.05569 (2016).

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

100 / 106

[ZJW03] Zambonelli, Franco, Nicholas R. Jennings, and Michael Wooldridge. "Developing

multiagent systems: The Gaia methodology." ACM Transactions on Software Engineering and

Methodology (TOSEM) 12.3 (2003): 317-370.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

101 / 106

Appendix A: SPEM in a nutshell

Software Process Engineering Metamodel (SPEM) [SPEM08] is a meta-modelling language used

for the description of development design processes and their components. The SPEM specification

defines a set of process modelling elements useful for describing a development design process

with the exclusion of all the constraints on the specific application context. The SPEM notation is

suitable for a standardized representation of complex and detailed models. The SPEM is based on

the idea that "a software development process is a collaboration between abstract entities called

process roles that perform operations called activities on tangible entities called work products". This

well-defined conceptual model allows to represent every kind of process lifecycle (iterative,

incremental, waterfall and so on), SPEM in fact is composed of a breakdown structure allowing to

represent the design process; the analysis of the process is divided into categories.

SPEM 2.0 presents a metamodel structured in seven main packages. Only three of them will be

described in this section in order to justify their specific use: Process Structure, Method Content and

Process With Method. Each of them contains all metamodel classes and abstractions for describing

and modelling a design process.

It is worth noting that in SPEM 2.0 the concepts of "Method" and "Process" have a specific meaning,

explained in the following paragraphs. That meaning is used for the purpose of standard

representation of a design process and of a process fragment.

The Method Content package contains all the elements for creating a set of reusable methods,

independently from a specific project, in which techniques and concrete realizations of best practices

are specified. The aim is to illustrate which are the goals that a method has to reach, which resources

are used and which roles are involved.

The Process Package is composed of main elements for process modelling: activities, nested in a

breakdown structure where the performing Role classes and the input and output Work Product

classes for each activity are listed. These elements are used to represents a high-level process that,

when instantiated on a specific project, takes method content elements and relates them into

partially-ordered sequences that are customized to specific project types.

The Process With Method Package contains all the elements for integrating the method content in

the process.

To sum up, “process” provides a complete breakdown structure for a specific development

situation, whereas a process with methods relates each method content element (such as Tasks

Definition, Work Products Definition, etc.) to an ordered sequence of work steps customized for

specific project types. Therefore, at a first level of abstraction, a process is represented in its general

structure without any reference to a specific project and without detailing the inner methods of each

activity.

SPEM 2.0 presents two level of process representation, both of them aim at modelling the portion of

work to be done with required input/output and role involved, but whereas a method is considered at

an higher abstraction level, where there is no reference to a specific project and above all it is

considered as an auto consistent portion of process, a process is the concrete representation of a

specific development situation.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

102 / 106

For these reasons SPEM 2.0 is suitable both for the proposed top-down decomposition/

representation of a design process and for the representation of each process fragment; in fact we

can use the Method Content Package elements to represent a process fragment and the Process

With Method Package elements to represent an existing design process; in fact a development

process, in the proposed approach, is composed of process fragments.

In Figure A.1 the metamodel classes composing the Process with Method Package are shown. The

central element is the BreakdownElement. In SPEM 2.0 processes are represented with a

breakdown structure of Activities that nest BreakDown Elements.

BreakDown Elements definition from Process Package, not shown here [SPEM08], is "the abstract

generalization for any type of Process Element that is part of a breakdown structure. Any of its

concrete subclasses can be placed inside an Activity that represents a grouping of nested

BreakDownElements such as other Activity instances. Task Uses and Role Uses". Thus, Activity

represents a basic unit of work within a Process as well as a Process itself.

Role Uses represent a "Role in the context of a specific Activity, it is the performer of a Task Uses

and defines a set of related skills, competencies and responsibilities of a set of individuals" and Task

Uses define the unit of work that is performed by Roles; a Task Use has a clear purpose in which

the performing roles achieve a well-defined goal. They provide complete step-by-step explanations

of doing all the work that needs to be done to achieve a goal. The Work Product Uses are the

artifacts, produced, consumed or modified by Task Uses1; Roles use Work Products to perform

Tasks and produce Work Products in the course of performing Tasks. Method Content Use are the

key concept that carries out the separation between process and method content. As it could be

noted the Process With Method Package contains the same elements we considered in the proposed

process definition, the Activity can be related/mapped to Task Use, The Process Role to Role Use

and obviously the Work Product to Work Product Use. These elements together with the rationale of

the work breakdown structure, which SPEM is based on, are sufficient enough for describing a

design process following a top-down approach, from higher level definition of the work to be done

until the details of each task with the role performing it and the artifacts produced.

Besides we used other two elements not included in the process metamodel, they are provided by

SPEM and are useful for grouping a set of activities under a common application theme, they are

the Process Component: that is a "special Process Package that applies the principles of

encapsulation. A Process Component contains exactly one Process represented by an Activity and

defines a set of Work Product Ports that define the inputs and outputs for a Process Component",

and Phase that represents "a significant period in a project, ending with major management

checkpoint, milestone or set of Deliverables. It is included in the model as a predefined special

Activity, because of its significance in defining breakdowns."

Figure A.1 portrays which SPEM elements we use and the related relationships that we use for

representing a design process, an example will be provided in the following section. A whole process

can be divided into process components that groups the activities under a common theme, set of

activities are also grouped into phases that impose specific milestones to the work to be done.

Techniques, methods and guidelines for each activity are given by tasks that are performed by roles

and consumes/produces (has input/output) work products.

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

103 / 106

Figure A.1: The SPEM Process With Method Package Metamodel (from [SPEM08])

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

104 / 106

Appendix B: Semantic interoperability in the

INTER-IoT

B.1 Semantic translation as an integration method

The main issue of Internet of Things is lack of interoperability between IoT artifacts (e.g.

platforms/systems/applications/devices). Papers [G18][GG17][G16][GGG17][FS18][G17] explain

the problem and describe semantic approach as promising solution. Nowadays, there is still no

common practice for creating communication interfaces, that can be easily used for integration

between artifacts on semantic level. Paper [TSGPSN] shows, that after research and taking into

account results of other EU projects, use of semantic technologies is a noteworthy direction for

exploration, as an approach integrating heterogeneous data sources (including divergent data

models).

INTER-IoT uses alignments, and alignment-based translation as a method for establishing semantic

interoperability. Paper [G16] explains the alignment format and differences with other related terms

(ontology merging and translation). Ontology alignment refers to finding correspondences between

two or more ontologies. The result of this process is an alignment - a set of correspondences

between atomic entities or groups of entities and sub-structures from different ontologies. A

correspondence can be either a predicate about similarity, called a matching, or a logical axiom - a

mapping. Typically used mapping axioms are equivalence and subsumption.

In INTER-IoT, an application of ontology alignments is used to facilitate the message translation.

Since the “world of distributed applications” is still ways away from the Semantic Web, and since

legacy applications are not based on ontologies and semantic data processing, as a first step

approaches to lifting other formats e.g. XML Schema, JSON to the RDF/OWL ontologies should be

proposed. For IoT artifacts that use different ontologies (predefined or defined as a result of

extraction/formalization), such ontologies can be aligned to build common understanding. The core

of this approach in the INTER-IoT environment is Inter Platform Semantic Mediator (IPSM). The aim

of this component is to execute translation between source IoT artifact ontology and target IoT

artifact ontology. The detailed description can be found in [G17] and Deliverable D3.2. The IPSM

infrastructure is based on the concept of data streams and channels, i.e. data flow abstractions. This

idea is related to the huge amounts of real-time data that need to be handled within the INTER-IoT

environment.

The general idea of INTER-IoT approach to semantic interoperability is described in [G18]. It starts

with optional step of lifting other formats to OWL ontologies for all artifacts that are to be joined in an

IoT ecosystem. Next step is an instantiation of a central modular ontology. It consists of two

elements: (1) core IoT ontology, (2) and modules representing domains of communication within the

ecosystem. The basis of the semantic translation is the definition and persistence of alignments. To

achieve it, message flows should be known in advance (the platforms that participate in

communication and the topics of conversation). INTER-IoT uses IPSM (many instances are allowed)

for semantic translation of messages. This is proceeded with syntactic translation that is a

functionality of a bridge component (described in Deliverable D3.2) placed between IoT platform and

INTER-MW. The translation produces RDF from platform’s native format. Inside INTER-MW, the

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

105 / 106

IPSM is used to translate from source RDF to target RDF. Specifically, a “double translation” is

performed, first to the common ontology, then to the ontology of the receiver.

B.2 Establishing semantic interoperability

Figure B.1: Creating alignment process

Diagram (see Figure B.1) depicts the whole process of establishing semantic interoperability,

necessary in the IoT artifact integration process. It consists of eight main steps, and describes the

D5.2: INTER-Meth: Full-fledged Methodology for IoT Platforms Integration

106 / 106

path to the point when artifact is ready to join to the INTER-IoT environment (taking into account if it

contains the ontology), to the submission of a brand new, tested alignment(s).

Step 1. Lifting to OWL. Nowadays, it is not common, that systems are based on ontologies and

semantic data processing. Therefore, the first step in integration process is lifting the IoT artifact to

OWL ontology. Papers [GG17], [TSGPSN] and [G16] introduces the methods and tools, that can

useful in this operation and also explain common problems, related with it. For instance, there can

be many, different sources of data structure, e.g. XML, JSON, relational and non-relational

databases, etc. Moreover, there is no universal tool for creating/supporting creating alignment file,

that would contain all basic functionalities, necessary in designing process.

Step 2. Ontologies analysis. If the IoT artifacts (that participate in integration process) contains the

OWL ontologies, the next step is analysis of input and output ontologies. The clue of this operation

is to know the content of owl file (i.e. graph structure: classes, data and object properties,

annotations, etc.) and reading documentation.

Step 3. Finding similarities. Step 2 is necessary to know both input and output ontologies, in

order to observe the similarities between them, i.e. structures that are overlap or related.

Step 4. Creation of mapping diagrams. All structures that should be translated can be depicted

on diagrams.

Step 5. Defining alignments. Basing on diagrams, creation of two IPSM alignments in Alignment

Format (IPSM-AF) files. IPSM-AF is inspired by inspired by the Alignment API [D11] and EDOAL

[AB12]. First alignment describes the translation rules from source IoT artifact to central

ontology. Second alignment describes translation rules from central ontology to output IoT

artifact.

Step 6. Creation of example messages. Preparation of example INTER-IoT (JSON-LD)

messages with content that could be translated. The benchmarks should contain both input and

output content, in order to compare the results of IPSM translation. The auxiliary diagrams,

reflecting the content, would be helpful.

Step 7. Testing and refinement. Using the prepared benchmarks, alignments should be tested.

Moreover, alignments should be refined, after analysing of the tests results.

Step 8. Alignments submission. Ready and tested alignments can be submitted to alignment

repository.

The significant aspect of creating alignment process is to hold on to the established IPSM-AF

standard. It is described in details in [SGPPW] and [G17]. The future work of Task 5.3 assumes

design and development the IPSM Alignment Editor CASE tool that shall provide support in creating

(and editing) alignments, using IPSM-AF format. The main idea is to create an alignment in two

ways: (1) in graphical environment, and (2) in the text mode. The main functionalities will be:

generating the code on the basis of input properties (e.g. header properties, cells, steps, ontologies

sources and targets, etc.), syntax validation, hints, syntax coloring and error checking. The tool will

not support the whole aforementioned process, but only Step 5 - Creating alignment. Nevertheless,

it is the most significant and sensitive stage of whole operation. Moreover, at present, there is no

such existing tool. Therefore, it was decided to create this editor.

