

D6.2
Factory Aceptance Test Plan

Version: 1.0

February 2018

Ref. Ares(2018)725842 - 07/02/2018

D6.2: Factory Acceptance Test Plan

INTER-IoT

INTER-IoT aim is to design, implement and test a framework that will allow
interoperability among different Internet of Things (IoT) platforms.

Most current existing IoT developments are based on “closed-loop” concepts, focusing
on a specific purpose and being isolated from the rest of the world. Integration between
heterogeneous elements is usually done at device or network level, and is just limited to
data gathering. Our belief is that a multi-layered approach integrating different IoT
devices, networks, platforms, services and applications will allow a global continuum of
data, infrastructures and services that will enhance different IoT scenarios. Moreover,
reuse and integration of existing and future IoT systems will be facilitated, creating a de
facto global ecosystem of interoperable IoT platforms.

In the absence of global IoT standards, the INTER-IoT results will allow any company to
design and develop new IoT devices or services, leveraging on the existing ecosystem,
and bring them to market as fast as possible.

INTER-IoT has been financed by the Horizon 2020 initiative of the European
Commission, contract 687283.

D6.2: Factory Acceptance Test Plan

1

INTER-IoT

Factory Aceptance Test Plan

Version: V1.0

Security: Confidential

6, February 2018

The INTER-IoT project has been financed by the Horizon 2020 initiative of the European Commission, contract 687283

 D6.2: Factory Acceptance Test Plan

2

Disclaimer

This document contains material, which is the copyright of certain INTER-IoT consortium parties, and
may not be reproduced or copied without permission.
The information contained in this document is the proprietary confidential information of the INTER-IoT
consortium (including the Commission Services) and may not be disclosed except in accordance with
the consortium agreement.
The commercial use of any information contained in this document may require a license from the
proprietor of that information.
Neither the project consortium as a whole nor a certain party of the consortium warrant that the
information contained in this document is capable of use, nor that use of the information is free from
risk, and accepts no liability for loss or damage suffered by any person using this information.
The information in this document is subject to change without notice.

D6.2: Factory Acceptance Test Plan

3

Executive Summary

This document describes the Factory Acceptance Test (FAT) plans of the INTER-IoT project.

During development units and components are tested and validated by the developers. This
applies for the IoT framework components as well as for the project specific units and
components. When all the components needed for the project are complete, tested and
validated they are integrated into the system as defined for this project.

This system will then undergo this Factory Acceptance Test to test the readiness of the system.
This is done in a LAB setup which approaches the actual field deployment as much as possible.
When the FAT has been successfully executed and has been approved the system can
advance to field integration and undergo the Site Acceptance Test (SAT).

This document describes all aspects of the FAT, form defining the versions of the used
components and deliverable checklist up, test setup, tooling, test description, etc. to be able
to test the readiness of the system under test. The document contain the working documents
of each pilot, formatted to be included in a formal deliverable. The documents handled by each
pilot and each third party wll be handled independently and separatedly.

It has to be considered that the FATs coming from the third parties have different structure as
only a template and some guidance has been provided, in order to get creativity and different
tests from each of the collaboration. This has led to a different size and content of the
documents. Some homogeneization work has been performed, however following the strong
expertise of NEWAYS in FAT processes and trying to provide a more industrial nature to the
work in WP6, we have allowed some heterogeneity in the contributions.

D6.2 includes a section with the summary report of the mid term evaluation of the third parties
of the open call evaluation has been satisfactory and some recommendations are issued

Finally, the structure of this document is divided into the following sections:

 Section A: Introduction
 Section B: Test strategy and approach
 Section I: FAT INTER-LogP
 Section II: FAT INTER-Health
 Section III: OpenCall FAT
 Section IV: Open Call Third Parties Evaluation
 Section V: Conclusions

 D6.2: Factory Acceptance Test Plan

4

List of Authors

Organisation Authors Main organisations’ contributions

Neways Dennis Engbers
Document structure, Executive
summary, Introduction, Test setup and
integration, Chapter templates

Neways Johan Schabbink Edit & reviews of final document

Neways Arnoud Groote-Venema Document review and preparation

VPF
Pablo Giménez,

Joan Meseguer, Jordi Arjona
INTER-LogP pilots and tests

UPV-SABIEN Gema Ibáñez Test descriptions

E3tcity Javier Escalera Casillas
Completed information with production
process of the e3tcity company

XLAB d.o.o.
Flavio Fuart, Marija Gorenc
Novak

Coordinating, editing, drafting.

AUEB
Nikos Fotiou, George C.
Polyzos

Contributed test plans and document
editing.

E3tcity Javier Escalera Casillas
Completed information with production
process of the e3tcity company

UPF Toni Adame

System description, Deliverables and
version overview, Requirements,
scenario and Use cases to test, Test
environment, Test description

UPF Albert Bel Ethics

TU Wien Hong-Linh Truong
INTER-HINC Document structure,
INTER-HINC test description

TU Wien Bunjamin Memishi
INTER-HINC Requirements, Test
Description

U.Twente João Moreira Document content.

Nemergent
Solutions

Iñigo Ruiz, Jose Oscar
Fajardo

Project specific descriptions.

Vrije
Universiteit
Brussel

Kris Steenhaut

An Braeken

Documentation on OM2M framework,
OM2M bridge and Sigfox tracers

AvailabilityPlus Dr. Günther Hoffmann Added details for SecurIoTy

D6.2: Factory Acceptance Test Plan

5

/ SecurIoTy

CNR-ITIA Gianfranco Modoni FAT addition

CNR-ITIA Enrico Caldarola FAT addition

Irideon Bastian Faulhaber Contribution specific content

CEA
Levent Gurgen, Jander
Nascimento

Initial contribution on SensiNact platform
description

INFOLYSiS
Harilaos Koumaras, Vaios
Koumaras, Ch. Sakkas

Contributions related to SOFOS
experiment.

 D6.2: Factory Acceptance Test Plan

6

Change control datasheet

Version Changes Chapters Pages

0.1 Creation and completion All

0.2 Initial contributions All

0.3
Application of the review dated from 12nd
December 2017 by Groote-Venema, Arnaud and
Schabbink, Johan

All

0.4 Complete Test Environment section All

1.0 INTER-IoT Review All

1.1 Final document All

0.1 Creation and completion All

D6.2: Factory Acceptance Test Plan

7

Contents

Executive Summary .. 3

List of Authors ... 4

Change control datasheet ... 6

Contents .. 7

List of Figures .. 9

List of Tables ..13

Acronyms ...16

1 Introduction ...17

2 Test strategy and approach ...18

 Testing strategy ..18

 Entrance criteria ...18

 Integration of the tested and validated system components18

 Validation and Test reports of the system components19

 FAT document...19

 System test setup, Test applications and tooling ...19

 Acceptance Criteria ..19

 Testing types ..19

 Suspension and resumption criteria ...21

 Change Control Board ..21

 Defect Reporting ..21

3 Factory Acceptance Tests ...22

 INTER-LogP FAT ...23

 System description ..23

 Use case oriented pilots ..27

 Deliverables and version overview ..30

 Requirements and scenarios ...31

 Test environment ..31

 Test description ...35

 Test outcome overview ...36

 Integration ethics and security ...37

 INTER-Health FAT ...38

 System description ..38

 Integration of IoT framework ..40

 Deliverables and version overview ..41

 Requirements, scenarios and use cases ...42

 Test environment ..43

 D6.2: Factory Acceptance Test Plan

8

 Test setups, tools, hooks and probes ..43

 Test description ...44

 Test outcome ..49

 Integration ethics and security ...50

 Open Call FAT’s ...51

 Third Party: SensiNact ..51

 Third Party: OM2M ..83

 Third Party: INTER-HARE ...92

 Third Party: Mission Critical operations based on IoT analytics 181

 Third Party: Early Warning System (EWS) .. 194

 Third Party: Senshook ... 225

 Third Party: SOFOS .. 239

 Third Party: ACHILLES ... 248

 Third Party: Inter-HINC .. 260

 Third Party: Semantic Middleware ... 275

 Third Party: SecurIoTy .. 290

 Third Party: E3City .. 313

4 Open Call Third Parties Evaluation .. 323

 Introduction .. 323

 Second Evaluation ... 325

 Large contributions ... 326

 Small contributions ... 330

5 Conclusions ... 354

D6.2: Factory Acceptance Test Plan

9

List of Figures

Figure 1: INTER-LogP high level design. ..23
Figure 2: Port IoT platform and integration ...24
Figure 3: Terminal IoT platform and integration ..25
Figure 4. High-level view of the pilot 1 ..27
Figure 5. Representation of the pilot 3 ..28
Figure 6. High-level view of the pilot 4 ..29
Figure 7. High-level view of the pilot 2 ..30
Figure 8. SOAP UI test setup example ...33
Figure 9. WSO2 OAuth based client authentication test suite ...33
Figure 10. SoapUI test hook example ...35
Figure 11: INTER-Health Hardware overview ...38
Figure 12: INTER-Health Software overview ..39
Figure 13: SensiNact Gateway overall architecture. ...51
Figure 14 SensiNact Southbound and Northbound bridges ..53
Figure 15 SensiNact Gateway internal architecture ..53
Figure 16 SensiNact Service and Resource model ...54
Figure 17 sensiNact’s service oriented approach ...55
Figure 18 SecuredAccess Sequence Diagram ...60
Figure 19 Access right inheritance diagram example ...61
Figure 20: Architecture of a sNa component. ..62
Figure 21: JSON example of a sNa component ..63
Figure 22: Lifecycle of an application. ...64
Figure 23: sensiNact Studio Graphical User Interface. ...65
Figure 24: Gateway configuration. ..66
Figure 25: Gateway connection. ...66
Figure 26: Application creation. ..67
Figure 27: Application deployment..68
Figure 28: Application management resources. ..69
Figure 29: Application start-up. ...70
Figure 30 StudioWeb initial screen ...71
Figure 31 StudioWeb connect ..72
Figure 32 StudioWeb gateway content ...72
Figure 33 StudioWeb: Sensor data ...73
Figure 34 StudioWeb gateway disconnection ...73
Figure 35 Integrating sensiNact and Inter-IoT catalog ..74
Figure 36: Test set-up ..84
Figure 37: INTER-HARE network environment ...92
Figure 38: Example of INTER-HARE transport network. ...93
Figure 39: Ring structure of the LPWAN. ..93
Figure 40: Zolertia RE-Mote. ..95
Figure 41: CC1200 – TX Current Consumption vs TX Power at Different Temperatures99
Figure 42: Path Loss, Shadowing and Multipath versus Distance [1] 100
Figure 43: Range coverage for the TI CC1200 transceiver ... 101
Figure 44: Range coverage for the TI CC2538 transceiver ... 101
Figure 45: MAC sublayer consisting of TDMA slots and CSMA/CA technique inside them . 103
Figure 46: Beaconing system in the INTER-HARE platform ... 104
Figure 47: Primary and secondary beacon periods ... 105

 D6.2: Factory Acceptance Test Plan

10

Figure 48: Example of a staggered wakeup pattern in a 3-ring LPWAN performing uplink
communications. .. 105
Figure 49: Simplified algorithm of CSMA/CA .. 106
Figure 50: X-MAC’s short preamble approach .. 107
Figure 51: Unicast transmission in ContikiMAC .. 107
Figure 52: Broadcast transmission in ContikiMAC .. 108
Figure 53: Diagram of the query-driven data delivery model operation 108
Figure 54: Diagram of the event-driven data delivery model operation 109
Figure 55: Diagram of the continuous data delivery model operation 109
Figure 56: Example of address allocation for a typical INTER-HARE deployment 113
Figure 57: Diagram of the network association mechanism operation 114
Figure 58: Diagram of the STA association operation ... 114
Figure 59: e2e ACK operation .. 116
Figure 60: Network topology of the multi-hop LPWAN from Figure 59 117
Figure 61: State of the network from Figure 60 after the corresponding e2e ACK 117
Figure 62: STA's decision flowchart to stay awake or go to sleep before the start of a new
transmission window .. 118
Figure 63: Mechanism of RTT averaging .. 127
Figure 64: Computation of RTT link between a parent and a child when sending more than one
data segment ... 127
Figure 65: Gateway architecture split into two parts ... 130
Figure 66: Zolertia RE-Mote ... 137
Figure 67: Zolertia Orion Router ... 137
Figure 68: 3D model of UPF facilities ... 139
Figure 69: Office ‘A’ detail and dimensions ... 140
Figure 70: Office ‘B’ detail and dimensions ... 141
Figure 71: Office ‘C’ detail and dimensions ... 141
Figure 72: Integration and Factory test setup overview... 142
Figure 73: TS_01 network topology .. 143
Figure 74: TS_02 network topology .. 144
Figure 75: TS_03 network topology .. 144
Figure 76: TS_04 network topology .. 145
Figure 77: TS_05 network topology .. 145
Figure 78: TS_06 network topology .. 146
Figure 79: TS_07 network topology .. 146
Figure 80: TS_08 network topology .. 147
Figure 81: INTER-HARE monitoring tool based on Java .. 148
Figure 82: A Zolertia RE-Mote device with its led switched on in red 149
Figure 83: Aaronia Spectran HF-6065 spectrum analyzer .. 149
Figure 84: Screenshot of MCS spectrum analyzer .. 150
Figure 85: Zolertia RE-Mote front view ... 172
Figure 86: Zolertia RE-Mote back view ... 172
Figure 87: Zolertia RE-Mote schematic front view .. 174
Figure 88: Zolertia RE-Mote schematic back view .. 174
Figure 89: Zolertia Orion Router schematic view .. 177
Figure 90: BeagleBone Black front view ... 177
Figure 91: BeagleBone Black rear view .. 177
Figure 92: BeagleBone Black Rev. A5C technical specifications .. 178
Figure 93: DHT22 temperature and humidity sensor .. 179
Figure 94: Main features of the DHT22 temperature and humidity sensor 179
Figure 95: Electrical parameters of the DHT22 temperature and humidity sensor 180

D6.2: Factory Acceptance Test Plan

11

Figure 96: Zolertia Re-mote’s analog connector pin-out ... 180
Figure 97: Scope of MiCrOBIoTa activities. .. 181
Figure 98: Overall system description. .. 181
Figure 99. IoT-aided Mission Critical operations scenario. .. 182
Figure 100. High-level perspective of the integration. ... 183
Figure 101. Use case perspective of the integration. .. 184
Figure 102: Typical EWS architecture (top) and the SEMIoTICS architecture (bottom). 196
Figure 103: EWS to detect accident risks and accidents at the port of Valencia. 197
Figure 104: Mosquitto trap system architecture. ... 225
Figure 105: Web Application of Senscape Connector. .. 227
Figure 106: Virtual gateway bundles architecture. .. 228
Figure 107: Diagram of the Web Interface Front-end testing. ... 232
Figure 108: The proposed SDN/NFV end-to-end IoT Gateway overview 239
Figure 109: SOFOS Integration and Factory test setup overview. 240
Figure 110: SOFOS Integration and Factory test setup logical topology. 241
Figure 111: Collaboration approach of the proposed SDN/NFV end-to-end IoT infrastructure
within the INTER-IoT architecture. .. 241
Figure 112: Detailed approach of SDN applicability in SOFOS experiment on top of the INTER-
IoT testbed. .. 242
Figure 113: FAT test setup of SOFOS solution. .. 244
Figure 114: The concept of the ACHILLES project. .. 248
Figure 115: Testing System. ... 249
Figure 116: Message sequence diagram of the core functions of the testing system. 250
Figure 117: INTER-HINC Architecture overview. .. 260
Figure 118: Overview of components in INTER-HINC. ... 262
Figure 119: An example of infrastructure configuration for INTER-HINC as the system under
test (SUT) ... 263
Figure 120: Overall architecture and its interaction with INTER.IoT. 275
Figure 121: Subscription and notification workflow. .. 276
Figure 122: Workflow of the cancellation of the subscription. ... 277
Figure 123. Integration of the Semantic Middleware with the IoT framework 278
Figure 124. Workflow of the scenario ... 282
Figure 125: SecurIoTy overview. .. 293
Figure 126: SecurIoTy architecture with the DocRAID crypto proxy 293
Figure 127: test architecture. .. 296
Figure 128: Bug reporting process ... 297
Figure 129: System e3tcity description. .. 313
Figure 130: Diagram of solution e3t. ... 316
Figure 131: INTER-IoT areas covered by the Small Contribution third parties. 324
Figure 132: INTER-IoT areas covered by the Large Contribution third parties. 325
Figure 133: OM2M bridge integration in INTER-IoT architecture. 327
Figure 134. sensiNact bridge integration in INTER-IoT architecture. 329
Figure 135: INTER-HINC architecture. ... 331
Figure 136: SOFOS proposed SDN/NFV end-to-end IoT Gateway. 333
Figure 137: D2D interoperability in INTER-HARE. .. 335
Figure 138: MiCrOBIoTa integration in INTER-IoT architecture. ... 337
Figure 139: SENSHOOK Block Diagram. ... 340
Figure 140: SENSHOOK use case. .. 340
Figure 141: ACHILLES concept architecture .. 343
Figure 142: ACHILLES integration in INTER-IoT Gateway ... 343

 D6.2: Factory Acceptance Test Plan

12

Figure 143: Conceptual architecture of semantic brokering for context-aware decision support
 ... 346
Figure 144: Integration in INTER-IoT .. 346
Figure 145: Integration in INTER-IoT .. 349
Figure 146: SecurIoTy Integration in INTER-IoT ... 351
Figure 147: E3TCITY D2D interoperability.. 352
Figure 148: E3TCITY MW2MW interoperability .. 353

D6.2: Factory Acceptance Test Plan

13

List of Tables

Table 1: FAT test execution sign-off ...20
Table 2: Deliverable checklist. ..30
Table 3: Component version overview. ...31
Table 4: Requirements vs test mapping. ..31
Table 5: Scenario vs test mapping. ..31
Table 6: Test outcome overview ...37
Table 7: Local Server software components ...40
Table 8: Android Phones applications ..40
Table 9: Healthcare Professional browsers ..40
Table 10: Integration components. ...41
Table 11: Deliverable checklist ...41
Table 12: Component version overview ..41
Table 13: Requirements vs test mapping ...42
Table 14: Scenario vs test mapping..43
Table 15: Test outcome overview ...50
Table 16: Resource types. ..55
Table 17: Resource's access methods. ..56
Table 18: Types used in the JSON component. ...63
Table 19: Functions supported by the plugins of the AppManager.64
Table 20: SensiNact Domain specific language basic syntax ...68
Table 21: Application management resources ..69
Table 22: Deliverable checklist ...75
Table 23: Component version overview ..75
Table 24: Requirements vs test mapping ...76
Table 25: Test outcome overview ...82
Table 26: Test for each OM2M component. ..85
Table 27: Deliverable checklist ...85
Table 28: Component version overview ..85
Table 29: Requirements vs test mapping ...86
Table 30: Scenario vs test mapping..86
Table 31: Test outcome overview ...91
Table 32: Key characteristics of Contiki, TinyOS, FreeRTOS, and RIOT95
Table 33: Latest releases of the considered Operating Systems ..96
Table 34: Current consumption value of the transmitting operational mode depending on the
selected output power ..98
Table 35: Current consumption value of the transmitting operational mode depending on the
selected output power ..99
Table 36: Range coverage computation for the TI CC1200 transceiver 102
Table 37: Range coverage computation for the TI CC2538 transceiver 103
Table 38: Link layers used in the INTER-HARE platform .. 103
Table 39: Main features of the INTER-HARE addressing system 112
Table 40: Available space for the application layer ... 119
Table 41: Packet headers encoding in INTER-HARE ... 120
Table 42: Field content of management frames .. 120
Table 43: Type descriptions of management frames .. 121
Table 44: Field content of beacons ... 122

 D6.2: Factory Acceptance Test Plan

14

Table 45: Content of the ‘association_info’ field .. 122
Table 46: Field content of a data packet ... 123
Table 47: Field content of a statistics packet .. 124
Table 48: Network performance metrics generated by the INTER-HARE gateway 125
Table 49: Field content of a link ACK packet .. 128
Table 50: Field content of an e2e ACK packet .. 128
Table 51: Deliverable checklist ... 131
Table 52: Component version overview .. 131
Table 53: Requirements vs test mapping ... 134
Table 54: Scenario vs test mapping.. 135
Table 55: List of INTER-HARE testbed components .. 136
Table 56: Comparison table among Arduino UNO, Raspberry Pi and BeagleBone 137
Table 57: Estimated pilot equipment... 139
Table 58: Summary of offices’ dimensions ... 140
Table 59: Test setups summary ... 143
Table 60: Test tools summary .. 147
Table 61: Test hooks summary .. 151
Table 62: Definition of error configurations ... 152
Table 63: Test probes summary ... 152
Table 64: Summary of FAT tests and definition .. 154
Table 65: Diagram compiling the different test setups .. 156
Table 66: List of requirements to be analyzed in each test ... 157
Table 67: Test outcome overview ... 169
Table 68: Zolertia RE-Mote operational values ... 173
Table 69: Deliverable checklist ... 185
Table 70: Component version overview .. 185
Table 71: Requirements vs test mapping ... 186
Table 72: Scenario vs test mapping.. 186
Table 73. Data sources. ... 198
Table 74: Deliverable checklist ... 199
Table 75: Requirements vs test mapping ... 200
Table 76: Scenario vs test mapping.. 201
Table 77: Test outcome overview ... 223
Table 78: Deliverable checklist ... 229
Table 79: Component version overview .. 229
Table 80: Requirements vs test mapping ... 230
Table 81: Scenario vs test mapping.. 230
Table 82: Test outcome overview ... 237
Table 83: Deliverable checklist ... 242
Table 84: Component version overview .. 242
Table 85: Requirements vs test mapping ... 243
Table 86: Scenario vs test mapping.. 243
Table 87: Test outcome overview ... 246
Table 88: List of GW components that will be used during the Tests 250
Table 89: Deliverable checklist ... 251
Table 90: Component version overview. ... 251
Table 91: Requirements vs test mapping. .. 252
Table 92: Scenario vs. test mapping. .. 252
Table 93: Test outcome overview. .. 259
Table 94: Requirements vs test mapping ... 261
Table 95: Scenario vs test mapping.. 261

D6.2: Factory Acceptance Test Plan

15

Table 96. Table containing the components and interface overview of the used IoT
components and the tests that will test these IoT components ... 278
Table 97: Deliverable checklist ... 279
Table 98: Component version overview .. 279
Table 99: Requirements vs test mapping ... 280
Table 100: Scenario vs test mapping .. 280
Table 101: Test outcome overview ... 288
Table 102: Test categories. .. 291
Table 103: Tested components. ... 291
Table 104: Security measures. ... 292
Table 105: Deliverable checklist ... 294
Table 106: Component version overview .. 294
Table 107: Requirements vs test mapping.. 295
Table 108: Requirements vs test mapping.. 298
Table 109: Alpha version quality criteria ... 298
Table 110: Beta version quality criteria ... 299
Table 111: Release version quality criteria ... 299
Table 112: Criticality description ... 300
Table 113: Priority description .. 300
Table 114: Test outcome overview ... 311
Table 115: Description of the components. ... 314
Table 116: Deliverable checklist ... 314
Table 117: Component version overview .. 315
Table 118: Requirements vs test mapping.. 315
Table 119: Test outcome overview ... 322
Table 120: INTER-OM2M Evaluation. .. 328
Table 121: sensiNact platform Evaluation... 330
Table 122: INTER-HINC Evaluation. .. 332
Table 123: SOFOS Evaluation. .. 334
Table 124: INTER-HARE Evaluation. ... 336
Table 125:MiCrOBIoTA Evaluation. .. 339
Table 126: SENSHOOK Evaluation. ... 341
Table 127: ACHILLES Evaluation. .. 344
Table 128: INTER-EWS evaluation. ... 347
Table 129: Semantic Middleware Evaluation. ... 349
Table 130: SecurIoTy Evaluation. ... 352
Table 131: E3TCity Evaluation. .. 353

 D6.2: Factory Acceptance Test Plan

16

Acronyms

AIOTI Alliance for Internet of Things Innovation

API Application Programming Interface

CCB Change Control Board

EC European Commission

FAT Factory Acceptance Test

ICT Information and Communication Technology

IEEE Institute of Electrical and Electronics Engineers

IPR Intellectual property rights

IoT Internet of Things

IoT-EPI IoT European Platform Initiative

REST Representational State Transfer

SAT Site Acceptance Test

EWS Emergency Warning System

D6.2: Factory Acceptance Test Plan

17

1 Introduction
INTER-IoT project is aiming at the design, implementation and experimentation of an open
cross-layer framework, an associated methodology and tools to enable voluntary
interoperability among heterogeneous Internet of Things (IoT) platforms. The proposal will
allow effective and efficient development of adaptive, smart IoT applications and services, atop
different heterogeneous IoT platforms, spanning single and/or multiple application domains.

Most current existing sensor networks and IoT device deployments work as independent
entities of homogenous elements that serve a specific purpose, and are isolated from “the rest
of the world”. In a few cases where heterogeneous elements are integrated, this is done either
at device or network level, and focused mostly on unidirectional gathering of information. A
multi-layered approach to integrating heterogeneous IoT devices, networks, platforms,
services and applications will allow heterogeneous elements to cooperate seamlessly to share
data, infrastructures and services as in a homogenous scenario.

This document describes the Factory Acceptance Test plan for the INTER-IoT projects which
is part of the experimentation step.

One of the main goals of INTER-IoT is to overcome fragmentation caused by typical IoT
platforms being oriented to a specific solution, stakeholder and application domain. The cross-
domain use case will show how verticality is avoided in INTER-IoT. The rationale behind this
use case is that future IoT applications will not aim at a single application domain but multiple
domains in which devices, networks, platforms, services or generated data will interact.

The scenarios defined in the cross application domain use case will integrate platforms from
the two application domains in consideration, and also from different application domains (e.g.
smart grid or smart cities). This use case will prove the extendibility of the project outcomes,
achieving interoperability between IoT platforms from different application domains. Several
scenarios have been foreseen in which IoT platforms from different application domains may
be required to interoperate, e.g. logistics and health monitoring of transport workers for labour
risk prevention, however new cross domain scenarios will be defined during the execution of
the project and after the resolution of the Open Call, including e.g. road IoT ecosystems; supply
chains or emergency response services IoT ecosystems used in fire brigades, ambulances or
security forces.

According to the Grant Agreement the field trials will be successful once the following
conditions are met: “Trials of INTER-IoT concept, with involvement of 400 smart objects in the
logistics use case and 200 subjects (with wearable devices) in the m-Health use case, and
~500 IoT units in the cross domain use case. Extensive testing of results of application of the
INTER-IoT framework to instantiate multi-IoT-platform systems in real-world scenarios,
validated by the corresponding stakeholders.”

 D6.2: Factory Acceptance Test Plan

18

2 Test strategy and approach
This Factory Acceptance Test is performed to test and prove the system is operational and
functional and complies with the defined requirements. The FAT takes place in a lab
environment and tests the solution before it is deployed in the field. The FAT tests if the solution
meets the specification, and if it is fully functional. It includes a check of completeness, verifies
requirements, and proves functionality. This can be either by simulation or a conventional
functional test. The FAT Document describes the Factory Acceptance Testing plan and
describes or points to previously defined test plans, use cases and test scenarios used during
testing. The test outcomes will be placed in the FAT document itself.

 Testing strategy

This document will describe the system, test setup, tooling, test strategy, test activities and
test results for the lab setup. During these tests the system readiness for field deployment will
be tested and proven. For this test, the following stakeholders should be present:

 Project managers (From manufacturer and customer)
 Key engineering personal (System Architect, Lead Engineer, Integrator)
 Operators
 Maintenance personal

During FAT testing the readiness of the system is shown to the customer and the customer
can use the system for the first time in an actual system setup to get a better feeling for the
new system. The operators and maintenance personal can get a view of how the system is
operated and maintained. During the FAT the customer will work with the system for the first
time which will most likely lead to some minor changes to the system to fix operation
inconveniences before the system is deployed in the field. During testing the result should be
written in the FAT document which should be signed off by all the attendees at the end of the
test. A FAT will be conducted 2 to 4 weeks before actual deployment in the field.

 Entrance criteria

To start a FAT for this project the following deliverables should be present/ready:

 Integration of the tested and validated system component into a to test system
 Validation and Test reports of the system components
 FAT document
 System test setup (as much actual hardware as possible)
 Test applications and tooling (e.g. for performance testing)

 Integration of the tested and validated system components

The system components that make up this system should all be tested and validated. The units
that make up the components should be unit tested and validated on interface level, normal
use and boundary checking, error handling, performance, etc. After integration into
components the components should be integration tested the same way on interface level.

This applies for the pilot specific components as well as for the used IoT components. For each
component a test/validation report for the used version should be available stating that the
component has been tested and validated and passed this test.

D6.2: Factory Acceptance Test Plan

19

 Validation and Test reports of the system components

The test and validation reports of the system components used in this project should provide
an overview of the tests done on the used system components and the outcome of these tests.
Each component should have passed the tests and validation before used in this FAT. The
version in these reports shall match the version used in the system release to be FAT tested.

 FAT document

A printed version of this document which should be checked before start of the test. Any issue
found should be manually corrected. The outcome and remarks of each test as well as the
final outcome should be written in the copy of this document during testing and be signed at
the end of the FAT. The signed copy of this document will serve as an acceptance on the
system to start field integration.

 System test setup, Test applications and tooling

The test setup as described in this document should be present and checked for completeness.
See 0 Test environment for the system setup.

 Acceptance Criteria

The FAT acceptance criteria is a signed copy of this FAT document as this contains all the
needed deliverables and tests to complete the factory acceptance testing. After a successful
FAT the system can be integrated in the field and proceed to SAT testing.

 Testing types

The FAT document will define the testing types per project in detail. The following list provides
an example of testing types one could think of:

 manual data load
 interface using scripted data
 interface bounds checks
 converted data load
 converted data inspection
 backup and recovery
 database auditing
 data archival
 security
 locking
 batch response time
 online response time
 network stress
 stress testing
 security
 live data
 live environment
 error handling

 D6.2: Factory Acceptance Test Plan

20

The following table shall contain the test attendance list. Each individual in this list will sign of
on his/her presence, the deliverables and the outcome of the tests.

Table 1: FAT test execution sign-off

Test execution date

Test execution time

System version V1.0

Name Company Function title Signature

D6.2: Factory Acceptance Test Plan

21

 Suspension and resumption criteria

When one of the entrance criteria is not met at the start of the test the complete or part of the
tests will be suspended until it/they are met.

When during testing one of the entrance criteria’s is found to be unsatisfactory parts of the
tests or the complete test can be suspended until it is met. In most case though the test will be
executed completely to prove the rest of the system.

When a test is suspended or after execution is not accepted, the found issues shall be solved
and a new FAT test shall be performed. The new FAT will then again run all tests to confirm
the issues are solved and no new issues have been introduced.

 Change Control Board

A Change Control Board (CCB) will be defined for each project.

The change control board will consist of the following persons:

 Carlos Palau (UPV)
 Eneko Olivares (UPV)
 Flavio Fuart (XLAB)
 Johan Schabbink (NEWAYS)
 Dennis Engbers (NEWAYS)
 Pablo Giménez (VPF)
 Gema Ibáñez (SABIEN)

 Defect Reporting

Please see D6.1 System Integration Plan for defect reporting.

 D6.2: Factory Acceptance Test Plan

22

3 Factory Acceptance Tests
This section describes the Factory Acceptance Test (FAT) plan of the two large use cases of
INTER-IoT, namely INTER-LogP and INTER-Health and the the twelve third parties involved
in the INTER-DOMAIN use case, as separate pilots. During development units and
components are tested and validated by the developers. This applies for the IoT framework
components as well as for the project specific units and components. When all the components
needed for the project are complete, tested and validated they are integrated into the system
as defined for this project.

This system will then undergo this Factory Acceptance Test to test the readiness of the system.
This is done in a LAB setup which approaches the actual field deployment as much as possible.
When the FAT has been successfully executed and has been approved the system can
advance to field integration and undergo the Site Acceptance Test (SAT).

This section describes all aspects of the FAT, form defining the versions of the used
components and deliverable checklist up, test setup, tooling, test description, etc. to be able
to test the readiness of the system under test.

For each pilot the structure of the FAT document is divided into the following sections:

 Section 1: System description
 Section 2: Use case oriented pilots
 Section 3: Deliverables and version overview
 Section 4: Requirements, scenario and Use cases to test
 Section 5: Test environment
 Section 6: Test description
 Section 7: Test outcome overview
 Section 8: Ethics

The information provided in this document will be handled separately for each of the pilots, but
for simplicity all the FAT information is compiled in a single document.

D6.2: Factory Acceptance Test Plan

23

 INTER-LogP FAT

 System description

In this chapter are described the systems of the main actors involved in INTER-LogP.

3.1.1.1 Port systems description

In recent years, there is a need to share real-time data between different companies in order
to offer new services to their clients. In the port environment, there are many different
companies, each with its own independent system. Nowadays they only exchange some
logistic documentation and not sensor data. This new exchange of data should be done in a
secure and robust way

The goal of INTER-LogP pilot is to demonstrate the need for a system that allows the exchange
of data and messages among the different actors of the port community. In this case, as can
be seen in Figure 1, there are three main actors: the port, the terminal and the haulier company.
INTER-IoT has to provide interoperability between the IoT platforms of the port and the
terminal, and give access to other devices from other companies, like trucks.

Figure 1: INTER-LogP high level design.

Both the port and the terminal have a large number of sensors and devices that produce large
amounts of data, which can be interesting for other entities. Furthermore, they need data from
other companies to provide a better service to their clients.

3.1.1.2 Port authority

The port authority has several sensors distributed throughout the port that provides data for
management and operation. Most of that data is confidential, but other can be shared, adding
value to other companies.

The architecture for providing interoperability from the existing infrastructure is the one that
can be seen in Figure 1. Currently, the port authority has a common database where all the

 D6.2: Factory Acceptance Test Plan

24

data is stored coming from different systems (in red). It uses WSO2 to provide an IoT
architecture in two ways: data in real time through the Message broker and historic data
through the Data services server and Enterprise service bus.

Because the port has its own platform, the integration with the INTER-IoT is done through the
INTER-MW. It needs a bridge in the middleware layer in order to interoperate with other
platforms. Another integration could be done if you need to deploy new devices or sensor in a
place without wired connection. In that case, the INTER-IoT gateway can be used to connect
with the IoT platform all the sensors.

Figure 2: Port IoT platform and integration

WSO2 is an open source service-oriented architecture (SOA) middleware. It is designed with
independent components, so it can be adapted for a lean targeted solution to enterprise
applications. WSO2 products use Java technology and are built on top of WSO2 Carbon, a
SOA middleware platform. Carbon makes use of Apache Axis2 and encapsulates SOA
functionality such as data services, business process management, ESB
routing/transformation, rules, security, throttling, caching, logging and monitoring.

Not all components are used as stand-alone implementations. Many of them are used to
supplement the capabilities or add functionality to an implementation of the Enterprise Service
Bus. The main WSO2 components deployed in the IoT platform are:

Integration

 Enterprise Service Bus: Allows developers to connect and manage systems and software
in accordance with SOA Governance principles.

 Data Services Server: Provides a Web service interface for data stores.

 Message Broker: Translates, validates and routes messages between systems.

API Management

 API Manager: API management platform for creating, deploying and managing APIs to
expose data and functionality of backend systems.

Identity Management and Security

D6.2: Factory Acceptance Test Plan

25

 Identity Server: Connects and manages multiple identities across applications, APIs, the
cloud, mobile, and Internet of Things devices.

Management and Governance

 App Manager: Facilitates the process of creating, deploying and managing applications.

Analytics

 Data Analytics Server: Real-time, batch, interactive and predictive analytics using
enterprise data.

 Complex Event Processor: Real-time event processing and detection. Identify patterns
from multiple data sources, analyse their impacts. Uses WSO2 Siddhi and Apache Storm.

3.1.1.3 Container terminal

The correct management of resources in a container terminal implies the monitorization of all
the machinery, to be able to manage the resources properly. For that reason, in the Noatum
terminal each of the machines (vehicles, cranes, etc.) provide massive data about up to 80
sensors per machine and second. There are around 300 monitored devices among machines
and dynamic lighting on lamp posts.

As can be seen in Figure 3, data is sent from the machinery to the IoT Platform in two ways.
Legacy sensors are collected once per second and inserted in the IoT Platform. New IoT
devices are configured to send directly through MQTT or REST interfaces real-time data. In
addition, the data will be stored in a non-relational database, providing faster access to
information.

As in the case of the port, the IoT platform of the terminal will be integrated with INTER-IoT
through the middleware layer and the API layer.

Figure 3: Terminal IoT platform and integration

The container terminal has its own server with its IoT platform. They are mainly interested in
knowing the estimated time of arrival of the truck to the terminal to be able to manage its

 D6.2: Factory Acceptance Test Plan

26

resources. Furthermore, the terminal gives access to other companies to some of their own
data, such as the entry and exit of trucks by their access.

3.1.1.4 Haulier Company

The haulier company has a large fleet of trucks, which access the port daily. Each of them has
a mobile app (MyDriving) installed in a mobile or a tablet that acts as a bridge between the
vehicle and the IoT platform of the company. All the devices in the truck and the driver send
the data to the IoT platform through the mobile app via Bluetooth.

The haulier company has an Azure IoT platform in the cloud, where their trucks send all the
data from the vehicle. These data will be accessible to other companies as long as they are
authorized and certain conditions are met, such as being inside the port area.

D6.2: Factory Acceptance Test Plan

27

 Use case oriented pilots

In this chapter are described the main pilots where all the functionalities of the developed
components are shown.

3.1.2.1 INTER-LogP pilots

We have defined three pilots where we demonstrate some of the products developed in during
the project. These pilots are:

 Pilot IoT access control, traffic and operational assistance

 Pilot Dynamic lighting

 Pilot Wind gusts detection

Pilot IoT access control, traffic and operational assistance

The main objective in the defined pilot is a service to control access, monitor traffic and assist
the operations at the port. Several systems will be able to identify trucks and drivers using
different devices. This information can be shared under certain predefined rules through
interoperability between the platforms involved. This information can be used to monitor the
truck inside the port by the Port Authority platform (security and safety purposes) and to
manage more efficiently resources in the terminal. This also will allow avoid queues in the
access gates to the port and the terminal.

Figure 4. High-level view of the pilot 1

The main benefits we can get from this scenario is to obtain data regarding queues, congestion
and temporary distribution of traffic, to manage efficiently the resources. Other important data
is the position of the trucks while they are inside the port facilities, for safety and security. All
these data can be shared between the port authority and the port terminals to improve the
operation.

 D6.2: Factory Acceptance Test Plan

28

Pilot Dynamic lighting

The goal of this pilot is expand the smart illumination (Dynamic Illumination) in the yard of
Noatum for the rail yard. In this case, the lighting posts are of the port authority of Valencia but
the machinery is from Noatum, so it is needed an exchange of data between both companies
to illuminate it properly during the operation.

As can be seen in the Figure 5, currently the rail yard (green area) is dimly lit with the container
yard lighting posts. The objective is replace the road lighting posts (blue area) with a dynamic
lighting system, which receive data from the terminal to change the degree of illumination.

The dynamic lighting system is based in the GPS position of the Noatum port equipment and
long range PIR Sensors (presence sensors).

Figure 5. Representation of the pilot 3

The main benefits we can get from this scenario is an energy saving due to the adaptation of
lighting to traffic and operation, and an improvement of the safety and security in the railway
infrastructure due a better illumination.

This pilot will be deployed with two different approaches. Firstly, a pilot will be deployed only
with the participation of the INTER-IoT partners. Then, there will be a second version in the
INTER-DOMAIN pilots, which integrates the technology of the company involved in the Open
call, called E3TCity.

Pilot Wind gusts detection

Currently, both the port authority and each of the container terminals in the port have
anemometers to detect wind gusts. In situations where the wind speed exceeds a threshold,
operations must be stopped for safety reasons. However, each terminal can only measure
information in its presmises, so that there is not data of surrounding areas, making impossible
to predict when the stronger wind gusts can be expected. This makes the first detection of
strong wind a risky situation for the operators, since the hazard is only detected when there is

D6.2: Factory Acceptance Test Plan

29

already active. If they were able to receive this information before, they would stop the
operation in a safer way.

Figure 6. High-level view of the pilot 4

The main benefit we can get from this scenario is improve operational safety at terminals,
enabling an early awareness system that could end up in less accidents due to environmental
phenomena.

3.1.2.2 INTER-Domain pilots

In the open call some companies started to work in the INTER-IoT project as third parties in
order to integrate and test the different INTER-IoT products. As a result of this work, several
scenarios have been proposed where they will participate. This integration, together with the
results, will be analyzed during this document and in the future versions of this one.

Pilot Health accident at the port area

Starting from the access control pilot, the trucks will be monitored once they are in the port
facilities. The Emergency Warning System (EWS) will be monitoring the data coming from the
truck and the driver. In case, it detect an accident or a medical problem, it will publish a
notification to the port authority in a standard format (EDXL). Once the emergence control
centre receive the notification, it can start communication with the driver with a push to talk
protocol in the driver’s mobile.

 D6.2: Factory Acceptance Test Plan

30

Figure 7. High-level view of the pilot 2

The main benefits we can get from this scenario are: apply in the port communications a
standard format in accident reporting like EDXL, real time identification of the location of the
accident, direct communication with the closest control centre when an accident occurs and
monitoring driver's health if it is necessary.

In the development of this pilot are participating two of the companies involved in the Open
call: University of Twente and Nemergent Solutions.

 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents
1 D6.2 Filled in FAT document
Software
4 WSO2 IoT platform
5 Seams IoT platform
6 Azure platform
7 Spotlights and controllers
Tools
8 Wireshark
9 SoapUI

Table 2: Deliverable checklist.

The following table shows the software components and version of which the system release
version consists of.

D6.2: Factory Acceptance Test Plan

31

ID Description Version Check

1 Physical gateway
2 Middleware

Table 3: Component version overview.

 Requirements and scenarios

In this section, there are lists of requirements and scenarios covered in INTER-LogP.

3.1.4.1 Requirements

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

Application

166 Detection of passive physical entities to start communication with
other platforms TS_02

195 Provide the creation and monitoring of geofences TS_01, TT_01
TT_02

246 Identification of an object through multiple techniques TS_02

251 Ability of IoT platforms to coordinate with emergency systems. TT_02

Table 4: Requirements vs test mapping.

3.1.4.2 Scenarios

The following table provides an overview of the relation between the scenarios and the test(s)
that validate their implementation.

ID Description Covered by

6 Dynamic lighting in the port T1.2
7 SCADA port sensor system integration with IoT platforms T1.1, T1.2
8 SEAMS integration with IoT platforms T1.1, T1.2
30 IoT access control, traffic and operational assistance T1.1

Table 5: Scenario vs test mapping.

 Test environment

Introduction

To test the functionality of the INTER-LogP in combination with the IoT framework a
representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

 D6.2: Factory Acceptance Test Plan

32

This paragraph describes the test environment and the complete system setup used during
this FAT. Each of the IoT platforms has been tested independently and from now on, tests of
interoperability among them will be made.

3.1.5.1 Test setups, tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this document
defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers, packet
sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the needed
functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Publication of data from a legacy data source

One of the tests we designed consists in having a legacy database as an event generator and
allowing different users to subscribe to those events. To do so, we designed a data injector,
injected data in the database, detected these changes, and published them classified per
topics in real time to a shared mean where a set of end users can subscribe to these topics
and receive the information. In this test, we used MicroSoft (MS) SQL Server as legacy
database, MS SQL Server Service Broker (MSSB) to detect the changes in the database,
MSSB External activator to behave as a MQTT publisher, and Mosquitto as a MQTT broker
and its client as subcriber.

TS_02 WSO2 Platform

In the development phase of INTER-LogP pilots and related testbeds we tried to follow the
TDD (test-driven development) process. This is a well-known practice that relies on the delivery
of tested and ready-to-use logic in form of chunks. TDD best practices mainly relies on
following the TDD’s life-cycle: write the tests, run tests, implement logic, runt tests, refactor,
run tests, and so on. In fact, our implementation mainly focuses on the logic necessary for the
integration of several port systems as well as development of several web-services to access
data related to access control, traffic, meteorological information, etc. Therefore, we chose
SoapUI as a suitable tool that allowed us to apply as much as we could the TDD life-cycle. In
our test setup we can distinguish three types of tests: unit tests, integration tests and functional
tests. First one focuses on testing the functionality of a small piece of logic regardless its
relation with other logic. Second one proves that some implemented logic chunk or set of
chunks can inter-work with existing logic of hosting platform (e.g. integration with web-services
or client applications). Finally, the third one, checks the end-to-end functionality from the user
perspective. Usually, unit tests are merely single requests in some messaging format (REST,
SOAP, Mqtt, etc.). Integration tests are very similar to unit tests but their requests hit a part of
the logic that depends on some interaction with a third application, database, etc. Functional
tests may be composed of several test steps and they are grouped in test suites. Test suites
may be composed of requests, test scripts to check validate some response or even mock
services. Mock services are used to emulate some web service or functionality. It just runs a

D6.2: Factory Acceptance Test Plan

33

kind of simple servlet capable to send responses when a request hits the mock service. An
example of functional test could be a test suit with necessary test requests emulating a client
application authentication process. An example of test-setup in SOAP UI is shown in Figure 8

Figure 8. SOAP UI test setup example

The following picture shows an example of a test project that includes a test suite aiming to
test the client authorization/authentication process of an application using the Oauth2 protocol:

Figure 9. WSO2 OAuth based client authentication test suite

In above figure, the Client Auth Test Suite has only one test case: Get&Validate Token. This
test case includes three test steps:

 Get Client Key & Secret: this is a REST request that invokes a WSO2 Identity Server
endpoint responsible of providing a client Identifier and secret key.

 Property Transfer: above identifier and key is transferred to the Get Access Token
request using this test step. For that jsonPath notation is used for the navigation across
the received response.

 D6.2: Factory Acceptance Test Plan

34

Get Access Token: this is again a REST request that is finally used to get a valid token that
will be used for accessing some API secured by Oauth2.

TT_01 MS SQL Server

Microsoft SQL database environment. We used it as example of legacy database. Test setup
has been already described in previous sections. The main purpose of using this tool is to
prove the requirement 188.

TT_02 MS Service Broker and Service Broker External activator

Two of the tools provided by MicroSoft SQL Server. The service broker allows capturing
different events happening in the database (insertions, deletions, alterations, etc.) and perform
actions on or with those. The external activator allows to execute a particular application
external to MS SQL Server with the data that triggered the event.

TT_03 Mosquitto MQTT Broker

Mosquitto is a free lightweight Message Broker used. Mosquitto offers not only the broker itself,
but also a publisher and a subscriber. It can be used as both the endpoints and the
communication channel in our tests.

TT_04 SoapUI

This is a very advanced tool for test automation of applications and web-services deployed in
SOA based configurations. This is a perfect tool to perform unit, functional and integration
tests. One can hit APIs following several messaging protocols: REST, SOAP, Mqtt, JDBC, etc.
Although this a commercial tool it also provides a functionally limited free version. In this
project, the free version is used.

It allows the emulation of real user stories with web-services, APIs, database calls (via JDBC),
etc. User stories are emulated by test suites. A test suite may include the following main test
steps:

 Test Request: this is an http request template where different protocols can be used
like SOAP, REST or JDBC.

 Property Transfer: a set of properties are taken from some response and placed into
some fields in the following request.

 Groovy Script: a script may be implemented in order to make more complex processing
of requests and/or responses.

 Delay: this is used to add some delay within the test suite execution.

TH_01 Restclient

Tool to debug restful web services. It allows sending customized messages using any of the
methods in RFC2616 (HTTP/1.1) and RFC2518 (WebDAV) as well as receiving the associated
responses. Messages can be built as HTTP requests with different combinations of headers,
customized body, and addressed to a given URI. RestClient is integrated in Firefox as a free
add-on.

We use RestClient to test different Rest web services and tools. With RestClient we can send
a particular input to the tool/service under test and verify, afterwards, that the result of
performing a task matches what was expected. Similarly, we also use it to test the target
behaviour against incorrect or incomplete messages.

TH_02 Self-designed data injector

D6.2: Factory Acceptance Test Plan

35

We designed a data injector able to read data in a customizable way from a legacy data source
and inject it into a targeted legacy data source. This injection is customizable and can be
performed replicating the speed at which data was injected in the original data source or
altering this speed. This injector is written in Java.

TH_03 SOAP UI

Regarding to SOAP UI, we could consider as test hooks all the configured SOAP and REST
requests used to invoke implemented logic service. In our test scenarios, requests enter the
WSO2 platform throughout API, proxy service or data service endpoints. The following picture
shows an example of a SOAP UI hook (HTTP/REST request):

Figure 10. SoapUI test hook example

TP_01 TCPdump

Probably the most popular packet analyzer. It is a free tool available in most UNIX based
systems (Linux, OS, etc.) as well as Windows (WinDump). TCPDump allows to capture or
visualize the data flowing inwards or outwards a network interface with different levels of detail.
For instance, data packets can be displayed at different levels (network, transport, etc.) or
filtered by different parameters like MAC, IP, port, or protocol, among other.

We use TCPDump as a probe. In particular, we can use it to revise whether the content of the
messages that we deliver to a platform, or that the platform outputs, are what were expected
to be. A classical example of how TCPDump can be used is validating the messages received
at the platform, finding whether a problem in the test is derived from an erroneous input or an
erroneous processing of a correct input. The same procedure can be applied on its output.

 Test description

3.1.6.1 IoT access control, traffic and operational assistance

Truck triggers information

ID T1.1

 D6.2: Factory Acceptance Test Plan

36

Test Verify the integration of all the components in the IoT access control, traffic and
operational assistance pilot. The main objective in the defined pilot is a service
to control access, monitor traffic and assist the operations at the port.

Setup Deployment, installation and configuration of all the components.

Start A truck is arriving to the port.

Req. [27], [28], [166], [194], [195], [198], [245], [246], [268]

Input Truck data

Output Exchange of access data between the port and the terminal

Logs INTER-LogP1.1.log

Outcome Pass / Fail

Pilot Dynamic lighting

ID T1.2

Test Verify the integration of all the components in the Idynamic lighting pilot. The
goal of this pilot is develop a smart illumination (Dynamic Illumination) in the
yard of Noatum for the rail yard.

Setup Deployment, installation and configuration of all the components.

Start A truck or machinery is accessing to the rail yard area in the terminal.

Req. [27], [28], [168], [198], [245]

Input Data from PIR sensors

Output The light level in the rail yard terminal is adjusted to the operation.

Logs INTER-LogP1.2.log

Outcome Pass / Fail

 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Test Description Outcome

TS_01 Publication of data from a
legacy data source

Pass / Fail

TS_02 WSO2 Platform Pass / Fail

TT_01 MS SQL Server Pass / Fail

TT_02 MS Service Broker and
Service Broker External
activator

Pass / Fail

TT_03 Mosquitto MQTT Broker Pass / Fail

TT_04 SoapUI Pass / Fail

D6.2: Factory Acceptance Test Plan

37

TH_01 Restclient Pass / Fail

TH_02 Self-designed data injector Pass / Fail

TH_03 SOAP UI Pass / Fail

TP_01 TCPdump Pass / Fail

FAT Outcome Pass / Fail

Table 6: Test outcome overview

 Integration ethics and security

Introduction

During the Ethical Review it was requested that ethics had to be included within the project
scope. This section addresses recommendations and proposed solutions to the ethical and
security points of the integration.

For each pilot the ethics is discussed in last sections. The security aspects of each layer is
also discussed after the ethics paragraphs as both normally are related and are important
aspects to define for the success of the pilots.

The information for the pilots for both ethics and security comes from the partners and may be
included in other documents as well.

INTER-LogP

The objective of this project is the interoperability, so it’s needed the exchange of data between
components and platforms. But in the port sector, this data could be sensitive for the owner’s
company, so agreements are necessary among the organizations to use the data only for the
agreed purpose. And do not share the information with anyone else.

Furthermore, this process requires a high level of security. The security must be guaranteed
in communications and in each of the intermediate components. This must be done through
the use of secure and encrypted communication channels and with high security in the
middleware.

 D6.2: Factory Acceptance Test Plan

38

 INTER-Health FAT

 System description

The following scheme shows the deployment of hardware equipment:

Figure 11: INTER-Health Hardware overview

The network in this test is owned by UPV-SABIEN so it will be possible to configure it to our
needs. It will be set up to mimic the network available in the pilot but there is always a possibility
of irreproducible, unexpected or unknown characteristics which later pose problems.

The Local Server is a virtual machine run at one of UPV-SABIEN server machines. It runs a
Windows Server 2016 OS. It also runs several other non-related virtual machines so its
performance may not be indicative of final performance in the field.

The PC used to access the Professional Web Tool (PWT) will be a developer PC, which most
likely will differ greatly from the PCs used in the final integration environment. Since access to
the PWT is through a Web Browser it will most likely not have any impact, but it is still worth
taking into account.

The Android Phones used are owned by UPV-SABIEN. The model will be a Motorola Moto
G4, but UPV-SABIEN will attempt to try as many other models as possible.

The sensor devices are the same models to be used in the field. Weight scales: A&D UC
352BLE, A&D UC 321PBT. Blood pressure sensors: A&D UA 651BLE, A&D UA 767PBT. Wrist
band: Xiaomi Band 2.

The following scheme shows the deployment of main software subsystems:

D6.2: Factory Acceptance Test Plan

39

Figure 12: INTER-Health Software overview

The virtual machine at the Local Server runs Windows Server 2016 OS with nested
virtualization capabilities. The following table shows the installed software components that
form each of the above subsystems inside the Local Server. Some have to be run on top of a
container software component that is also installed:

Component Subsystem Version Container

INTERMW INTER-IoT 0.0.1-SNAPSHOT Apache Tomcat
8.5.23, Java JDK 8

RabbitMQ INTER-IoT - Docker

WSO2 API Manager INTER-IoT 2.1.0 Docker

Kafka INTER-IoT 0.11.0.1 Docker

IPSM INTER-IoT 0.3.0.0 Docker

Parliament DB INTER-IoT - Docker

Professional Web
Tool Application

Professional Web
Tool

1.0.0 IIS, .NET Framework
4.7

MS SQL Server Professional Web
Tool

2014 Version
12.0.5204.0

Native (Windows)

 D6.2: Factory Acceptance Test Plan

40

MySQL BodyCloud Proxy 15.1 XAMPP v7.1.10

BodyCloud Proxy BodyCloud Proxy 0.0.1-SNAPSHOT Apache Tomcat
8.5.23

UniversAAL server UniversAAL
Middleware

3.4.1-SNAPSHOT Karaf OSGi 3.0.8,
Java JDK 8

Table 7: Local Server software components

The Android phones used will run versions 6.0 to 7.0 of Android. They will run either one of the
applications in the following table. No phone will run both applications at the same time. This
accounts for representing patients’ phones and doctors’ phones, which accomplish different
use cases.

Application Vesion

BodyCloud INTER-Health App 0.0.1-SNAPSHOT
UniversAAL INTER-Health App 0.0.1-SNAPSHOT

Table 8: Android Phones applications

The browsers used by the HealthCare Professional PC (role played by a UPV-SABIEN
developer PC) will be the same that will be used in the field deployment:

Application Vesion

Mozilla Firefox 52.2
Google Chrome (if needed) Latest at the time of testing

Table 9: Healthcare Professional browsers

 Integration of IoT framework

As depicted above, INTER-IoT, in particular INTER-Framework, is used to allow the
Professional Web Tool to access data from two different IoT platforms. For this reason, only
the INTER-Middleware (or MW2MW) layer of INTER-Layer is of interest for the pilot.

All modules required to run INTER-Middleware are installed in the server, as listed above,
but no other layers are required. The goal is that the Professional Web Tool uses INTER-API
to access the required data through INTER-Framework, but in the FAT it will use a mix of API
and some hardcoded values, for simplicity and speed of development.

The following table lists the components of INTER-IoT that are installed in the FAT and, if
they do, how they interface with external components:

INTER-IoT Component Interface With component

INTER-Middleware
(BodyCloud Bridge)

BodyCloud’s local REST-API
and callback

BodyCloud Proxy

INTER-Middleware
(universAAL Bridge)

universAAL’s local REST-API
and callback

universAAL Middleware

INTER-API INTER-IoT local REST-API Professional Web tool

D6.2: Factory Acceptance Test Plan

41

Table 10: Integration components.

 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components
2 Validation and Test reports of the Professional Web Tool
3 Validation and Test reports of universAAL
4 Validation and Test reports of BodyCloud

Hardware

4 Local Server
5 Healthcare Professional PC
6 Android Phones

Tools
7 MS Windows Remote Desktop

Table 11: Deliverable checklist

The following table shows the software components and version of which the system release
version consists of.

ID Description Version Check

INTER-IoT

1 Java JDK 1.8
2 Apache Tomcat 8.5.23
3 Docker 17.09.0-ce
4 Parliament DB
5 IPSM 0.3.0.0
6 Kafka 0.11.0.1
7 WSO2 API Manager 2.1.0
8 RabbitMQ
9 INTER-MW 0.0.1-SNAPSHOT

Professional Web Tool

10 MS SQL Server 12.0.5204.0
11 .NET Framework 4.7
12 .NET Core Windows Server Hosting 1.0.4 & 1.1.1
13 Professional Web Tool Application 1.0.0

BodyCloud

15 XAMPP 7.1.10
16 MySQL 15.1
17 BodyCloud Proxy 0.0.1-SNAPSHOT

UniversAAL
18 Karaf OSGi 3.0.8
19 UniversAAL Server (Middleware + REST API) 3.4.1-SNAPSHOT

Table 12: Component version overview

 D6.2: Factory Acceptance Test Plan

42

 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

62 Constraints on processing of personal and health data T1.1.1, T1.1.2, T1.1.3,

T1.2.1, T1.3.1, T1.3.2,
T1.3.3, T1.4.1, T1.4.2

71 Application response time T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.3.2,
T1.3.3, T1.4.1, T1.4.2

101 Exchanging discrete medical measures across platforms T1.3.1, T1.3.2, T1.3.3
102 Exchanging complex medical measures across platforms T1.3.1, T1.3.2
103 User Authentication to access INTER-Health services T1.1.1, T1.1.2, T1.1.3,

T1.2.1, T1.3.1, T1.3.2,
T1.3.3, T1.4.1, T1.4.2

104 Personal data and user profile management T1.1.1, T1.1.2, T1.1.3,
T1.2.1, T1.3.1, T1.3.2,
T1.3.3, T1.4.1, T1.4.2

106 Definition of reference meaning for health information (Theoretical, not testable
practically)

107 Exchanging synthetic or statistical health information between
platforms

T1.3.1, T1.3.2, T1.3.3

127 Availability of sensor data T1.3.1, T1.3.2
145 Informed consent. Processing of personal data T1.1.1, T1.1.2, T1.2.1
146 Information sheet. Processing of personal data T1.1.1, T1.1.2, T1.2.1
157 Seamless patient monitoring T1.3.1, T1.3.2, T1.3.3,

T1.4.1, T1.4.2
158 National, regional and local Bioethic Committee T1.1.1, T1.1.2, T1.2.1
164 Medical Device informatics T1.3.1, T1.3.2
172 User Access Service for Patients T1.1.3, T1.3.2, T1.3.3
173 User Access Service for Doctors T1.1.1, T1.1.2, T1.2.1,

T1.3.1, T1.4.1, T1.4.2
174 User Access Service for Administrators T1.1.1, T1.1.2, T1.2.1
176 User Access Gateway for Patients T1.1.3, T1.3.2
177 User Access Gateway for Caregivers T1.3.1
188 Integration with legacy systems T1.1.1, T1.1.2, T1.2.1,

T1.4.1, T1.4.2
217 Wearable devices support T1.3.2
218 Personal data collected on Computerized Nutritional Folder T1.2.1, T1.3.3, T1.4.2

Table 13: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the test(s)
that validate their implementation.

ID Scenario name Covered by

1 Chronic disease prevention All

11 Primary prevention of cognitive decline

12 Health failure disease and mild Alzheimer disease

15 Surveillance systems for prevention programs All

16 Elderly monitoring All

21 Low risk of developing chronic diseases. All

D6.2: Factory Acceptance Test Plan

43

22 Increased risk of developing chronic diseases All

23 High risk of developing chronic diseases All

24 Very high risk of developing chronic diseases All

25 Extremely high risk of developing chronic diseases All

27 Vitamins intake analyser

28 Calories / nutrition mixer / cookware counter

Table 14: Scenario vs test mapping

 Test environment

Introduction

To test the functionality of the INTER-Health in combination with the IoT framework a
representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

For details, refer to system description in section 3. The environment for the test comprises:

The server machine of UPV-SABIEN. This computer is located in the premises of UPV-
SABIEN, in a separate server room with restricted access allowed only to UPV-SABIEN
members.

The local network used in the test that stands in for the Healthcare center that will be used in
the real deployment is that of the UPV. It is managed by UPV staff, not UPV-SABIEN directly,
but the proper sub-networks, firewalls and other nodes have already been configured to
simulate, to a certain extent the pilot environment.

The computers emulating the Healthcare professional’s desktops can be any of the ones used
by UPV-SABIEN staff while performing the tests. They are all Windows 10 Enterprise edition
with both Firefox and Chrome installed to do the end-user tests of the Professional Web Tool.

All access to tools, hooks and probes are performed through those same computers.

The mobile phones used are pre-existing development phones at UPV-SABIEN. The model is
Motorola Moto G4 running Android 6.0 or 7.0. It is possible however that during the course of
the test other phone models are tested, if available.

The sensor device models used in the test will be the same as those used by patients: A&D
UA 651BLE and A&D UC 352BLE, and Xiaomi Band 2.

The role of patients and healthcare providers will be performed indistinctively by any of the
UPV-SABIEN staff at convenience.

 Test setups, tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this document
defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers, packet
sniffer like e.g. Wireshark, etc.

 D6.2: Factory Acceptance Test Plan

44

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the needed
functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Overall test setup

This generic setup is used in all tests: A UPV-SABIEN tester plays the role of patient and has
access to one (or several, depending on the success of the tests) mobile phones, already
paired to each of the available sensor devices. The tester interfaces directly with the sensors
to make measurements, and with the applications in the phone.

Another tester, playing the role of Healthcare professional, has access, through his/her
computer, to the Professional Web Tool.

Finally, another tester will act as observer and accesses the server through remote desktop to
monitor the running programs and obtain the required results.

TT_01 Microsoft Windows Remote Desktop

Access to the software running in the server is performed through Remote Desktop. UPV-
SABIEN testers have access to this server and monitor it in real time while the tests are
performed, and obtain all necessary outputs.

TH_01 INTER-IoT Message Emulators

There are emulators that publish sensor data as if it came from either BodyCloud or
universAAL. These are not officially part of any test, but may be used in case of issues with
real data, in order to compare as a baseline or to test the overall system when needed.

TP_01 IoT Platforms consoles

Both universAAL and BodyCloud are installed in the system server. Some of their outputs can
be observed in real time through their consoles. This can help identify crashes or problems as
they happen.

TP_02 IoT Platforms output logs

Both universAAL and BodyCloud are installed in the system server. They generate output log
files stored in the server that can be obtained after running, or even while the system is running,
depending on the log editor used. This can help identify crashes or problems after they happen.

TP_03 Android Studio

Console output and logs from the mobile phones can be accessed through Android Studio. In
order to enable this, the phones used in the tests have to enable their “developer options”,
connect to a PC (of one of UPV-SABIEN testers) through USB and allow debugging.

 Test description

3.2.7.1 U1 – Creates and operates users/services

T1.1.1 Professional creates user

D6.2: Factory Acceptance Test Plan

45

ID T1.1.1

Test The Healthcare Professional enters the system and creates a new patient user

Type Manual test

Setup TS_01, TT_01

Start First time run, empty records, Patient has been given phone and documentation

Req. [62], [71], [103], [104], [145], [146], [158], [173], [174]

Input Healthcare Prof. enters PWT, authenticates.

Healthcare Prof. enters option to create new patient

Healthcare Prof. enters patient data and confirms creation

Output The new Patient is registered in the system

The Patient can now use the system as intended

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

T1.1.2 Professional modifies user

ID T1.1.2

Test The Healthcare Professional enters the system and updates a patient’s data

Type Manual test

Setup TS_01, TT_01

Start Patient was already created in the system, Patient has been given phone and
documentation

Req. [62], [71], [103], [104], [145], [146], [158], [173], [174]

Input Healthcare Prof. enters PWT, authenticates.

Healthcare Prof. enters option to update patient

Healthcare Prof. enters new patient data and confirms update

Output The Patient’s new data is registered in the system

The Patient can continue to use the system as usual

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

 D6.2: Factory Acceptance Test Plan

46

T1.1.3 Patient logs with their profile

ID T1.1.3

Test Patient enters the system through his/her mobile phone apps to access data

Type Manual test

Setup TS_01, TT_01, TP_01, TP_02, TP_03

Start Patient is in possession of mobile phone with installed app

Patient has been registered in the system with proper data

Req. [62], [71], [103], [104], [172], [176]

Input Patient enters BC app, authenticates, checks data

Output Patient successfully accesses app

Patient can check up-to-date data

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

3.2.7.2 U2 – Set patient protocol parameters

T1.2.1 Professional sets protocol

ID T1.2.1

Test The Healthcare Professional enters the system and updates a patient’s protocol

Type Manual test

Setup TS_01, TT_01

Start Patient was already created in the system, Patient has been given phone and
documentation

Req. [62], [71], [103], [104], [145], [146], [158], [173], [174], [218]

Input Healthcare Prof. enters PWT, authenticates.

Healthcare Prof. enters option to update patient

Healthcare Prof. enters new patient protocol and confirms update

Output The Patient’s new data is registered in the system

The Patient can continue to use the system as usual, according to new protocol

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

D6.2: Factory Acceptance Test Plan

47

Outcome Pass / Fail

3.2.7.3 U3 – Perform objective and subjective measures

T1.3.1 Professional collects measures (objective)

ID T1.3.1

Test Healthcare Professional takes measures from Patient at centre using devices

Type Manual test

Setup TS_01, TT_01, TH_01, TP_01, TP_02, TP_03

Start Patient has been registered in the system with proper data

Healthcare prof. is in possession of mobile phone with installed app

Sensor devices are paired to mobile phone

Req. [62], [71], [101], [102], [103], [104], [107], [127], [157], [164], [173], [177]

Input Healthcare Prof. enters PWT, authenticates.

Healthcare Prof. enters option to update patient measures

Healthcare Prof. enters universAAL app, authenticates

Patient takes measurement on centre sensor device

Output Patient measure appears on uAAL app and PWT, allowing Healthcare Prof. to
update patient measure data

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

T1.3.2 Patient performs measures (objective)

ID T1.3.2

Test Patient takes measures at home using devices

Type Manual test

Setup TS_01, TT_01, TH_01, TP_01, TP_02, TP_03

Start Patient has been registered in the system with proper data

Patient is in possession of mobile phone with installed app

Sensor devices are paired to mobile phone

Req. [62], [71], [101], [102], [103], [104], [107], [127], [157], [164], [172], [176], [217]

Input Patient successfully accesses app

 D6.2: Factory Acceptance Test Plan

48

Patient takes measurement on home sensor device

Output The measure is registered in the system at the Healthcare centre and can be
checked by Healthcare Prof. in PWT.

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

T1.3.3 Patient performs measures (subjective)

ID T1.3.3

Test Patient answers questionnaire about habits

Type Manual test

Setup TS_01, TT_01, TP_01, TP_02, TP_03

Start Patient has been registered in the system with proper data

Patient is in possession of mobile phone with installed app

Healthcare Prof. has set protocol

Req. [62], [71], [101], [102], [103], [104], [107], [157], [172], [218]

Input App notifies Patient about questionnaire

Patient successfully accesses app

Patient takes questionnaire

Output The measure is registered in the system at the Healthcare centre and can be
checked by Healthcare Prof. in PWT.

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

3.2.7.4 U4 – Monitors subjective and objective parameters

T1.4.1 Professional monitors parameters (objective)

ID T1.4.1

Test Healthcare Professional accesses Patient data recorded through sensors

Type Manual test

Setup TS_01, TT_01, TH_01, TP_01, TP_02

Start Patient has been registered in the system with proper data

Patient has recorded objective measures

D6.2: Factory Acceptance Test Plan

49

Healthcare prof. has recorded objective measures of patient

Req. [61], [71], [103], [104], [157], [173]

Input Healthcare Prof. enters PWT, authenticates.

Healthcare Prof. enters option to observe patient measures

Output The PWT displays the measures taken with the sensors

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

T1.4.2 Professional monitors parameters (subjective)

ID T1.4.2

Test Healthcare Professional accesses Patient data recorded through questionnaires

Type Manual test

Setup TS_01, TT_01, TH_01, TP_01, TP_02

Start Patient has been registered in the system with proper data

Patient has recorded objective measures

Healthcare prof. has recorded objective measures of patient

Req. [61], [71], [103], [104], [157], [173], [218]

Input Healthcare Prof. enters PWT, authenticates.

Healthcare Prof. enters option to observe patient measures

Output The PWT displays the measures taken with the questionnaires

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

 Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Test Description Outcome

T1.1.1 Professional creates user Pass / Fail

T1.1.2 Professional modifies user Pass / Fail

T1.1.3 Patient logs with their profile Pass / Fail

 D6.2: Factory Acceptance Test Plan

50

T1.2.1 Professional sets protocol Pass / Fail

T1.3.1 Professional collects measures (objective) Pass / Fail

T1.3.2 Patient performs measures (objective) Pass / Fail

T1.3.3 Patient performs measures (subjective) Pass / Fail

T1.4.1 Professional monitors parameters (objective) Pass / Fail

T1.4.2 Professional monitors parameters (subjective) Pass / Fail

FAT Outcome Pass / Fail

Table 15: Test outcome overview

 Integration ethics and security

Introduction

During the Ethical Review it was requested that ethics had to be included within the project
scope. This section addresses recommendations and proposed solutions to the ethical and
security points of the integration.

For each pilot the ethics is discussed in paragraphs 8.2 until 8.5. The security aspects of each
layer is discussed in paragraph 8.7 and 8.8.

The information for the pilots for both ethics and security comes from the partners and may be
included in other documents as well.

INTER-Health

Regarding ethics, this FAT procedure does not require additional restrictions over what is
already defined in the overall project. The stand-ins for patients are UPV-SABIEN personnel,
and the data they will input in the system is of either one of three types:

 Simulated data: does not require additional security or ethics considerations

 Fake or spoofed data from sensors, which does not represent actual personnel data:
does not require additional security or ethics considerations

 Real data from sensors: In this case the data would be subject to similar considerations
as real patient data, but the entire FAT setup is secured in an equivalent level to that
of the final pilot, and in addition to this, all data generated during the tests is removed
after verification of the tests success or failure. The personnel at UPV-SABIEN are
confirmed to not have any health condition that could affect the test outcomes.

Regarding security, the FAT setup is similarly protected as the pilot deployment. The local
network can only be accessed by UPV personnel, and the FAT server can only be accessed
by UPV-SABIEN personnel (and other INTER-IoT partners upon request, with appropriate
security measures).

D6.2: Factory Acceptance Test Plan

51

 Open Call FAT’s

 Third Party: SensiNact

The sensiNact Gateway allows interconnection of different networks to achieve access and
communication with embedded devices and/or cloud-based services. It is composed of a set
of functional groups and their relative interfaces; both can be seen in the Figure 13 Below it is
a non-exhaustive list of the components present in the platform.

 The Device Protocol Adapter abstracts the specific connectivity technology of wireless
sensor networks. It is composed of the bridges associated to protocol stacks. All the
bridges comply with a generic Device Access API used to interact with northbound
sensiNact’s services.

 The Smart Object Access and Control implements the core functionalities of sensiNact
like discovering devices, resources and securing communication among devices
services and their consumers.

 The Consumer API is protocol agnostic and exposes services of the Smart Object
Access and Control functional to Consumers.

 The Consumer Protocol Adapter consists of a set of protocol bridges, translating the
Consumer API interface into specific application protocols.

 The Gateway Management functional group includes all the components needed to
ease management of devices connected to sensiNact, regardless of their underlying
technologies. A Device Management API is used for this purpose. This functional group
also contains the components managing cache, resource directory and security
services. These management features are exposed by means of the Manager API.

 Manager Protocol Adapter allows adapting the Gateway Management API to the
specific protocols used by different external management entities.

Figure 13: SensiNact Gateway overall architecture.

 D6.2: Factory Acceptance Test Plan

52

In terms of connectivity:

On the southbound side sensiNact gateway allows to cope with physical device protocols and
virtual device, allowing a uniform and transparent access to given protocol, for example ZigBee
network, HTTP Restful web service. Below it is a list of supported protocols:

 EnOcean, concerting energy harvesting wireless sensor technology (ultra-low-power
radio technology for free wireless sensors), and protocols in use to interact with those
sensors;

 BLE, Bluetooth Low Energy , which is a WPAN, low power protocol designed mainly
for healthcare or entertainment applications;

 MQTT, which is a machine-to-machine protocol, lightweight publish/subscribe
messaging transport, useful for connections with remote locations where a small code
footprint is required and/or network bandwidth is at a premium;

 ZigBee radio communication protocol for low consumption short range designed for
WPAN (XBee for example);

 CoAP which is REST application protocol, designed to be “the HTTP for constrained
networks and devices” whose concept originated from the idea that "the Internet
Protocol could and should be applied even to the smallest devices," and that low-power
devices with limited processing capabilities should be able to participate in the Internet
of Things; it is usually used on top of a 6LoWPAN network, but it may travel regular IP
networks as well (it is used by the OMA LWM2M protocol, for instance);

 EchoNet, Japanese communication protocol designed to create the “smart houses” of
the future. Today, with Wi-Fi and other wireless networks readily available in ordinary
homes, there is a growing demand for air-conditioning, lighting and other equipment
inside the home to be controlled using smartphones or controllers, or for electricity
usage to be monitored in order to avoid wasting energy.

On the northbound side the sensiNact gateway provides both client/server and
publish/subscribe access protocols:

 MQTT;
 JSON-RPC (1.0 and 2.0);
 HTTP RESTful
 CDMI

D6.2: Factory Acceptance Test Plan

53

Figure 14 SensiNact Southbound and Northbound bridges

The Smart Object Access and Control functional group described in this previous section
includes a large number of functionalities, among them:

Figure 15 SensiNact Gateway internal architecture

 It handles the communication with the Consumer Protocol Adapter (REST API, JSON

RPC, etc.) and IoT (and non-IoT) devices, providing URI mapping, incoming
data/messages translation in an internal format and outgoing data/messages
translation in Consumer format. Whenever a Consumer tries to access a resource via
Consumer API, the requested URI is forwarded to the Resource Manager in order to
check if a specific resource descriptor exists or not inside the Resource Directory and

 D6.2: Factory Acceptance Test Plan

54

to verify its accessibility status. If a resource descriptor doesn’t exist, a message
response with error code is returned to the Consumer API. Otherwise, the request is
forwarded to the right interface. At the same time whenever response is originated from
IoT device (or abstract IoT device), it will be also forwarded to its logical counterpart in
order to update the resource representation in the gateway.

 It manages the subscription/notification phases towards the Consumer, if it is not
handled by the targeted device (service) itself

 It supports Devices and Resource Discovery and Resource Management capabilities,
to keep track of IoT Resource descriptions that reflect those resources that are
reachable via the gateway. These can be both IoT Resources, or resources hosted by
legacy devices that are exposed as abstracted IoT Resources. Moreover, resources
can be hosted on the gateway itself. The Resource Management functionality enables
to publish resources in sensiNact, and also for the Consumer to discover what
resources are actually available from the gateway; sensiNact Service and Resource
model allows exposing the resources provided by an individual service. The latter,
characterized by a service identifier, represents a concrete physical device or a logical
entity not directly bound to any device. Each service exposes resources and could use
resources provided by other services. Figure 16 below depicts the Service and
Resource model:

Figure 16 SensiNact Service and Resource model

The Resource Directory allows storing information, i.e. resource descriptions, about the
resources provided by individual devices connected to sensiNact. It also supports resource
description look up, as well as publishing, updating and removing resource descriptions.

Discovering and using resources exposed by Services is the preferred approach for avoiding
using static service interfaces, thus increasing interoperability. Therefore, sensiNact Services
and their exposed resources are registered into Service/Resource repositories. The gateway
uses the OSGi service registry as Service/Resource repository, where resources are
registered as service properties. Clients ask the Service/Resource repository for resources
fulfilling a set of specified properties (defined by LDAP filters). In response, the
Service/Resource repository sends clients the list of service references that expose the

D6.2: Factory Acceptance Test Plan

55

requested and authorized resources. Clients can then access/manipulate the resources
exposed by their selected service objects.

Figure 17 sensiNact’s service oriented approach

Resources and services can be available for remote discovery and access using different
communication protocols, such as HTTP REST, JSON-RPC, etc. Advanced features may also
be supported (as semantic-based lookup). Resources can be classified as shown in Table 16
while the access methods are described in Table 17.

Type Description

SensorData Sensory data provided by a service. This is real-time
information provided, for example, by the SmartObject
that measures physical quantities.

Action Functionality provided by a service. This is mostly an
action on the physical environment via a SmartObject
actuator supporting this functionality (turn on light, open
door, etc.) but can also be a request to do a virtual action
(play a multimedia on a TV, make a parking space
reservation, etc.)

StateVariable Information representing a SmartObject state variable of
the service. This variable is most likely to be modified by
an action (turn on light modifies the light state, opening
door changes the door state, etc.) but also to intrinsic
conditions associated to the working procedure of the
service

Property Property exposed by a service. This is information which
is likely to be static (owner, model, vendor, static
location, etc.). In some cases, this property can be
allowed to be modified.

Table 16: Resource types.

Type Description

GET Get the value attribute of the resource

 D6.2: Factory Acceptance Test Plan

56

SET Sets a given new value as the data value of the resource

ACT Invokes the resource (method execution) with a set of
defined parameters

SUBSCRIBE Subscribes to the resource with optional condition and
periodicity

UNSUBSCRIBE Remove an existing subscription

Table 17: Resource's access methods.

The access methods that can be associated to a resource depend on the resource type, for
example, a GET method can only be associated to resources of type Property, StateVariable
and SensorData. A SET method can only be associated to StateVariable and modifiable
Property resources. An ACT method can only be associated to Action resources. SUBSCRIBE
and UNSUBSCRIBE methods can be associated to any resource type.

3.3.1.1 Protocols and data formats

The SensiNact gateway uses JSON formatted data. The resource model is a hierarchical five-
tiered tree: A Device owns Services which in turn own Resources, which hold Attributes, and
its metadata. To describe one element of this tree there is no restriction about how many sub-
elements it can contain. The description of a resource and its value (result of an access method
execution) are distinct from one to the other. The choice of this separation is to lighten the work
of components whose work is to process the result of an access method execution, by avoiding
the reification of high level data structures to only extract the content of one (or two) attribute(s).

Device Description

As only the resources are the containers of information, those which target the device are
grouped in a specific service which is the administration one (« AdminService » prefixed).
Those resources can be one specifying the location, or the vendor of the device, or any other
data that are common to all provided services (and so resources). Formally, a device is a JSON
object containing an array of services. The list of the services a device provides can be
summarized or detailed. If it is summarized, only the name of the services are part of the
description (otherwise each service is completely described).

{
 "serial-number":"fake-1234",
 "services":[
 {
 "ID":"AdminService_f1To4"
 },
 {
 "ID":"temperature_f1To4"
 }
]
}

Service Description

It gathers resources, and it references the unique identifier of the device holding it. It represents
the entry point to access to resources through the OSGi context. The list of the resources a
service provides can be summarized or detailed. If it is summarized only the name and the
type of the resource are part of the description (otherwise each resource is completely
described).

D6.2: Factory Acceptance Test Plan

57

{
 "ID":"AdminService_f1To4",
 "properties":[
 { "device.serial-number":"fake-1234"}
],
 "resources":[
 {"name":"location","type":"property"},
 {"name":"owner","type":"property"},
 {"name":"vendor","type":"property"},
 {"name":"SLEEP","type":"action"}
]
}

Resource description

 The data structures are mainly nested in triplets : name, type and value;

 The type of the resource itself can be : property, variable, sensor, or action;

 The type key of a 'name-type-value' data structure (embedded in the resource
description) can have a primitive as value (byte, short, int, long, double, char, boolean,
[string]) or the canonical name of the java class used to reify it in the gateway;

 For each resource access method signatures are also described in a JSON array.
Some of them can be shortcuts to other ones: a GET method without parameter is a
shortcut to the GET method whose unique parameter "attributeName" has for value
"value", for example. A parameter of an access method can be completed with the
constraints which apply on it (« min », « max », « fixed », regular expression « pattern
», « enumeration » of allowed values) or the JSON schema of the expected JSON
object from which to reify the appropriate Java object in the gateway;

 At least two metadata exist for each attribute: the "hidden" one defining whether the
attribute has to be specified in the description of the resource, and the "modifiable" one
defining whether the value of the attribute can be modified by the client. By default, the
« hidden » attribute is not visible in the description (if the attribute is visible that's mean
that this metadata value is set to false, and if it is set to true the client is, at the end, not
aware of that);

 A metadata specified as « dynamic » will be added to the result of an access method
execution

 Timestamps are « epoch » formated (number of seconds since 1970 January 1st); to
avoid the reification of high level objects to make calculations (that are at least as easy
with this format). High level programming languages handle this format. It is also
possible to multiply it by 1000 if handling of milliseconds is needed (what is done
natively by java for example).

{
“name":"temperature",
 "type":"sensor",
 "attributes":[
 { "name":"value","type":"int",
 "metadata":[
 {"name":"modifiable",“type":"boolean","value":false,"dynamic":fal
se},
 {"name":"timestamp","type":"long","value":1418541626,"dynamic":tr
ue},
 { "name":"description","type":"string","value":"temperature measu
re","dynamic":false},
 { "name":"unit","type":"string","value":"celsius degree","dynami
c":false}
]
 }
],
 "accessMethods":[

 D6.2: Factory Acceptance Test Plan

58

 {
 "name":"GET",
 "parameters":[
] },
 {
 "name":"GET",
 "parameters":[
 { "name":"attributeName","type":"string"}
] },
 {
 "name":"SUBSCRIBE",
 "parameters":[
 { "name":"listener","type":"object",
 "schema-id":"http://fr.cea.sensinact/subscription/listener",
 "description":"parameter value example: ‘{\"callback\":\"<uri
>\"}’ "
 },
 {
 "name":"condition",
 "type":"object",
 "schema-id":"http://fr.cea.sensinact/subscription/condition",
 "description":"parameter value example: ‘{ \"condition\":\"le
ss\", \"value\":\"5\"}’"
 },
 {
 "name":"lifetime",
 "type":"long"
 }
]
 },
 {
 "name":"SUBSCRIBE",
 "parameters":[
 {
 "name":"listener",
 "type":"object",
 "schema-id":"http://fr.cea.sensinact/subscription/listener",
 "description":"parameter value example: ‘{\"callback\":\"<uri
>\"}’ "
 }] },
 {
 "name":"UNSUBSCRIBE",
 "parameters":[
 {
 "name":"subscriptionID",
 "type":"string"
 }] }
] }

Access Method result

{
 "name":"temperature",
 "type":"int",
 "value":22,
 "timestamp":1418541626
}

As it is the « default » attribute, asking for the value of a resource providing one returns a
JSON formatted data structure in which the "name" key has the name of the resource as value
(instead of "value" as it could have been expected).

Location resource

The location of a device (service, resource) is frequently a needed context information. By
default a device always contains one (its administration service in fact), and a link to it is
created in all services it provides. If needed, a link to this resource could also be created as an
attribute of all resources (mainly if this location is supposed to change frequently and so to
avoid to require the complete device description to update the information). Its content is not
restricted (as it is the case for the others) and can so contain attributes defining longitude,

D6.2: Factory Acceptance Test Plan

59

latitude, altitude, a friendly name or whatever is needed to specify it (for now we are using «
<latitude>,<longitude> » formatted string as value)

3.3.1.2 Device Access Control

This section explains the security definition and method into sensiNact architecture.

Security and access policies

A first level of security is reached by the way of some of available security "tools" in the OSGi
environment: ServicePermission and ConditionalPermissionAdmin.

The ServicePermission is a module's authority to register or use a service.

 The register action allows a module to register a service on the specified names.
 The get action allows a module to detect a service and use it.

Permission to use a service is required in order to detect events regarding the service.
Untrusted modules should not be able to detect the presence of certain services unless they
have the appropriate ServicePermission to use the specific one.

The ConditionalPermissionAdmin is framework service to administer conditional permissions
that can be added to, retrieved from, and removed from the framework.

The sensiNact gateway defines service permissions in such a way that access to the ones it
provides is forbidden excepted if a specific condition is met (a sensiNact specific conditional
permission). This condition being that the requirer is the sensiNact SecuredAccess service.
Even sensiNact services have to use the SecuredAccess one to be able to “talk” to each
other’s; Modalities of such exchanges depend on the UserProfile of the user of these services
(the user can be the system itself). A UserProfile can be defined at each level of the hierarchical
sensiNact resource model: ServiceProvider, Service, and Resource. Five UserProfiles exist
for which predefined access rights are defined: Owner, Administrator, Authenticated,
Anonymous, and Unauthorized.

When asking for a data structure of the sensiNact resource model, the access rights of the
user are retrieved; the set of this user's accessible AccessMethods for the specific data
structure is built and returned as part of the description object. Each future potential interaction
of the user on the data structure will be made by the way of this description object. For a remote
access a security token is also generated and transmitted to the user, to avoid repeating the
security policy processing. A token is defined for a user and a data structure (and so it
previously created description object).

 D6.2: Factory Acceptance Test Plan

60

Figure 18 SecuredAccess Sequence Diagram

The Authenticaton Authorization Access service can be externalized; It is used to retrieve
identity material from which it is be possible to associate a user and a sensiNact resource
model data structure to a UserProfile (the sensiNact platform manages a database linking this
identity to a UserProfile for a specific data structure). For all data structures for which the user
has not been registered the Anonymous UserProfile is used by default (except if the owner of
a resource has defined this default profile to another one). The internal database also gathers
information relative to the minimum required UserProfile to access to data structures. This
definition can be made at each level of the resource model, knowing that if no UserProfile is
defined for a data structure, the one specified for its parent is used.

D6.2: Factory Acceptance Test Plan

61

Figure 19 Access right inheritance diagram example

For example, according to the diagram shown above, a user trying to access to the
ServiceProviderX for which its UserProfile is Anonymous will receive a description object in
which only one Service will be referenced (ServiceX1), containing a single Resource
(ResourceX1S2) providing two AccessMethods, GET and SUBSCRIBE.

Federation approach

SensiNact is based on a service-oriented approach where its functionalities are exported in
terms of services, which allows easy integration of those features within the federated
FESTIVAL’s Experimentation Testbeds as a Service.

3.3.1.3 Application Manager

SensiNact has a component named AppManager, this component aims to create higher level
applications based on the resources provided by the sensiNact gateway and which the life-
cycle can controlled by the sensinact gateway.

AppManager provides a way to develop event driven applications, i.e., based on the Event-
Condition-Actions (ECA) axiom. Thus, the application is only triggered when the required
events occur. Then, if all conditions are satisfied, the actions are done. Events are created
from sNa sensors and the actions are performed using the sNa actuators available in the
environment.

3.3.1.4 Data model and JSON format

The AppManager assumes that an application is a set of bound components. Each component
processes a single function (e.g., addition, comparison, action). The result of this function is
stored in a variable in the current instance of the application. The components using this result

 D6.2: Factory Acceptance Test Plan

62

as input listen to the corresponding variable. When the variable changes, they are notified and
can process their own function, leading to a new result.

Figure 20: Architecture of a sNa component.

The component is the atomic element of an application. Thus, an application can consider a
single component to perform an action. It holds the minimal requirements to create an ECA
application:

 Events: events that trigger the process of a component. Trigger can be conditioned to
a specific event or a specific value of the event (e.g., when the value of the sensor
reach a threshold);

 Function: function wrapped in the component (e.g., addition, comparison, action). The
acquisition of the parameters is realized in the transition block before the function block;

 Parameters: parameters of the function that are not available in the event (e.g., static
value, sensors values).

 Output: result of the function that is stored in a variable and that triggers a new event.

 Properties: non-functional properties of the component (e.g., register the result as a
new resource in sNa).

The AppManager is a sNa service provider. Thus like any other resource it provides a set of
resources; in this specific case an INSTALL and an UNINSTALL resources, enabling a client
to install/uninstall an application.

A sNa application is described using a JSON file. We developed a specific Architecture
Description Language (ADL) to describe the components used in an application and the
bindings between the components.

The following JSON code example corresponds to the code of a single component:

D6.2: Factory Acceptance Test Plan

63

Figure 21: JSON example of a sNa component

This component specifies that when the resource1 is greater or equals to 100, the
function_name is called with the string parameter "ON". The result of the function is stored in
the output_name variable and triggers a new event that may be used by others components.

The supported types are:

 Primitives types: integer, boolean, long, double, float, string. This is used to described
a static variable;

 Resource type: resource. This is used to refer to a resource. If this is set in the JSON
Event section of the JSON, a SUBSCRIBE is done on the resource. If this is done in
any JSON Parameters section, a GET is done on the resource and returns the current
value;

 Variable type: variable. This is used to refer to the output of a previously processed
component;

 Event type: event. This is used to refer to the value of the event that triggers the
function. This type is never used in the condition of the JSON Event section.

Here after is a synthesis of the type that can be used in the different parts of the JSON file.

 Primitive types Resource type Variable type Event type

In event type No Yes Yes No

In event/condition type Yes Yes Yes No

In parameters type Yes Yes Yes Yes

Table 18: Types used in the JSON component.

The AppManager supports the validation of the JSON files against a JSON schema. Schemas
exist in the plugins and may be used by the developers of the applications.

{
"events": [{
"value": "resource1",
"type": "resource",
"condition": {
"operator": ">=",
"value": 100,
"type": "integer"
}
}],
"function": "function_name",
"parameters": [{
"value": "ON",
"type": "string"
}],
"properties": {},
"output": "output_name"
}

 D6.2: Factory Acceptance Test Plan

64

3.3.1.5 Architecture

The AppManager is designed to be used as any sNa service provider. Thus it provides an
“Install” and an “Uninstall” resource, enabling a client to install/uninstall an application. These
resources are accessible using different bridges, such as any actuators.

The AppManager architecture is also designed to easily add new functions and to handle the
lifecycle of applications in order to perform checks.

Plugins

Plugins enable to add new function to the AppManager. New plugins require to implements
the mandatory interfaces Java interface to be found in the OSGi registry and thus be used by
the AppManager. The AppManager is currently supporting the following functions.

Plugin Functions supported

Basic
Plugin

various operators (e.g., equals, greater than, lesser than, different),
addition, subtraction, division, multiplication, modulo, concatenation,
substring, ACT and SET methods on resources

CEP Plugin after, before, coincides, average, average deviation, count, max, min,
median, standard deviation, sum

Table 19: Functions supported by the plugins of the AppManager.

Lifecycle

The AppManager provides a lifecycle to manage the applications. It enables to process various
checks during different steps of the lifecycle of the application (e.g., ADL consistency, resource
permissions). The first step is to install the application, i.e., send the ADL of the application. If
there is a problem, the AppManager returns an error. Once the application is installed, it can
be started and its state changes to “Resolving”. If there is a problem during this step, the
application enters in the “Unresolved” state. Otherwise, the application is active until it is
stopped or an exception occurs.

Figure 22: Lifecycle of an application.

D6.2: Factory Acceptance Test Plan

65

Instances

The AppManager allows multiple instances of the same application to run in parallel. When an
event occurs, the InstanceFactory of the application instantiates a new set of components and
passes the event to the first component. The number of instances can be set in the application
properties. If, there is more events than available instances, events are stored and processed
when an instance ends.

SensiNact Studio

SensiNact Studio allows an easy interaction with the IoT devices and the creation of
applications. The Studio is based on the Eclipse platform and built as a rich client platform
application. The Graphical User Interface (GUI) is developed using the views mechanism from
Eclipse. Thus, it proposes views for browsing devices, locating devices on a map and
interacting with them, i.e., getting value from sensors or performing actions on actuators. The
Studio is also targeted to ease the creation of IoT application following the Event-Condition-
Action (ECA) pattern.

Figure 23: sensiNact Studio Graphical User Interface.

The GUI (Figure 23) includes different views: navigator, deployment, properties views, as well
as a Domain Specific Language (DSL) editor.

Browsing devices

Before users can use the studio for managing devices and applications, they need to connect
a sensiNact gateway. This action is performed by clicking on the plus sign icon on the device
navigator. Then, gateway information have to be provided (Figure 24).

 D6.2: Factory Acceptance Test Plan

66

Figure 24: Gateway configuration.

Once the information has been provided and the dialog validated, the Gateway is added to the
Navigator View. To display and browse the available devices imported by this gateway,
connecting to it is needed. This action is performed using the connect button (Figure 25).

Figure 25: Gateway connection.

The device Navigator View is then populated, and pin points are displayed on the map. By
clicking on attributes names, it is possible to get the current value for the considered attribute.
It is also possible to see attributes values on the map, clicking on the pin points (see Figure
25).

Application creation

D6.2: Factory Acceptance Test Plan

67

Figure 26: Application creation.

The SensiNact Studio allows the creation of applications to be executed on the gateway.
Creating an application is performed by writing a script using a dedicated syntax, and deploying
this script to the gateway.

On Figure 26, a project has been created on the project explorer view (on the left). In this
project, a script named speed-limit.sna has been created, and is being edited. As the figures
shows, the editor provides code highlighting (some keywords are displayed in a special font),
code completion (with popups) and a syntax validator which displays red crosses on the script
margin in case of error.

The dedicated syntax, a Domain Specific Language, is composed by the following blocks:

 The shortcut block: each resource is accessible through a unique URI, which can be
quite long. This block aims at creating shortcut for the next blocks.

 The event block: the developer defines on which resources the application is triggered.
When an event is thrown and is a valid trigger, the conditional block is executed.

 The conditional block: once the application has been triggered, and before any action
can be executed, the data from the resource has to satisfy the conditional block. The
keyword for this block is if followed by the conditions to be validated.

 The actions statements: if the conditional block is satisfied, actions are performed in
the order that they are listed. The actions can be physical actions on actuators or virtual
actions such as changing the format of a data using a mathematical function. The
available actions, also named functions, are listed below:

 Basic functions: addition, subtraction, division, multiplication, modulo, string
concatenation, substring, various operators (e.g., equals, greater than, lesser than,
different), ACT and SET methods on sensiNact resources.

 Complex Event Processing functions: after, before, coincides, average, average
deviation, count, max, min, median, standard deviation and sum.

Table 20 shows the basic structure for writing a script.

 D6.2: Factory Acceptance Test Plan

68

[resource<resource>
]+

Shortcut block, which must contains at least one statement.

on<events>+ The event block, lists the events triggering the script. At least
one event must be provided.

[if<condition>do]+

[<actions>]+

[else do]?

[<actions>]?+

end if;

The conditional block, which lists actions to be performed
based on conditions.

Table 20: SensiNact Domain specific language basic syntax

Once the script has been written, it can be deployed to the gateway where it will be executed.
This is performed using a right click on the script file (see Figure 27).

Figure 27: Application deployment.

Application monitoring

After the application has been deployed, a new set of resources is automatically created under
the AppManager device. You can browse those resources into the Device Navigator View
(Figure 28).

D6.2: Factory Acceptance Test Plan

69

Figure 28: Application management resources.

First of all, a new service is created with the name of the sNa file (without the extension). In
our example, it is speed-limit. This service representing the application always contains a
standard set of resources (Table 21).

Resource Type Description

autorestart property In case of failure, decides if the
application should be
automatically started again

content property Script file content

EXCEPTION action Deprecated

location property GSP location which can be
used if it makes sense

maxinstances property Number of parallel instances
which should be started

resetOnStop property On Stop, decides if the
generated resources by the
application should be
destroyed or kept

START action Starts the application

status state variable Current status of the
application: START/STOP/...

STOP action Stops the application

UNINSTALL action Removes the application

Table 21: Application management resources

To start the application, simply double click on the START resource. This will launch the start
action, which will run the script.

 D6.2: Factory Acceptance Test Plan

70

Figure 29: Application start-up.

Figure 29 shows that the application is up and running on the server. The studio can be used
to check if the application has the expected behaviour, by querying the resources. The studio
can also be shut down, since the applications are executed on the gateway.

Reusable components

SensiNact is easily portable to any hardware platform and supports a large number of protocols
that allows its easy integration and reuse in various IoT environments.

SensiNact Studio Web

Presenting the information that is absorbed by the gateway is as important as organizing and
aligning the concepts on the backend of gateway itself.

Thus in order to provide a simple interface to watch over the sensors integrated in the
Sensinact Gateway, each instance of SensiNact offers a mobile-compatible interface that
enables the end user to read the information of the gateway and execute standard device calls
in the platform.

D6.2: Factory Acceptance Test Plan

71

Figure 30 StudioWeb initial screen

The initial screen Figure 30 is composed of 3 areas: Navigator, Map and Visualizer, they are
situated on upper-left, right and bottom-left respectively. Navigator is where the available
gateway will be display along with the entire resource hierarchy, meaning displaying the
gateway above all the sensors (known as providers), the sensors with all the services available
and each service with their respective resource, all display in a tree in which the top most
element is the selected gateway.

Within the Navigator area it is possible either add a new gateway using the “+” sign, or
disconnect (and remove) the gateway using the “-” sign, noticing that this function only make
sense if you are connected to one. The connect options can be seen in Figure 31.

This is where the client will input the information about the address of the gateway he/she
wishes to be connected to and the actual port.

 D6.2: Factory Acceptance Test Plan

72

Figure 31 StudioWeb connect

After a successful connection, you will be able to see the gateway along with the tree of
devices/services/resource attached to the gateway Figure 32.

Figure 32 StudioWeb gateway content

All sensors, known as well as providers, are display on the upper-left part of the interface, if a
specific sensor is selected, the Map area will lead to the geographic position of that sensor (if
that information is available) and all the information of services and resources contained in that
sensor will be display directly on the Map area, see Figure 33.

D6.2: Factory Acceptance Test Plan

73

Figure 33 StudioWeb: Sensor data

Once the connection is established with an active gateway, the StudioWeb is receiving updates
notifications from the gateway for the new data, which may include new devices attached to
the platform, disconnected devices or updated sensor data notifications. According to the
capability of the gateway (processing capability) you may be disconnected in order to preserve
the resource consumption on the back-end.

After been disconnect voluntarily from the gateway a message will be display on the upper-
right part of the screen, see Figure 34

Figure 34 StudioWeb gateway disconnection

 D6.2: Factory Acceptance Test Plan

74

3.3.1.6 Integration of IoT framework

General description

In this section of the document the approach to integrate Sensinact Platform and InterIoT will
be described underlining the interception point on each system and the advantage on using
them. Although before describing the integration approach, it is important to understand how
the two system work apart; this will allow to establish the best connection point and the
information exchanged between the two systems.

The integration of sensiNact to the Inter-IoT Framework will be done at the middleware layer.
sensiNact is currently in use as IoT middleware platform in various collaborative projects such
as OrganiCity, FESTIVAL, BigClouT, Wise-IoT, ACTIVAGE and IoF2020, in which applications
in various domains have been (and will be) developed and deployed in close to real life
environments in domains such as smart city, smart home, smart farming, smart living and
smart ski resort. Integration. With integration of sensiNact with the Inter-IoT framework, we aim
at bringing more devices, platforms, thus more data sources to enrich the “catalogue” of Inter-
IoT supported platforms. This will allow, not only to Inter-IoT validating its interoperability
methodology and tools but it will also allow sensiNact being compatible with other platforms
supported by Inter-IoT.

Figure 35 Integrating sensiNact and Inter-IoT catalog

3.3.1.7 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components
2 Validation and Test reports of the Pilot system components
3 FAT applicable for the platform targeted

Hardware

Not applicable
Tools

D6.2: Factory Acceptance Test Plan

75

7 Wireshark
8 Java SDK 1.7
9 Telnet

10 CURL

Table 22: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.5 of sensiNact

ID Description Version Check

IoT Physical Gateway

1 Protocol Controller

IoT Virtual Gateway

2 MW Controller
3 API Request Manager
4 Platform Request Manager
5 REST API Interface
6 Sensinact Gateway v1.5
7 Sensinact Studio v1.5
8 Sensinact Studio Web v1.5

Universal container

7 UniversAAL REST API v3.2.1

Table 23: Component version overview

3.3.1.8 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

R01 Extensibility (feature evolution) TS 0

R04 Support of common IoT communication protocols TS 0

R07 Real time support TS 0, TS 0

R10 Remote device control TS 0

R11 System security TS 0

R12 System privacy TS 0

R18 Service discoverability TS 0

R02 API REST TS 0

R04 Easy-to-use user interface TS 0

R05 Application response time TS 0

R06 Communication with message size efficient protocols TS 0

R13 Open Source TS 0, TS 0

 D6.2: Factory Acceptance Test Plan

76

R15 Usability TS 0

R16 Documentation TS 0, TS 0

R02 Extensibility of the use cases TS 0

R03 Use of standards TS 0, TS 0, TS 0

R07 Multiple interface options TS 0, TS 0

R12 Gateway access API TS 0

R07 Manage a sensor or actuator TS 0, TS 0

Table 24: Requirements vs test mapping

3.3.1.9 Test environment

Introduction

To test the functionality of the SensiNact in combination with the IoT framework a
representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

This stage is the last point to assure the compliance to Sensinact IoT platform with respect to
the requirements established in INTER-IoT requirements. Those requirements were selected
in Section 3.3.1.8 and will be used as reference to what setup to use in order to verify the
functionality in the target platform.

Test setups, tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this document
defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers, packet
sniffer like e.g. Wireshark.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the needed
functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Encrypted data transfer

In order to preserve user traffic information, the platform is able to encrypt data been
transferred through the network to avoid user information from been hijack or simply accessed
by a third-party actor, in either case the user can be compromised if this accessed is granted.

D6.2: Factory Acceptance Test Plan

77

One way to protect the user information is to encrypt the communication channel, there are
several techniques in the marked to doing so, one of the most common way of doing it is to
user HTTPS protocol. HTTPS or Hyper-Text Transfer Protocol Secure is a secure protocol
used to transfer information across HTTP.

This protocol make use either of SSL (or TLS) in order to encrypt the content to be transmitted.
The technical details on how this encryption happen is out of the scope of this section, in this
document it will be explained in how to configure this mechanism in the platform in order to
protect the user data transmission by assuring that no network relay become a safety breach.

In order to configure the support for this encryption mechanism couple steps are necessary,
initially it will be necessary to have a repository of trusted certificates available in the computer
instance running the Sensinact gateway, this repository is called keystore.

In most cases all computer instance running as application server already have one keystore
that should be re-used to store the credential of the sensinact application to provide the
encryption capability.

In order to setup this test we will need:

 Install Sensinact platform
 Select modules pertinent for the test
 Generate encryption key
 Setup platform to take into consideration the encryption key
 Start sensinact

Along with Java Standard Development Kit, there exists an application called keytool that can
be used to generate a security key.

In this test we will generate one keystore using keytool command.

TT_01 Wireshark

Wireshark is a packet analyzer capable of sniffing the packets on network layer and display
their content to the user. This tool allows the user to inspect the package information from the
network layer.

The tool already provides several modes of displaying the package/frame information providing
already a human-readable version of the package circulating on the network.

The minimum version to be used for this FAT is the version 1.10.6.

TT_02 CURL

CURL is a command line tool to design to easy up the HTTP calls execution. It allows the user
to perform HTTP calls and allows to customize the calls in the most convenient way to the
user. This tool will be used during the test to perform the calls to the gateway platform on the
north-bound.

The minimum version that can be used in this FAT is the version 7.35.0

TT_03 Keytool

Keytool is a command line application included in the Java SDK that manages key generation
and certificates for the JVM.

The keytool version adopted for this FAT is the version provided with Java SDK 1.7.

 D6.2: Factory Acceptance Test Plan

78

TS_02 Device materialization from MQTT protocol

MQTT is a well-known messaging communication protocol, this standard is actually managed
by OASIS group. This broker has become a reference and have been used by large
communities like Eclipse.

TT_04 CURL

Refer to previous section.

TT_05 Mosquitto Client

Mosquitto is a server and client from a well-known message protocol called MQTT. The client
and server can be used separately.

Mosquitto Client is capable of connecting to a MQTT broker and subscribe to a topic. The
notification is received directly on the command console or can be redirected to a file.

TT_06 Mosquitto Server

Provided with the mosquitto package, the mosquito server is one of the reference
implementation for the MQTT message protocol.

The mosquitto server is used directly by the mqtt southbound module of SensiNact gateway.

TS_03 Documentation

The documentation of the project should be present in accessible servers held by a third party
entity that creates or host open source project or technological initiatives.

TP_07 Eclipse website

The latest documentations at architectural level and end user tutorials can be found on the
Eclipse foundation website (below), Eclipse foundation which is one of the largest entities to
host open source projects1.

IoT Open Platforms hosts the conceptual documentation of Sensinact project, this
documentation can be found in the web site2.

Technical tutorials and other tool guides can also be found in the following web3.

TS_04 Source Code

SensiNact is an open source project incubated by Eclipse foundation, as such, sensinact
source code is available to anyone. Three roles exist: Lead, Committers and Contributors.

The Lead will give a broad view of the direction and collaboration transversally with other IoT
projects or technologies. Committers are actively pushing new functionalities, corrections and
evaluating the work of Contributors to be integrated in the main source repository.

Anyone can contribution can be integrated in the main source repository as long as it is
approved by at least two Committers.

TP_08 Source from Eclipse Gerrit website

1 https://projects.eclipse.org/proposals/eclipse-sensinact
2 http://open-platforms.eu/library/sensinact-aka-butler-smart-gateway/
3 https://wiki.eclipse.org/SensiNact

D6.2: Factory Acceptance Test Plan

79

The source code can be found in Eclipse Gerrit website4.

TS_05 RESTful API

In order to allow SeniNact users/administrators to access remotely the sensors and their
respective services, the sensinact gateway offers a RESTful API that allow to use HTTP
protocol to invoke actions and request for information either related to the gateway itself or to
resources.

TP_09 Swagger API

Swagger API is an easy-to-use interface for testing RESTful API, it provides a user interface
to access the API documentation and at the same time an interface to test the API calls.

By default, the sensiNact gateway embeds a Swagger interface. In order to access this
interface, you have to:

 Have sensinact available on your machine
 Activate the module named “rest”
 Point a browser to http://localhost/swagger-api/index.html

TS_06 Websocket communication channel

Websocket is a full-duplex communication protocol standardizes by IETF in RFC 6455 used in
browser to allow back-end services to push message from server to clients. This protocol is
located at Application layer on the OSI model.

In order to provide a near real-time notification, SensiNact platform uses Websocket protocol,
the support is integrated via northbound, and allows user to receive notification from sensinact
gateway about data updates or any other notification will request from the client based on a
subscription pattern.

TP_10 Connect to SensiNact websocket channel

Sensinact websocket channel is available non-encrypted “ws://” or encrypted “wss://” fashion,
the non-encrypted fashion is available without any additional configuration, although to use the
encrypted channel the user must follow the procedure to configure Encrypted data transfer
configuration in the section with the same title.

Even though the non-encrypted fashion is by default communication transmission used by
default, since sensinact is an OSGi standard based platform all the functional modules are
optional, thus, the websocket support is included in one of the functional modules of sensinact,
and to activate you have to follow the steps:

 Have sensinact available on your machine
 Activate the module named “rest”
 You can reach the Websocket channel using the ws://localhost/websocket/

o Be aware that you will need to use some other tool (e.g. javascript) that include
a websocket client in order to access sensinact websocket northbound

TS_07 SensiNact Studio Web

In order to offer a basic access to sensinact gateway resources, sensinact comes with an
embedded user interface named Studio Web that is present in the sensinact distribution.

4 https://git.eclipse.org/c/sensinact/org.eclipse.sensinact.gateway.git/

 D6.2: Factory Acceptance Test Plan

80

This module is present but not activated by default by the platform.

 Have sensinact available on your machine
 Activate the module named “studio-web”

3.3.1.10 Test description

Test output log files… Folder “log”, prefix “sensinact-Tx.y.z.log”

Scenario

ID T1.1

Test Verify that the application uses only encryption channels to exchange with
clients when fetching sensor data

Setup TT 0, TT 0

Start Activate module rest, simulated devices; start the platform, start Wireshark

Req. R

Input Retrieve the value of the current value of simulated button device

Output Verify on Wireshark if any of the information sent can be seen by the sniffer.

Logs sensinact-T1.1.1.log

Outcome Pass / Fail

ID T1.2

Test Verify that the application uses only encryption channels to exchange with
clients when activating an actuator

Setup TT 0, TT 0

Start Activate module rest, simulated devices; start the platform, start Wireshark

Req. R

Input Retrieve the value of the current value of simulated button device

Output Verify on Wireshark if any of the information sent can be seen by the sniffer.

Logs sensinact-T1.2.1.log

Outcome Pass / Fail

ID T1.3

D6.2: Factory Acceptance Test Plan

81

Test Verify that the application uses only encryption channels to exchange with
clients when receiving a notification from the gateway

Setup TT 0, TT 0, TT 0

Start Activate module rest, simulated devices; start the platform, start Wireshark

Req. R

Input Retrieve the value of the current value of simulated button device

Output Verify on Wireshark if any of the information sent can be seen by the sniffer.

Logs sensinact-T1.3.1.log

Outcome Pass / Fail

ID T2.1

Test Verify documentation availability on the website

Setup TT 0

Start Point the browser to URL indicated on the setup

Req. R

Input -

Output Verify that the documentation is available

Logs sensinact-T2.1.1.log

Outcome Pass / Fail

ID T3.1

Test Verify that the code source is available on the website

Setup TT 0

Start Point the browser to URL indicated on the setup

Req. R

Input -

Output Verify that the documentation is available

Logs sensinact-T3.1.1.log

Outcome Pass / Fail

 D6.2: Factory Acceptance Test Plan

82

ID T4.1

Test Verify that the REST API is available on the gateway

Setup TT 0

Start Point the browser to URL indicated on the setup

Req. R

Input -

Output Verify that the documentation is available

Logs sensinact-T4.1.1.log

Outcome Pass / Fail

3.3.1.11 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Test Description Outcome

T1.1 Verify that the application uses only encryption channels to
exchange with clients when fetching sensor data

Pass / Fail

T1.2 Verify that the application uses only encryption channels to
exchange with clients when activating an actuator

Pass / Fail

T1.2 Verify that the application uses only encryption channels to
exchange with clients when receiving a notification from the gateway

Pass / Fail

T2.1 Verify documentation availability on the website Pass / Fail

T3.1 Verify that the code source is available on the website Pass / Fail

T4.1 Verify that the REST API is available on the gateway Pass / Fail

FAT Outcome Pass / Fail

Table 25: Test outcome overview

D6.2: Factory Acceptance Test Plan

83

 Third Party: OM2M

The framework has a centralized structure with an OM2M Infrastructure Node (IN-CSE) at the
top, which acts as the server able to store measurements. This Infrastructure Node, running in
a standard computer, will also be the central entity of the oneM2M standard and the point of
contact with other middleware services by means of the INTER-IoT – OneM2M Bridge. Then,
a set of IoT devices will be deployed in the environment to acquire physical data and send it
to the OM2M IN-CSE. The IoT population will consist of several Stickntrack GPS devices which
are able to trace the location and detect the activity of the assets to which they are stuck.

Actually, these IoT devices send activity and location measurements to the Sensolus cloud by
using the Sigfox network. However, those measurements are retrieved periodically from the
cloud by an Interworking Proxy Entity (IPE) which can run in the OM2M Infrastructure Node.
This is possible by means of the APIs provided by the company Stickntrack. The IPE is a Java
application that provides a Graphical User Interface (GUI) with which an end user can interact
to get data directly from the OM2M IN-CSE. Moreover, the user can visualize the position of
all its assets through a Google Maps interface included in the GUI.

The framework is complemented with the Stickntrack Geobeacons which allow continuity of
the location information inside buildings. Indeed, when the Stickntrack GPS moves in an
environment shielded from the satellite connection, it loses its GPS signal. Since these devices
cannot rely on the Assisted GPS (A-GPS) system, they need to be motionless for about 10-15
minutes with a clear view of the sky to recover the signal. Geobeacons will be an alternative
to GPS for indoor positioning. The Stickntrack Geobeacon is a simple device that needs to be
fixed indoors (e.g. in a warehouse). The device will start sending Bluetooth Low Energy signals
that a Stickntrack GPS device can detect via its Bluetooth radio interface. The position of the
Stickntrack Geobeacon needs to be specified in the Stickntrack cloud application by using the
web interface and account provided by the company Stickntrack. We will provide a OM2M way
to do it.

The functionalities of the IPE have already been tested with few devices in the field. The
measurements are properly stored in the OM2M Infrastructure Node and can be easily
accessed with the GUI by the user. A Stickntrack GPS device has been tested in combination
with a Stickntrack Geobeacon device, further tests with several devices of the two types will
be performed in the port.

Since the bridge has not been implemented yet, it is possible to retrieve the measurements
only from the oneM2M common service layer (in this case OM2M IN-CSE). However, when
the bridge will be completed, applications built under a different middleware service will have
access to those measurements. At that time, several tests should be carried out to verify the
good functioning of the developed bridge.

 D6.2: Factory Acceptance Test Plan

84

Figure 36: Test set-up

3.3.2.1 Integration of IoT framework

The Stickntrack GPS devices will be used both to trace the position of vehicles and equipment
used in the port and to check the operational state (moving or at standstill). In this way, the
workers in the field do not have to waste time to locate machines or vehicles and they are
aware of the motion of equipment/vehicles in the port. By using the IPE, it is also possible to
set different types of alerts such that a user can be informed whenever a vehicle has not been
used for a long period of time or when it has been moved outside a predefined area.

The oneM2M service layer, which stores the measurements from the Stickntrack GPS devices,
will be integrated into the pilot architecture by means of the INTER-IoT – oneM2M bridge.
Then, a different service layer can send requests to the OM2M Infrastructure Node and retrieve
the data. As soon as the bridge will be implemented, it will be possible to start testing the
communication between different middleware.

Component Tests

OM2M IN-CSE The implementation of the OM2M Infrastructure Node has
already been tested by its developers and is open source.
On the other hand, we tested the Interworking Proxy
Entity with 3 active Stickntrack GPS and during several
hours. Everything is prepared to run further tests with a
larger amount of IoT devices deployed in the port of
Valencia

D6.2: Factory Acceptance Test Plan

85

INTER-IoT – OM2M bridge This is the most important component of the system,
hence it will require several tests before to be used in a
real life application

Stickntrack GPS This device has already been tested by the company
Stickntrack so no further tests are necessary. The correct
functioning has been confirmed by our experiments

Stickntrack Geobeacon This device has already been tested by the company
Stickntrack so no further tests are necessary. The correct
functioning has been confirmed by our experiments

Table 26: Test for each OM2M component.

3.3.2.2 Deliverables and version overview

The Table 27 contains a deliverable list which needs to be signed of before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components
2 Validation and Test reports of the Pilot system components

Hardware

4 Standard computer running the OM2M IN-CSE
5 Stickntrack GPS
6 Stickntrack Geobeacon

Tools

7 Wireshark
8 IPE Graphical User Interface

Table 27: Deliverable checklist

The Table 28 shows the software components and version of which the system release version
V1.0 consists of.

ID Description Version Check

IoT Physical Gateway

1 AN Controller V1.0.3
2 IN-CSE with IPE V1.1.0

IoT Virtual Gateway

4 Fiware V4.2.3
5 oneM2M V1.1.0

Universaal container

7 UniversAAL REST API V3.2.1

Table 28: Component version overview

3.3.2.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

 D6.2: Factory Acceptance Test Plan

86

ID Description Covered by

14 Platform independency T2

15 Support of common IoT communication protocols T1, T2

16 Inter-connection support T1, T2

23 Device semantic definition T1

26 Remote device control T1, T2

27 System security T1, T2

31 Tools / libraries to support design T1, T2

42 Heterogeneous information representation T1

52 API REST T1

53 Location of sensor and measurement is included in semantic
models

T1

70 Easy-to-use user interface T1

95 Robustness, resilience and availability T2

108 Open Source T1, T2

111 Documentation T1, T2

122 Extensibility of the use cases T2

123 Use of standards T1, T2

127 Availability of sensor data T1

153 Cacheable Data T1

154 Time stamped event recording T1

159 Development support for systematic IoT platforms
integration/interconnection

T2

168 Provide an alert system T1

169 Methodology and tools to integrate a proprietary IoT platform T1

178 Inter Platform Semantic Mediator provides data and semantic
interoperability functionality

T2

179 Inter Platform Semantic Mediator supports platform
communication

T2

180 Syntactic and semantics interoperability - Data format and
semantics translation

T2

235 Support of semantic modelling in the middleware layer T2

255 A common data model compatible with all platform-specific
models is shared

T2

281 Publish data stream into a platform T1

Table 29: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the
test(s) that validate their implementation.

ID Scenario name Covered by

2 IoT support for transport planning and execution T1

29 Reliable control of robotic cranes and trucks in port terminals T1

33 Heterogeneous Platforms Methodology-driven Integration T2

Table 30: Scenario vs test mapping

D6.2: Factory Acceptance Test Plan

87

3.3.2.4 Test environment

Introduction

To test the functionality of the OM2M component in combination with the IoT framework a
representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test environment and the complete system setup used during
this FAT.

3.3.2.5 Test setups, tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this document
defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers, packet
sniffer like e.g. Wireshark etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the needed
functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Test setup 1

The software that will be tested in the lab consists of two parts: the IPE running in the OM2M
Infrastructure Node and the OM2M bridge. Regarding the IPE, we will run this application for
some hours and check if it is able to manage the data provided by the IoT devices, in particular
the Sigfox tracers that will control the movement/placement of trucks in the port. The same
application should also provide user-friendly graphical interface so that the user is able to
monitor all the data. As concerned the OM2M bridge, some tests will be performed to check
data retrieval from a different middleware platform.

TT_01 Test tool 1

We will use an API developing environment (Postman) in order to check the correctness of the
resources retrieved from the Sensolus cloud and created in the OM2M server. Postman is a
desktop application which can be used to send HTTP requests to a specific URL. So we can
insert the URL of the OM2M server to retrieve and check the data.

TH_01 Test hook 1

We will use the Interworking Proxy Entity (IPE) to inject the data in the OM2M IN. The IPE can
also be used to control some functionalities of the IoT devices.

TH_01 Test probe 1

 D6.2: Factory Acceptance Test Plan

88

The API developing environment Postman can be also used as test probe to verify if the IPE
retrieves all the resources stored in the Sensolus cloud according to the APIs.

Test description

Test output log files… Folder “Tx_Output”, prefix “Tx.y.1_”

The most important test consists in the verification of the correct functioning of the OM2M
bridge. In particular, we will try to send requests from the native INTER-IoT middleware to the
bridge which has to convert them in a understandable format for the OM2M middleware.
Obviously, the OM2M bridge should be able to perform the opposite conversion. Therefore,
other tests will involve the conversion of the response from a OM2M primitive response to a
clear response for the INTER-IoT middleware.

The most common information flows of OneM2M: creation of Application Entities (AEs),
containers, content instances, subscription and other kind of resources. These resources can
later be read, updated or deleted by users registered in the Inter-IoT platform. The messages
from the Inter-IoT MW2MW layer are translated by the bridge into HTTP request and
responses using ‘xml’ format and sent to the OM2M Infrastructure Node (IN-CSE), as it is
specified that only the IN can receive requests originating from outside the Service Provider
domain.

3.3.2.6 Test description

3.3.2.7 Scenario 1

Use case 1

T1 OM2M IPE functioning / performances

ID T1

Test Data retrieval from the Sensolus cloud and provision of GUI

Type System and application testing

Setup Deployment of Stickntrack devices

Enabling IPE in OM2M IN

Start Registration of IoT devices as AE in the OM2M IN

Req. [15], [16], [23], [26], [27], [31], [42], [52], [53], [70], [108], [111], [123], [127],
[153], [154], [168], [169], [281]

Input Setting of a timer for the periodic retrieval of sensor data

Enable Graphical interface for interaction between end user and stored data

Output Check the creation of the resource in IN-CSE

Check the good functioning of the GUI

Check the integration of the Google Maps interface for positioning

Logs Log of the IN-CSE

D6.2: Factory Acceptance Test Plan

89

Outcome Pass / Fail

T2 OM2M bridge testing

ID T2

Test Data collection from Inter-IoT

Type Network communication

Setup Connection between computers running MW2MW and OM2M

Start Creation request from MW2MW

Req. [14], [15], [16], [26], [27], [31], [95], [108], [111], [122], [123], [159], [178], [179],
[180], [235], [255]

Input Enable Graphical interface for interaction between end user and stored data

Register through MW2MW REST API

Output Check the HTTP messages exchanged between MW2MW and OM2M

Check the creation of the resource in IN-CSE

Logs Log of the IN-CSE

Outcome Pass / Fail

 D6.2: Factory Acceptance Test Plan

90

3.3.2.8 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Test Description Outcome

1 Platform independency Pass / Fail

2 Support of common IoT communication protocols Pass / Fail

3 Inter-connection support Pass / Fail

4 Device semantic definition Pass / Fail

5 Remote device control Pass / Fail

6 System security Pass / Fail

7 Tools / libraries to support design Pass / Fail

8 Heterogeneous information representation Pass / Fail

9 API REST Pass / Fail

10 Location of sensor and measurement is included in semantic models Pass / Fail

11 Easy-to-use user interface Pass / Fail

12 Robustness, resilience and availability Pass / Fail

13 Open Source Pass / Fail

14 Documentation Pass / Fail

15 Extensibility of the use cases Pass / Fail

16 Use of standards Pass / Fail

17 Availability of sensor data Pass / Fail

18 Cacheable Data Pass / Fail

19 Time stamped event recording Pass / Fail

20 Development support for systematic IoT platforms
integration/interconnection

Pass / Fail

21 Provide an alert system Pass / Fail

22 Methodology and tools to integrate a proprietary IoT platform Pass / Fail

23 Inter Platform Semantic Mediator provides data and semantic
interoperability functionality

Pass / Fail

24 Inter Platform Semantic Mediator supports platform communication Pass / Fail

D6.2: Factory Acceptance Test Plan

91

25 Syntactic and semantics interoperability - Data format and semantics
translation

Pass / Fail

26 Support of semantic modelling in the middleware layer Pass / Fail

27 A common data model compatible with all platform-specific models is
shared

Pass / Fail

28 Publish data stream into a platform Pass / Fail

29 IoT support for transport planning and execution Pass / Fail

30 Reliable control of robotic cranes and trucks in port terminals Pass / Fail

31 Heterogeneous Platforms Methodology-driven Integration Pass / Fail

FAT Outcome Pass / Fail

Table 31: Test outcome overview

3.3.2.9 Integration ethics and security

Introduction

During the Ethical Review it was requested that ethics had to be included within the project
scope. This section addresses recommendations and proposed solutions to the ethical and
security points of the integration.

Inter-OM2M

For the moment, our research team is not collecting sensitive data related to people such that
we are not under the law of the protection of the privacy of individuals.

Nevertheless, we will work on several security features to add to the system. The security of
the data collected in the VUB OM2M server is an essential aspect for the privacy of the end
customer. Activity and location information should be kept hidden from any external entity
which tries to get access to them illegally. To secure the data, we will include some security
features to both access the data (using access policies) and the communication through the
OM2M Bridge. In addition, we will check the possibility to provide integrity of the data whenever
a legitimate user requires access to this data using the OM2M Bridge.

 D6.2: Factory Acceptance Test Plan

92

 Third Party: INTER-HARE

The INTER-HARE project is intended to design a new LPWAN technology flexible enough to
transparently encompass both LPWAN devices and multiple so-called low-power local area
networks (LPLANs) while ensuring overall system’s reliability. A cluster-tree network, is
created, where the LPWAN acts not only as data collector, but also as backhaul network for
several LPLANs, as shown in Figure 37.

Figure 37: INTER-HARE network environment

Communication within the LPWAN is based on the HARE protocol stack, ensuring
transmission reliability and low energy consumption by adopting uplink multi-hop
communication, self-organization, and resilience. Under these premises, LPWAN boundaries
are extended beyond typical 868 MHz coverage range and easily integrate devices coming
from adjacent/overlapping 2.4 GHz LPLANs. Use of separated frequency bands in overlapping
networks results in an overall reduction of interferences. Lastly, thanks to the hierarchic system
proposed, scalability is enforced by a management based on subnetworking techniques.

3.3.3.1 General considerations

The INTER-HARE platform is conceived as an innovative evolution of HARE protocol stack
and, according to the classification of multiprotocol/multiband systems, it can be considered
as a concurrent multiprotocol. In INTER-HARE, the INTER-IoT gateway (GW) and the cluster-
heads (CH) of each LPLAN share the same protocol stack operating at 868 MHz and, at the
same time, these CHs and the corresponding data acquisition devices (DADs) also share the
same protocol stack, in this case operating at 2.4 GHz.

The INTER-HARE transport network conceives end devices as elements controlled by the GW
by means of beacons, so that these are first received by CHs and then immediately
retransmitted at a different frequency band in order to be listened by DADs. This centralized
approach allows DADs to remain asleep the majority of the time, so that their single concern
is to be awake enough in advance to listen to the next beacon. Network synchronization is thus
achieved and allows the GW to ask for specific data and/or distribute configuration changes
easily.

D6.2: Factory Acceptance Test Plan

93

Figure 38: Example of INTER-HARE transport network.

The GW is considered to be appropriately placed close to a power source or an energy
harvesting solution. Therefore, it may always stay in an active state and is provided with the
ability to directly communicate (i.e., via single-hop communications) with any CH of the network
through unicast and/or broadcast messages as well as to redirect gathered data to other
networks or the Internet.

Conversely, CHs can take advantage of their neighbors to create multi-hop paths over which
data is transmitted to the GW by means of lower transmission power levels. Depending on
their position within these paths, CHs of the LPWAN are ideally organized into rings, as shown
in Figure 38. The number of hops to reach the GW determines the ring number (i.e., CHs from
ring 2 need two hops to reach the GW).

Figure 39: Ring structure of the LPWAN.

 D6.2: Factory Acceptance Test Plan

94

Each uplink data transmission phase (consisting of one or more transmission windows) begins
with a beacon signal from the GW. Transmission windows are in turn virtually split into as many
TDMA slots as network rings, so that CHs are only active during their own slot (for transmitting
data) and the previous one belonging to their children5 (for receiving data).

The first slot is allocated to the highest ring and the rest are scheduled consecutively. Data
received by CHs is aggregated to that generated by themselves (i.e., data previously received
from STAs of their LPLAN), and finally sent to the corresponding parent at the minimum power
level which ensures reliable communications. This process is repeated as many times as rings
the network has.

The correct reception of data transmissions at the GW is acknowledged with a broadcast
message, so that CHs are not only aware of their own end-to-end reliability, but also of those
CHs in the same path to the GW. These acknowledgment beacons, together with the
information obtained from their adjacent nodes, allow CHs to decide whether they should
remain awake to perform retransmissions of lost network packets.

Network association (also started by a beacon) remains stable until a change in the topology
is detected or the mechanism is reset by the GW. Nevertheless, the agreed transmission power
between adjacent nodes in the association phase is constantly monitored and adjusted in a
decentralized way in order to reduce the energy consumption.

Hardware platform

The hardware used for the data acquisition devices, the cluster-heads and the part of the
INTER-IoT gateway corresponding to the transport network contain a USB interface that may
be easily connected to a computer for debugging or configuration purposes. These devices,
also known as motes, endow sensors with processing and communication abilities, so that
they do not only take environmental data, but also send the information to the base station.
Typical components of these devices are:

 A CPU
 Flash memory
 Separate SW program memory
 An optional sensor board with several sensors: light, humidity, pressure, etc.
 Radio module to communicate with other motes
 ADC: Analog-to-Digital converter
 Batteries

For this project, the Zolertia RE-Mote (Revision B) device has been chosen due to its ability to
easily communicate with other devices by using any of its two available frequency bands: 868
MHz and 2.4 GHz. A complete description of the main features of the Zolertia RE-Mote can be
found in Annex A: Zolertia RE-Mote. For more information, we address the reader to check
its datasheet.

5 Children refers to all CHs of an adjacent higher ring from which an CH receives packets. Similarly, parent refers to that CH from an adjacent
lower ring to which a CH transmits its own packets (after aggregating the ones from its children) in its way to the GW.

D6.2: Factory Acceptance Test Plan

95

Figure 40: Zolertia RE-Mote.

Some other market-available devices with dual-band operation have been considered, such
as Libelium Waspmote6, Laird RM1XX7, and WEPTECH WEP-6LoWPAN-IoT-GW8. However,
none of them offer provide the same functionalities as the Zolertia RE-Mote in terms of
flexibility, market availability, multi-threading operation and technical support.

Software platform

Among the vast quantity of current OS for the IoT, only the four most known have been
considered for the current project: Contiki, TinyOS, FreeRTOS, and RIOT. As for the number
of publications (in 2010), the percentage of articles related to each operating system included
in the main scientific and engineering online databases (IEEE Xplore, ACM Digital Library and
Science Direct) are the following: 81% TinyOS, 9% Contiki.

The main features of the Operating Systems have been summarized in Table 32, including
their minimum requirements in terms of RAM and ROM, usage for a basic application, support
for programming languages, multi-threading, MCUs without Memory Management Unit (MMU),
modularity, real-time behavior, and availability of a simulator.

OS Min.
RAM

Min.
ROM

C
Support

C++
Support

Multi-
threading

MCU w/o
MMU

Modula-

rity

Real-
Time

Simulator

 Contiki < 2 kB < 30 kB Yes No Partial Yes Partial Partial Yes
(Cooja)

TinyOS < 1 kB < 4 kB No No Partial Yes No No Partial
(TOSSIM)

FreeRTOS < 1 kB ~ 10 kB Yes No No Yes Yes Yes Partial

RIOT ~ 1.5
kB

~ 5 kB Yes Yes Yes Yes Yes Yes No

Table 32: Key characteristics of Contiki, TinyOS, FreeRTOS, and RIOT

Although it has the best scores in the analyzed parameters, RIOT suffers from a lack of
availability of a simulator. This makes its election unsuitable for the INTER-HARE platform, as

6 Libelium Waspmote - http://www.libelium.com/products/waspmote/
7 RM1XX Modules with LoRa and BLE - https://www.lairdtech.com/products/rm1xx-lora-modules
8 Saker 6LoWPAN IoT Gateway - https://www.weptech.de/en/6lowpan/gateway-saker.html

 D6.2: Factory Acceptance Test Plan

96

the complexity of the system and the great quantity of nodes per network requires preliminary
and comprehensive simulations to complete the design of the different protocols.

In this sense, the most complete simulator is Cooja, from Contiki OS. Actually, Cooja is the
single emulator of the list, so that programming code used for simulations is the same that
eventually loaded in devices, resulting in more accurate simulations and faster deployment
times.

As for the programming model, Contiki is again the best option thanks to its combination of
protothreads and events. In this way, it can execute easily multiple processes or threads
concurrently, which in turn can be interrupted by pre-programmed events by I/O interruptions,
for instance. Contiki, together with FreeRTOS and RIOT is written in C language programming.
TinyOS, on its behalf, uses its particular C dialect (nesC), which supposes a steeper learning
curve for programmers.

All considered Operating Systems have plenty of supported hardware platforms. However, the
great amount of publications and deep knowledge of the UPF researching group in some of
them (TelosB, MicaZ, Arduino-based and Zolertia Z1) has favored the election of an Operating
System compatible with these platforms.

Due to the critical issue of the power management, the ability of controlling the power
consumption of the mote has been another factor taken into account. In this sense, the most
important techniques are intended to save power in nodes and components, by forcing them
to go into a low-power mode when not interacting with the rest of the network. Another
important point for designing purposes is the availability of techniques offered to estimate
energy consumption of sensor nodes, such as the powertrace application of Contiki.

The supporting most active communities are the TinyOS development group, with more than
10 new releases in a decade, support for 12 different platforms and an annual TinyOS
technology exchange developer meeting, and the Contiki group, with seven releases and a
development team composed of people from prestigious companies and research institutions.

OS
Latest

Release
Date Source model License

Contiki 3.0 26 August
2015

Open source BSD

TinyOS 2.1.2 20 August
2012

Open source BSD

FreeRTOS 8.2.3 16 October
2015

Source
available

Modified GPL

RIOT 2016.04 22 April 2016 Open source LGPLv2

Table 33: Latest releases of the considered Operating Systems

Lastly, another factor which was considered before choosing the best platform was the degree
of software content being up-to-date. As it can be seen in Table 33, the oldest current version
is the one from TinyOS, which dates from 2012. The rest of considered WSNs have rather up-
to-date functional versions.

After analyzing all these factors, we have opted for the open source operating system Contiki
OS9 that gives developers and researchers flexibility to provide low-capable devices with novel

9 Contiki Operating System main webpage: http://www.contiki-os.org/

D6.2: Factory Acceptance Test Plan

97

communication mechanisms. Besides, its powerful emulator Cooja gives us a great deal of
flexibility to design and test our custom protocols intended to improve the INTER-HARE
transport network performance as well as to minimize its power consumption.

Physical layer

The physical layer of the wireless communications within the INTER-HARE transport network
is based on the technology provided by the Texas Instruments CC2538 microcontroller +
transceiver, and the Texas Instruments CC1200 transceiver embedded in the Zolertia RE-Mote
devices, compatible with the IEEE 802.15.4 standard.

TI CC2538 Microcontroller

The CC2538 is the ideal wireless microcontroller System-On-Chip (SoC) for high-performance
ZigBee applications. The device combines a powerful ARM Cortex-M3-based MCU system
with up to 32KB on-chip RAM and up to 512KB on-chip flash with a robust IEEE 802.15.4 radio.
This enables the device to handle complex network stacks with security, demanding
applications, and over-the-air download.

Thirty-two GPIOs and serial peripherals enable simple connections to the rest of the board.
The powerful hardware security accelerators enable quick and efficient authentication and
encryption while leaving the CPU free to handle application tasks. The multiple low-power
modes with retention enable quick startup from sleep and minimum energy spent to perform
periodic tasks. For a smooth development, the CC2538 includes a powerful debugging system
and a comprehensive driver library. To reduce the application flash footprint, CC2538 ROM
includes a utility function library and a serial boot loader.

TI CC2538 Transceiver

The Texas Instruments CC2538 radio operates in the frequency band of 2394-2507 MHz for
compliance with IEEE 802.15.4 standard. The CC2538 device family provides a highly
integrated low-power IEEE 802.15.4-compliant radio transceiver. The radio subsystem
provides an interface between the MCU and the radio which makes it possible to issue
commands, reads status, and automatizes and sequence radio events. The radio also includes
a packet-filtering and address-recognition module.

The current porting of the TI CC2538 RF transceiver in Contiki OS only allows the whole
platform to transmit at 250 kbps when using the 2.4 GHz frequency band, which enables -97
dBm of receiving sensitivity. The programmable output power of the TI CC2538 RF transceiver
has a range from more than 30 dB (from -24 dBm to 7 dBm), with their corresponding current
consumption depicted in Table 34. It is worth noting here than only the current consumption
values for the power outputs of 0 dBm and 7 dBm are provided by the TI CC2538 datasheet.

Selectable TX power
output

Current consumption

7 dBm 34 mA

5 dBm N/A

3 dBm N/A

1 dBm N/A

0 dBm 24 mA

-1 dBm N/A

-3 dBm N/A

 D6.2: Factory Acceptance Test Plan

98

-5 dBm N/A

-7 dBm N/A

-9 dBm N/A

-11 dBm N/A

-13 dBm N/A

-15 dBm N/A

-24 dBm N/A

Table 34: Current consumption value of the transmitting operational mode depending
on the selected output power

TI CC1200 Transceiver

Texas Instruments CC1200 is a fully-integrated single-chip radio transceiver designed for high-
performance at very low-power and low-voltage operation in cost-effective wireless systems.
All filters are integrated, removing the need for costly external SAW and IF filters. The device
is mainly intended for the ISM (Industrial, Scientific and Medical) and SRD (Short Range
Device) frequency bands at 164-190 MHz, 410-475 MHz, and 820-950 MHz.

The CC1200 provides extensive hardware support for packet handling, data buffering, burst
transmissions, clear channel assessment, link quality indication, and Wake-On-Radio. The
CC1200 main operating parameters can be controlled via an SPI interface. In a typical system,
the CC1200 will be used together with a microcontroller and a few external passive
components.

As default the Zolertia RE-Mote uses the IEEE 802.15.4g mandatory mode for the 868 MHz
band, configured for 2-GFSK modulation, 50 kbps data rate and with 33 channels available.
The current porting of the TI CC1200 RF transceiver in Contiki OS only allows the whole
platform to transmit at 50 kbps when using the 868 MHz frequency band, which enables -109
dBm of receiving sensitivity.

The TI CC1200 library of Contiki allows up to 31 different output power values, ranging from -
16 dBm to 14 dBm, with steps of 1 dB. It provides the platform with a high flexibility to adapt
the different multi-hop links to the most appropriate output power depending in different factors
such as the distance between stations, the remaining battery or the channel conditions.

Due to the disparity of current consumption values among different information sources, any
calculation from this document will use the measures obtained from Texas Instruments official
tests. In these tests is described how to combine the CC2538 and the CC1200 devices in the
same design. The most interesting result is that from Figure 40Figure 41 where it is plotted the
real current consumption of the whole system depending on the selected output power.

D6.2: Factory Acceptance Test Plan

99

Figure 41: CC1200 – TX Current Consumption vs TX Power at Different Temperatures

From Figure 41 where all parameters are measured on the CC2538+CC1200 Combo EM
reference design at an Antenna connector (TC = 25°C, VDD = 3.3 V, fc = 915 MHz if nothing
else is stated.), the following table has been filled with real current consumption values of the
TI CC1200 transceiver operating at 25°C:

Transmission
power
setting

Current
consumption

Transmission
power
setting

Current
consumption

-16 dBm 39 mA 0 dBm 43 mA

-15 dBm 39.2 mA 1 dBm 43.5 mA

-14 dBm 39.4 mA 2 dBm 44 mA

-13 dBm 39.6 mA 3 dBm 44.5 mA

-12 dBm 39.8 mA 4 dBm 45 mA

-11 dBm 40 mA 5 dBm 45.5 mA

-10 dBm 40.2 mA 6 dBm 46 mA

-9 dBm 40.4 mA 7 dBm 47.5 mA

-8 dBm 40.6 mA 8 dBm 48.5 mA

-7 dBm 40.8 mA 9 dBm 49 mA

-6 dBm 41 mA 10 dBm 51 mA

-5 dBm 41.3 mA 11 dBm 50.5 mA

-4 dBm 41.6 mA 12 dBm 52 mA

-3 dBm 42 mA 13 dBm 55 mA

-2 dBm 42.3 mA 14 dBm 61 mA

-1 dBm 42.6 mA

Table 35: Current consumption value of the transmitting operational mode depending
on the selected output power

 D6.2: Factory Acceptance Test Plan

100

Range coverage

To ensure the communication link between the different elements of the transport network is
responsibility of the chosen RF transceiver. One advantage of using lower frequencies (868
MHz even more than 2.4 GHz) is that signals have better penetration, meaning they pass
through objects such as walls with less attenuation. This effect results in larger range coverage.

The wireless radio channel poses a severe challenge as a medium for reliable high-speed
communication. It is not only susceptible to noise, interference, and other channel
impediments, but these impediments change over time in unpredictable ways due to user
movement. Three mutually independent, multiplicative propagation phenomena can usually be
distinguished: large-scale path loss, shadowing and multipath fading:

 Large-scale path loss: The ‘large-scale' effects of path losses cause the received
power to vary gradually due to signal attenuation determined by the geometry of the
path profile in its entirety. This is in contrast to the local propagation mechanisms, which
are determined by terrain features in the immediate vicinity of the antennas.

 Shadowing: Shadowing is a 'medium-scale' effect caused by obstacles between the
transmitter and receiver that absorb power.

 Multipath fading: Multipath propagation leads to rapid fluctuations of the phase and
amplitude of the signal due to the constructive and destructive addition of multipath
signal components.

Figure 42: Path Loss, Shadowing and Multipath versus Distance [1]

The Texas Instrument range coverage calculator provides a theoretical calculation of the range
coverage of different TI RF transceivers in function of different parameters, such as the
frequency, the TX and RX antenna locations, the data rate, or even the presence of different
materials in the signal path. It is based on the Friis Equation10 and can also characterize the
shadowing effects of up to 3 materials placed between the transmitter and the receiver.

This tool has been used to prove the feasibility of using the TI CC1200 and the TI CC2538
transceivers in the INTER-HARE platform. From all the output power values of transceivers,
only the ones which can be selected in the corresponding Contiki OS porting of these devices
have been used in the aforementioned tool, with the resulting values compiled in Table 36 and
Table 37. Some captures of the tool are also shown in Figure 43 and Figure 44.

From results it can be noticed the difference of range coverage between both transceivers;
while TI CC1200 is far above 100 m. in almost any configuration, TI CC2538 can hardly

10 Friis transmission equation (definition from Wikipedia) - https://en.wikipedia.org/wiki/Friis_transmission_equation

D6.2: Factory Acceptance Test Plan

101

achieve more than 150 m. When comparing the most favorable configuration from both
devices, packets can be transmitted up to 886 m. in the TI CC1200 transceiver, whereas the
TI CC2538 one only has 175 m. of range coverage. Lastly, two important design variables
should be taken into account in future testbeds and/or real experimentations: the selected TX
power output of the transceiver as well as the antenna locations.

Figure 43: Range coverage for the TI CC1200 transceiver

Figure 44: Range coverage for the TI CC2538 transceiver

 D6.2: Factory Acceptance Test Plan

102

Selectable TX
power output

Current
consumption

Antenna locations
(height over ground)

 TX: 1 m. and RX: 1 m. TX: 2 m. and RX: 2 m.

14 dBm 61 mA 652 m. 886 m.

13 dBm 55 mA 605 m. 825 m.

12 dBm 52 mA 561 m. 768 m.

11 dBm 50.5 mA 520 m. 716 m.

10 dBm 51 mA 482 m. 667 m.

9 dBm 49 mA 448 m. 622 m.

8 dBm 48.5 mA 415 m. 580 m.

7 dBm 47.5 mA 385 m. 541 m.

6 dBm 46 mA 357 m. 504 m.

5 dBm 45.5 mA 331 m. 471 m.

4 dBm 45 mA 308 m. 439 m.

3 dBm 44.5 mA 285 m. 410 m.

2 dBm 44 mA 265 m. 383 m.

1 dBm 43.5 mA 246 m. 358 m.

0 dBm 43 mA 228 m. 334 m.

-1 dBm 42.6 mA 212 m. 312 m.

-2 dBm 42.3 mA 197 m. 291 m.

-3 dBm 42 mA 183 m. 272 m.

-4 dBm 41.6 mA 170 m. 254 m.

-5 dBm 41.3 mA 158 m. 238 m.

-6 dBm 41 mA 146 m. 222 m.

-7 dBm 40.8 mA 136 m. 207 m.

-8 dBm 40.6 mA 126 m. 194 m.

-9 dBm 40.4 mA 118 m. 181 m.

-10 dBm 40.2 mA 109 m. 169 m.

-11 dBm 40 mA 102 m. 158 m.

-12 dBm 39.8 mA 94 m. 147 m.

-13 dBm 39.6 mA 88 m. 137 m.

-14 dBm 39.4 mA 82 m. 128 m.

-15 dBm 39.2 mA 76 m. 119 m.

-16 dBm 39 mA 70 m. 111 m.

Table 36: Range coverage computation for the TI CC1200 transceiver

Selectable TX
power output

Power
consumption

Antenna locations
(height over ground)

 TX: 1 m. and RX: 1

m.
TX: 2 m. and RX: 2

m.
7 dBm 34 mA 118 m. 175 m.

5 dBm N/A 104 m. 139 m.

3 dBm N/A 91 m. 111 m.

D6.2: Factory Acceptance Test Plan

103

1 dBm N/A 79 m. 88 m.

0 dBm 24 mA 74 m. 59 m.

-1 dBm N/A 69 m. 57 m.

-3 dBm N/A 55 m. 54 m.

-5 dBm N/A 44 m. 44 m.

-7 dBm N/A 35 m. 31 m.

-9 dBm N/A 28 m. 28 m.

-11 dBm N/A 19 m. 21 m.

-13 dBm N/A 15 m. 18 m.

-15 dBm N/A 14 m. 14 m.

-24 dBm N/A 5 m. 5 m.

Table 37: Range coverage computation for the TI CC2538 transceiver

3.3.3.2 Link layer

Link layer of the transport network in the INTER-HARE platform is split into the MAC sublayer
and the radio duty cycling (RDC) sublayer (see Table 38).

The MAC sublayer consists of two levels:

1. A time division multiple access (TDMA) scheme to divide the time in slots, and

2. A carrier sense multiple access with collision avoidance (CSMA/CA) technique
performed by the group of STAs allocated into each slot (see Figure 45).

Figure 45: MAC sublayer consisting of TDMA slots and CSMA/CA technique inside

them

The number and duration of the TDMA slots, and the STAs allocated to each one are managed
by the gateway, thus providing the platform with the necessary flexibility to encompass
heterogeneous scenarios.

The RDC sublayer tries to keep the radio module turned off while providing enough rendezvous
points for two nodes to be able to communicate with each other.

Frequency band MAC sublayer RDC sublayer

Scheduling-based
protocol

Contention-based
protocol

LPWAN
868 MHz

TDMA
(with 1 slot per ring)

CSMA/CA X-MAC

LPLAN
2.4 GHz

None CSMA/CA X-MAC /
ContikiMAC

Table 38: Link layers used in the INTER-HARE platform

 D6.2: Factory Acceptance Test Plan

104

3.3.3.3 MAC sublayer

Scheduling-based protocol

The designed beaconing system has a double function: synchronizing the network devices
and scheduling the different actions to be performed in a time-division multiplexing scheme.
Beacons are first transmitted in the LPWAN by the INTER-IoT gateway at 868 MHz and
immediately repeated by each one of the cluster-heads in their own LPLAN at 2.4 GHz.

Two types of beacons are used in the INTER-HARE platform: primary and secondary beacons.
Both beacons include a timestamp, the time until the next beacon, and the next action to be
taken by the network. Primary beacons are intended to be used for periodic data transmission
and association purposes. Conversely, secondary beacons are only used for requests coming
from the gateway and/or alarms generated by STAs. As shown in Figure 46, primary beacons
can also perform downlink requests and handle uplink alarms.

Figure 46: Beaconing system in the INTER-HARE platform

Time between two consecutive primary beacons and two consecutive secondary beacons is
defined as 𝑇 and 𝑇௦, respectively. Where 𝑇 = (𝑘௦ + 1) ∙ 𝑇௦, being 𝑘௦ the number of secondary
beacons transmitted after every primary beacon. As it can be seen in Figure 47, there will be

D6.2: Factory Acceptance Test Plan

105

always a certain delay in the INTER-IoT physical gateway between the reception of a request
order coming from the INTER-IoT system and its handling in the next beacon. This time period
is called scheduling delay.

Figure 47: Primary and secondary beacon periods

Wakeup patterns

A wakeup pattern is a set of instructions generated by the GW which define the wakeup plan
of its associated STAs over time periods. With the goal of minimizing the time STAs remain
active (and, consequently, their energy consumption), two different wakeup patterns controlled
by the GW are proposed according to the network's traffic flow.

The periodic wakeup pattern is suitable for listening to unicast and broadcast downlink
communications from the GW, as it makes all STAs wake up at the same time. On the other
hand, uplink communications follow a staggered wakeup pattern, which allocates different
active periods to nodes belonging to adjacent rings with partial overlapping (as shown in Figure
48). Apart from reducing time STAs are awake during uplink communications; this method
facilitates the implementation of data aggregation mechanisms.

Even though STAs have predetermined active periods, they can go to sleep even earlier in the
transmitting (TX) time period if their parent has acknowledged all their data, or in the receiving
(RX) time period after having received all data from their children.

Figure 48: Example of a staggered wakeup pattern in a 3-ring LPWAN performing

uplink communications.

 D6.2: Factory Acceptance Test Plan

106

Contention-based protocol

Carrier-sense multiple access with collision avoidance (CSMA/CA) is the default contention-
based protocol within the MAC sublayer both for the LPWAN and for the different LPLANs11.
The MAC sublayer receives incoming packets from the RDC sublayer and uses the RDC
sublayer to transmit packets. If the RDC sublayer or the physical layer detects a radio collision,
the MAC sublayer may retransmit the packet at a later point in time. The CSMA/CA mechanism
retransmits packets if a collision is detected. It is also able to keep record of the number of
retransmissions, collisions, deferrals, etc.

Figure 49: Simplified algorithm of CSMA/CA

Clear Channel Assessment (CCA) is a mechanism used to determine if a wireless channel is
currently free. In wireless MAC protocols like the one implemented in the INTER-HARE
platform, CCA is used to implement CSMA/CA: each node first listens to the medium to detect
ongoing transmissions, and transmits its packet only if the channel is free, thus reducing the
chance of collisions.

CCA is typically implemented by comparing the Received Signal Strength (RSS) obtained from
the radio against a threshold. The channel is assumed to be clear if the RSS does not exceed
the given threshold. As false negatives result in collisions and false positives cause increased
latency, the choice of the threshold is critical.

11 It is worth noting here that the RTS/CTS Exchange mechanism has not been considered in the current implementation of the CSMA/CA
multiple access method.

D6.2: Factory Acceptance Test Plan

107

3.3.3.4 RDC sublayer

Radio Duty Cycling (RDC) layer takes care of the sleep period of nodes. This is one of the
most important elements of the link layer because it is the one responsible for deciding exactly
when the packets will be transmitted and it is responsible for making sure that the node is
awake when packets are to be received. Two possible options are considered for this task: X-
MAC and ContikiMAC.

X-MAC

The Contiki OS implementation of X-MAC is the RDC sublayer chosen both for the LPWAN
and for the different LPLANs. X-MAC is a power-saving MAC protocol in which senders use a
sequence of short preambles (strobes) to wake up receivers (see Figure 50). Nodes turn off
the radio for most of the time to reduce idle listening. They wake up shortly at regular intervals
to listen for strobes. When a receiving node wakes up and receives a strobe destined to it, it
replies with an acknowledgment indicating that it is awake.

Figure 50: X-MAC’s short preamble approach

ContikiMAC

ContikiMAC is considered as an alternative for transmitting packets in the LPLANs of the
INTER-HARE project. ContikiMAC is a radio duty cycling protocol that uses periodical wake-
ups to listen for packet transmissions from neighbors. If a packet transmission is detected
during a wake-up, the receiver is kept on to be able to receive the packet. When the packet is
successfully received, the receiver sends a link layer acknowledgment.

To transmit a packet, a sender repeatedly sends its packet until it receives a link layer
acknowledgment from the receiver. Packets that are sent in broadcasts do not result in link-
layer acknowledgments. Instead, the sender repeatedly sends the packet during the full wake-
up interval to ensure that all neighbors have received it.

Figure 51: Unicast transmission in ContikiMAC

 D6.2: Factory Acceptance Test Plan

108

Figure 52: Broadcast transmission in ContikiMAC

3.3.3.5 Data transmission

Data transmission in the INTER-HARE platform can follow 3 different data delivery models, as
described in: query-driven model, event-driven model and continuous model.

 Query-driven model: The sink initiates the communication by sending a request to
one or some nodes to perform management, reconfiguration or probing tasks. Data
flow is two-way: requests from the sink are downlink (DL) and unicast while responses
are uplink (UL) and follow a multi-hop route.

 Event-driven model: In this case, the activation of an alarm in a sensor node
generates an uplink (UL) data flow, which follows a multi-hop route.

 Continuous model: It is based on the continuous transmission of sensing data by
nodes to a sink at a predefined rate. Therefore, the data flow is uplink (UL) and follows
a multi-hop route.

Lastly, the data delivery model in which the three aforementioned systems coexist is called
hybrid. In our case, INTER-HARE follows a hybrid data delivery model, as it implements all the
possible options. The specific implementation of these data delivery models in the INTER-
HARE platform is detailed in the following subsections.

Query-driven model

As shown in Figure 46, after any beacon emitted by the GW, there are always two reserved
slots: one for allocating the requests of the GW, and another one for responses from data
acquisition devices. As the transport network is formed by two tiers, all requests sent by the
GW to a specific STA must go through its corresponding CH, which will act as a relay at a
different frequency band. Similarly, once the targeted STA receives the request, it must wait
for the response slot and emit its message through the intermediate CH.

Figure 53: Diagram of the query-driven data delivery model operation

D6.2: Factory Acceptance Test Plan

109

Queries requested by the GW can be for a single DAD or for a group of DADs (in our case, all
STAs belonging to the same LPLAN). The first type of requests will be transmitted via unicast
messages, while the second type will use a multicast message. In fact, this multicast message
will be first transmitted from the GW to the corresponding CH by using a unicast message, and
then, the CH will transmit a broadcast message to all the DADs of its LPLAN.

It is worth noting here that the query-driven model may also be used to modify some
configuration parameters of the DADs or even to distribute some new firmware elements.
Depending on the kind of update, these reconfiguration elements distributed by the GW may
not require a response from DADs, or could only ask for a confirmation ACK message.

Event-driven model

As in the query-driven data delivery model, the event-driven model also uses the
predetermined slots located after each beacon emitted by the GW. In fact, only the second slot
is used, as a way to transmit the alarms generated since the last beacon.

Figure 54: Diagram of the event-driven data delivery model operation

Each CH gathers all possible alarms from the LPLAN under its control, aggregates them and
transmits them over the LPWAN until reaching the GW.

Continuous model

Each data transmission phase in the continuous data delivery model begins with a data primary
beacon from the GW (see Figure 46). After the slots reserved to possible GW requests, alarms
generated by STA or new STA associations; two specific slots are devoted to this action: one
slot for LPLAN sensor data gathering and one slot for LPWAN data transmission (see Figure
55).

Figure 55: Diagram of the continuous data delivery model operation

In the LPLAN sensor data gathering stage, all STAs send a message to their corresponding
CH by means of the CSMA/CA contention-based protocol. After this stage is completed, the

 D6.2: Factory Acceptance Test Plan

110

LPWAN data transmission stage starts. In this case, each uplink data transmission phase is
virtually split into as many TDMA slots as network rings, so that CHs are only active during
their own slot (for transmitting data) and the previous one belonging to their children (for
receiving data).

The first slot is allocated to the highest ring and the rest are scheduled consecutively. Data
received by CHs is aggregated to that generated by themselves (i.e., data previously received
from STAs of their LPLAN), and finally sent to the corresponding parent at the minimum power
level which ensures reliable communications. This process is repeated as many times as rings
the network has.

The correct reception of data transmissions at the GW is acknowledged with a broadcast
message, so that CHs are not only aware of their own end-to-end reliability, but also of those
CHs in the same path to the GW. These acknowledgment beacons, together with the
information obtained from their adjacent nodes, allow CHs to decide whether they should
remain awake to perform retransmissions of lost network packets.

QoS Management

The growing use of wireless sensor networks (WSN) brings networks consisting of hundreds
or thousands of devices equipped with heterogeneous sensors performing different tasks
depending on the running application. In such networks, a single access point (AP) or gateway
(GW) includes/signals different procedures and time periods to manage the channel access of
all its associated stations, which probably require different quality of service (QoS) levels. The
scarce available bandwidth in the sub-1GHz band impedes the use of fully dedicated channels
to determined types of application, as they would increase interference among communication
devices.

Therefore, the GW must not only manage a large number of accesses from many devices, but
also ensure the required QoS of each application running over the network. Apart from dealing
with the well-known issues inherited from most general wireless networks, the very particular
characteristics of WSNs add some challenges when trying to achieve a certain level of QoS;
namely, resource constraints, unbalanced mixture traffic, data redundancy, network
dynamism, energy efficiency or scalability, among others.

To manage the heterogeneous QoS requirements of varied applications in the INTER-HARE
project, we will follow the scheme presented in, with the three general data delivery models
defined in Section 3.3.3.5. Once defined the different data delivery models, it is necessary to
quantify its performance by setting some QoS metrics. Commonly specified QoS metrics in
WSNs are collective: latency, packet loss, bandwidth, and information throughput. More
concretely, the metrics provisioned by the MAC layer, which is the focus of our work, are
throughput, average packet, delay, and transmission reliability.

Different levels of priority will be therefore allocated in the INTER-HARE project depending on
the running application (and its inherent data delivery model) of a STA / group of STAs. Under
this approach, the system will prioritize event-driven communications ahead of query-driven
ones. Continuous data transmissions will be then pushed into the background, as they are the
less critical ones.

Aggregation and segmentation

In common IT applications, data aggregation refers to the process of compiling information
from databases with intent to prepare combined datasets for data processing. In WSNs, data
aggregation techniques use different node parameters to select and store data attributes in an
aggregated format for further evaluation and usage. In multi-hop WSNs, data aggregation is

D6.2: Factory Acceptance Test Plan

111

performed in a distributed way, so that all nodes are responsible for performing these
techniques over the received data.

The staggered wakeup pattern fits here perfectly with the approach of data aggregation in
WSN. Thus CHs attach their own data to that received from their children and all the
information is jointly sent to the next hop (i.e., parent). If the total amount of data aggregated
by a CH exceeds the maximum payload supported by the hardware, it is split into segments12
sent consecutively.

A selective ACK mechanism has been developed, so that before the end of the allocated time
slot, the receiver explicitly lists which segments in a stream coming from the same child are
acknowledged. Upper layers are therefore responsible for making the sender retransmit only
the missing segments in successive transmission windows.

Power regulation mechanism (PRM)

The selection of the minimum suitable transmission power level for CH outgoing packets is
managed through a mechanism based on the received signal strength indicator (RSSI). For
this purpose, a safety margin for reliable communications is defined by RSSImin and RSSImax.
If a node is transmitting data packets (or ACKs) to its parent (or child) at a power level making
the received RSSI higher than RSSImax, it will be asked to decrease it for the next transmission.
Similarly, if the received RSSI is lower than RSSImin, it will be asked to increase it.

PRM requests are included in an RSSI control field of data packet and ACK headers. Possible
values of this field are: increase, keep, and decrease. Once computed the requests from parent
and children, the CH determines whether and how to regulate its own power level depending
on the following considerations:

 If one or more CHs ask for a higher value, increase the power level.

 If all CH ask for a reduction, decrease the power level.

 Otherwise, keep the current power level.

In addition, if a CH needs to retransmit a packet to its parent, it will also increase the power
level in each new transmission window. Regarding the association process, whenever a CH
listens to a discovery request, it will answer at maximum power. The CH selected as parent
will keep the maximum power level at the beginning and regulate it following the previously
described procedure. Instead, those CHs not selected as parents will set their power back to
the level they had before answering to the discovery request.

3.3.3.6 Network layer

Network communications follow a centralized scheme, where the GW adopts the main role
and assumes the responsibility of managing network associations, delivering network
addresses, and periodically notifying the start of new routing processes.

CHs adopt a subordinate role waiting for orders coming from the GW. In the routing process,
they organize themselves in paths autonomously, but all subsequent data transmissions are
addressed to the GW, directly or through other CHs. Conversely, the GW can make use of its
greater transmission power to periodically send broadcast messages to all network CHs, or
send unicast messages to selected CHs.

12 The amount of data aggregated by an STA (from itself and from its children) is called packet. If this packet is split into different parts, each
one of these parts is called segment. In case both terms can be indistinctly used, the current article will use packet.

 D6.2: Factory Acceptance Test Plan

112

In turn, STAs also adopt a subordinate role with regard to their corresponding CH, so that any
network operation must be executed by using first these intermediate nodes.

Addressing system

The addressing system is managed by the GW, which allocates a unique network address to
each node during the association process. Nodes will maintain the same network address as
long as they do not leave the network. A dynamic record matching the MAC and the network
address of all CHs and STAs is stored in the GW. The size of the network address is
configurable and its value determines the addressing range.

In all the preliminary tests and in the INTER-HARE pilot, the addressing system will follow the
Rime format, consisting of two 8-bit numbers. Similarly to IP addressing, the use of netmasks
leads to flexible subnetting configurations with up to (2ଵ − 2 = 65534) STAs. In our particular
case, the first 8-bit number identifies the network prefix shared by all devices, and the second
one the host part, whose value for GWs is 0, for cluster-heads is a number from 1 to 9, and for
STAs is a number from 10 to 99.

The way for distinguishing one LPWAN from another is having a look at the first byte of any
address. In addition, and for simplicity, the address of a data acquisition device is determined
by the address of its corresponding cluster-head.

For example, if the address of a cluster-head is 45.5, addresses of the data acquisition devices
from its LPLAN can only take values from 45.50 to 45.59. The range of the whole addressing
system can be then determined as shown in Table 39. An example of address allocation for a
typical INTER-HARE is shown in Figure 56, where GW represents a gateway, CH a cluster-
head and N a data acquisition device.

Element
Frequency band

Quantity per
LPWAN

Total amount Example

Gateways 868 MHz 1 256 45.0

Cluster-heads 868 MHz & 2.4
GHz

9 9 · 256 = 2.304 45.5

Data acquisition
devices

2.4 GHz 90 90 · 256 = 23.040 45.58

Table 39: Main features of the INTER-HARE addressing system

D6.2: Factory Acceptance Test Plan

113

Figure 56: Example of address allocation for a typical INTER-HARE deployment

3.3.3.7 Network association

To cope with multiple association requests in a short period of time, the system is able to admit
new CHs and STAs through two different mechanisms: an active, global, scheduled one, called
network association mechanism; and a passive, singular one, called STA association
mechanism.

Network association mechanism

The network association mechanism (also known as re-association mechanism) allows a large
amount of CHs to associate to the network in a short period of time. Once the GW is activated,
or after a pre-determined number of primary beacons (𝑁), the GW broadcasts a network
association primary beacon.

Depending on the RSSI value received in the network association primary beacon, CHs
determine their association turn (generally, the greater the RSSI received, the earlier
association turn is selected). Then, a random number is selected by the CH, determining its
association slot within the association turn. The number of association turns (𝑎௧), association
slots per turn (𝑎௦), and the length of a slot (𝑇) are parameters set by the GW and included in
every network association primary beacon.

CHs then follow with a discovery message sent via broadcast, which is responded by the GW
and all the already associated CHs, provided they are within the coverage range. The process
of selecting the best path to reach the GW is detailed in Section 3.3.3.9: Routing.

 D6.2: Factory Acceptance Test Plan

114

Figure 57: Diagram of the network association mechanism operation

Once the routing mechanism is completed, the GW notifies the joining of new CHs by means
of a summary broadcast message sent immediately after every association turn.
STA association mechanism

The STA association mechanism provides a solution to those specific CHs that (i) have not
found a path to the GW during the network association mechanism, (ii) have been powered on
between two consecutive network association primary beacons, or (iii) have simply suffered
routing problems in their path to the GW. It is also the way for STAs to enter in the network.

Figure 58: Diagram of the STA association operation

This mechanism follows the same pattern as the network association one, with the single
exception that there is only one association turn located immediately after each data primary
beacon to be used by non-associated CHs and, then, another one for non-associated STAs.

3.3.3.8 Network disassociation

Inactive or erratic CHs are removed from the network and the GW's routing table to create, if
necessary, new routing paths that ensure correct packet reception from remaining network
CHs. Disassociations can be controlled by the GW through the disassociation mechanism or
by the CHs themselves through the self-disassociation mechanism.

Disassociation mechanism

The GW removes a CH from the network if not receiving any data packet during a pre-
determined number of consecutive primary beacons (𝑁ௗ). A roster with the latest

D6.2: Factory Acceptance Test Plan

115

disassociated CHs is included in every primary beacon. This information is not only useful for
malfunctioning CHs, which can make immediate use of the CH association mechanism, but
also for their parents, as they can check the current state of their children. Hence, if all its
children became disassociated, a parent would go to sleep during the RX time period allocated
to its ring.

Self-disassociation mechanism

The goal of this mechanism is to avoid repetitive association requests and other energy
consuming procedures that could make CHs run out of battery when no connection with the
GW is possible. All CHs have a timer that is activated after being switched on or when receiving
a primary beacon. From that moment on, if a CH does not receive any other beacon during a
predetermined period (𝑇ௗ), it turns itself off. Thus the CH is considered dead and it will need to
be reactivated by manual procedures.

3.3.3.9 Routing

Routing will be only used in the LPWAN, as all LPLAN connections will follow a single-hop
approach between the data acquisition devices and the corresponding cluster-head. In the
specific case of the LPWAN, the INTER-HARE platform uses its own distance vector routing
protocol inspired by RPL to build a destination oriented directed acyclic graph (DODAG).

This protocol is only executed as part of the Network association mechanism and the STA
association mechanism, so that there is no continuous routing packet exchange among
neighbors. Thus, according to the responses to the discovery message coming from other
nodes, each STA determines the best candidate to become its parent in its path to the GW;
i.e., the node with the minimum S value from:

𝑆 = 𝑎ଵ ∙ ൫𝑃்ೌೣ
− 𝑅𝑆𝑆𝐼்൯ + 𝑎ଶ ∙ ൫𝑃்ೌೣ

− 𝑅𝑆𝑆𝐼ோ൯ + 𝑎ଷ ∙ 𝑟 + 𝑎ସ ∙ 𝑐

Where 𝑃்ೌೣ
 is the maximum transmission power of the transceiver (in dBm), 𝑅𝑆𝑆𝐼் is the

RSSI received at the candidate (in dBm), 𝑅𝑆𝑆𝐼ோ is the RSSI received at the STA itself (in
dBm), 𝑟 is the ring to which the candidate belongs, and 𝑐 is the current number of candidate's
children. The 𝑎 weights are attached to every primary beacon, and can be tuned by the GW
according to environmental requirements.

Once computed the best parent, the STA sends it a specific request. This request will be
forwarded by the parent through its own path until reaching the GW, which will send a packet
via broadcast confirming the association and providing the STA with its new address. This way,
both the newly associated STA and its parent are informed of the establishment of the new
path.

When the association process is finished, the STA exactly knows the next hop its messages
must follow to reach the GW. As long as the STA is associated to the network, it uses the same
routing path, which is only recomputed after an internal or external (i.e., from its parent) failure.
Indeed, no new routing process is initiated unless it is part of a new network association
mechanism.

3.3.3.10 Transport layer

Reliable end-to-end communications from the cluster-heads to the GW, where retransmissions
are only executed when needed and by the minimum number of involved cluster-heads (and
relays), are achieved in the INTER-HARE platform by using the mechanisms described in the
current section.

 D6.2: Factory Acceptance Test Plan

116

It is worth noting here that data acquisition devices from 2.4 GHz LPLANs will remain
out from this transport layer, so that their packets will be individually acknowledged by their
corresponding cluster-head in the previously established single-hop 2.4 GHz link. If any data
acquisition device did not send its data packet to the cluster-head due to an error or a
connection failure, the cluster-head would inform the INTER-IoT gateway of this circumstance
by attaching a message similar to ‘no data’ in the field corresponding to the erratic station.

3.3.3.11 End-to-end ACK

According to the staggered wakeup pattern described in a future section, STAs from ring 1 are
the last ones to access to the channel and transmit their information. Once compared the data
sources with the expected uplink traffic the GW emits a broadcast message called end-to-end
ACK (e2e ACK) with a list of acknowledged STAs. Apart from being simple, quick and
simultaneously listened by all network elements, e2e ACKs allow STAs to evaluate the state
of their path to the GW and act consequently.

Figure 59: e2e ACK operation

Figure 59 shows an example of the e2e ACK operation at the end of every LPWAN
transmission window. Note the communication problems in the first transmission window
between nodes N6 and N3 and how they are solved in the second transmission window with
the collaboration of just the affected nodes.

The time difference between the transmission of a data packet and the proper reception of the
e2e ACK determines the end-to-end communication delay of an STA (𝐷ଶ). This value can be
theoretically computed by using the following equation:

𝐷ଶ = 𝑇 + (𝑟 − 1) · 𝑇 + (𝑖 − 1) · 𝑅 · 𝑇 = (𝑟 + (𝑖 − 1) · 𝑅) · 𝑇 ,

D6.2: Factory Acceptance Test Plan

117

where 𝑇 is the duration of a ring slot, 𝑟 is the ring to which the STA belongs, 𝑖 is the index of
the transmission window in which the STA receives the e2e ACK (with 𝑖 ∈ [1, 𝑤]), and 𝑅 is the
total number of network rings.

3.3.3.12 Poisoning mechanism

The poisoning mechanism identifies which specific nodes experience communication
problems in their path to the GW, so that they can perform subsequent retransmissions. Nodes
having problems with their children transmit packets with the poison flag activated. An STA is
considered poisoned if, before transmitting an outgoing data packet, one of the following
conditions is satisfied:

1. The STA is part of a poisoned path; i.e., it has received one or more packets with the
poison flag activated during the current transmission window.

2. The STA has not received any data packet from one or more of its children.

3. The STA has not received all the expected segments from one or more of its children.

In Figure 60, node N3 activates its poison flag after not receiving data from its child N6. In its
way to the GW, a data packet from N3 poisons its next hop: N1. Therefore, nodes N6, N3, and
N1 form a poisoned path, as shown in Figure 61. Together with the GW, these nodes (colored
in red) stay awake during the second transmission window. The rest of nodes (colored in
green) go to sleep as they are not involved in the new transmission process.

Figure 60: Network topology of the multi-hop LPWAN from Figure 59

Figure 61: State of the network from Figure 60 after the corresponding e2e ACK

 D6.2: Factory Acceptance Test Plan

118

3.3.3.13 Transmission windows

A number of transmission windows (𝑤) with their corresponding e2e ACK are included in each
uplink data transmission phase to ensure correct packet reception. Within these windows, not
all STAs remain awake, but only the ones directly involved in the transmission process. Before
the start of a new transmission window, STAs evaluate whether they shall stay awake or go to
sleep.

This decision takes into account if the STA has been previously poisoned by one of its children
as well as several other conditions according to the decision flowchart from Figure 62.
Whenever an STA decides to go to sleep, it will remain in this state until the next primary
beacon.

Figure 62: STA's decision flowchart to stay awake or go to sleep before the start of a

new transmission window

3.3.3.14 Distributed caching

Due to the structure of multi-hop networks, lost packets cause expensive retransmissions
along every hop of the path between the sender and the receiver. To alleviate this problem, a
distributed caching system is used in the INTER-HARE transport network, so that parents
acknowledge the correct reception of packets from children and cache their data until it is
properly received in the GW.

As it can be seen in Figure 61, nodes N12 and N13 can go to sleep after the first transmission
window, because their data packets have been acknowledged by node N6, which will cache
them in memory together with its own data to be sent in the next transmission window.

3.3.3.15 Frame size

The INTER-HARE application frame size is determined by the 127 bytes of the maximum
transmission unit (MTU) in the IEEE 802.15.4 standard, which is used as the PHY and MAC
layer of the current development. In addition, the free space available for the application is also
reduced as consequence of the headers from both the RDC (in our case, X-MAC) and the
network layers (in our case, Rime).

D6.2: Factory Acceptance Test Plan

119

TYPE OF
COMMUNICATI

ON

IEEE 802.15.4
MTU

Size of RDC
layer header

Size of network
layer header

Available space for
the application

layer

Broadcast 127 bytes 2 bytes 16 bytes 109 bytes

Unicast 127 bytes 2 bytes 32 bytes 93 bytes

Table 40: Available space for the application layer

As it will be described in Subsection 3.3.3.18 with the description of the different application
packets, data and statistics packets consist of 10 and 20 bytes of information, respectively.
Having into account the available space for the application layer, in case an intermediate STA
aggregates data from other stations, it could include up to 8 different data payloads and up to
4 different statistics payloads.

Packet headers

All packets in the INTER-HARE platform include a header of 2 bytes (16 bits) for allowing the
receiver determining the type of packet. Depending on the packet, other fields may be encoded
as shown in the list of headers summarized in the table below.

Id Packet Bit index

Packet
ID
1-4

5 6 7 8-10 11-13 14-16

0 Void beacon 0000 (Void)

1 Data packet 0001 RSSI control Agg. Total
segments

Current
segment

(Void)

2 Data
poissoned

0010 RSSI control Agg. Total
segments

Current
segment

(Void)

3 ACK 0011 RSSI control (Void)

4 Data beacon 0100 Kill
flag

(Void)

5 e2e ACK 0101 Routing aux (Void)

6 Node
discovery

0110 Mod
e

(Void)

7 Association 0111 Mode Versi
on

(Void)

8 Re-Association
beacon

1000 Mode (Void)

9 Statistics
packet

1001 RSSI control Agg. Total
segments

Current
segment

(Void)

10 Statistics
poissoned

1010 RSSI control Agg. Total
segments

Current
segment

(Void)

11 Statistics
beacon

1011 Kill
flag

(Void)

12 Query-driven 1100 Mod
e

(Void)

13 Event-driven 1101 Mod
e

(Void)

 D6.2: Factory Acceptance Test Plan

120

14 Connection
test

1110 Mod
e

(Void)

Table 41: Packet headers encoding in INTER-HARE

The fields encoded in the headers are detailed below:

 Packet id: packet identifier.
 RSSI control: flag for acting according to the PRM.
 Aggregation: flag indicating if more than one segment will be sent in a transmission.
 Total segment: total number of segments in a transmission.
 Current segment: number of the segment being sent.
 Kill flag: flag for identifying if any of the STAs in the network has been killed (or de-

associated).
 Mode (for Discovery, Association, Re-association, Query-driven, Event-driven

and Connection test):
o Req: node discovery / association request.
o Resp: node discovery / association response (not for Event-driven).
o Ret: (only for Assoc. and Re-Assoc) node request retransmitted to a lower ring.

 Version: software version (only included in the association request frame).

3.3.3.16 Management frames

There are three types of management packets: discovery and association. While the first one
is related to the node discovery phase, the second is used for requesting and confirming
association. The connection test is the first message transmitted by an STA once it has been
switched on, and its main purpose is to check the availability of GWs in its own range coverage.

Type Transmission Byte index

1-2 3 4 5 6 7-
8

9-10 11-
12

13-
14

15 16 17-
18

19 20

A (Void)

B rssi_r
x

ring c
h

(Void)

C mac address node_i
d

(Void)

D timestamp lengt
h

ne
w

mac_children address rime_paren
t

next
_hop

ring ch

E mac_child address node_
id_ch

rime (Void)

F (Void)

G Data packet (Void)

H Data packet (Void)

I (Void)

J t_response (Void)

Table 42: Field content of management frames

D6.2: Factory Acceptance Test Plan

121

Type Description Sender Transmission

A Discovery request STA Broadcast

B Discovery response GW/ STA Unicast

C Association request STA Unicast

D Association response GW Broadcast

E Association retransmission STA Unicast

44F Query-driven request GW Unicast

G Query-driven response STA Unicast

H Event-driven request STA Unicast

I Connection test request STA Broadcast

J Connection test response GW Unicast

Table 43: Type descriptions of management frames

 Discovery:
o Request: the node discovery request is just composed with the 2-byte header.

No additional fields are included in the packet.
o Response: the node discovery response includes the RSSI received at the

potential parent (rssi_rx), and its ring (ring) and number of children (ch).
 Association:

o Request: the association request packet includes the MAC address (mac) and
node ID (node_id) of the STA willing to be associated.

o Retransmission: association request retransmissions include the information
contained in the request forwarded and an additional field with the RIME
address of the intermediate hop (rime).

o Response: the association response is sent via broadcast by the GW and
summarizes the information regarding the new STAs associated to the network.
That is, the fields included are the timestamp for synchronization (timestamp),
the packet length (length) for identifying the number of association response
packets to be sent, the number of new associated STAs (new), and other fields
containing the information of the new routing connections.

Specifically, such fields are the MAC address of the new STAs associated
(mac_ch), the RIME address of the assigned parent (rime_parent), the
allocated next hop (next_hop), the ring of the associated STA (ring), and the
number of children (ch).

 Query-driven:
o Request: the query-driven request is just composed with the 2 byte header. No

additional fields are included in the packet.
o Response: the response consists of a traditional data packet.

 Event-driven:
o Request: the request consists of a traditional data packet.

 Connection test:
o Request: the connection test request is just composed with the 2 byte header.

No additional fields are included in the packet.

 D6.2: Factory Acceptance Test Plan

122

o Response: the connection test response includes the time until the next
beacon is transmitted (t_response).

3.3.3.17 Beacons

There are four different beacon types that can be emitted by the GW in a broadcast
transmission: re-association beacon, void beacon, data beacon, and statistics beacon. As
seen in orange color in its Subsection each one of them has its own packet header. As for the
content of the beacon itself, they can be grouped into re-association beacons and regular
beacons (this group contains the aforementioned void beacon, data beacon, and statistics
beacon).

BEACONS Byte index

1-4 5-8 9-12 13 14 15 16 17 18 19-24 25-30

Re-
association

beacon

timest
amp

t_euth
anasia

t_reass
oc_wak

e

association_info

Regular
beacon

timest
amp

t_duty t_action t_unit t_tx t_asso
c

R W (void
)

association_info

Table 44: Field content of beacons

 Byte index

1-2 3 4 5 6 7 8 9 10 11 12

associatio
n_info

max_
rssi

num_
range

s

gap_r
1

t_ran
ge

w_1 w_2 w_3 w_4 max_
ch

num_
slots

t_slot

Table 45: Content of the ‘association_info’ field

 Re-association beacon:
o timestamp: Field for synchronization purposes
o t_euthanasia: Time before STAs get disconnected by not listening any beacon
o t_reassoc_wake: Time comprised between the beginning of a re-association

beacon and its immediately following beacon
o association_info: Block of fields containing information corresponding to the

association phase of the system. It consists of the following parameters:
 max_rssi: Maximum RSSI allowed in the re-association process
 num ranges: Number of complete association ranges
 gap_r1: RSSI gap of the first association range
 t_range: Time length of an association range
 w_i: Weights to compute the best response to the association proces
 w_1: Weight of the received RSSI
 w_2: Weight of the RSSI received at the candidate node
 w_3: Weight of the ring of the candidate
 w_4: Weight of the number of children of the candidate
 max ch: Maximum number of children per STA set in the network
 num slots: Number of node discovery slots
 t_slot: Time of each node discovery slot

 Regular beacon (void, data, or statistic beacon):
o timestamp: Field for synchronization purposes

D6.2: Factory Acceptance Test Plan

123

o t_duty: Time to next duty cycle
o t_action: Time to the next primary beacon
o t_unit: Time unit in which the mentioned variables are represented (usually

given in seconds)
o t_tx: Time an STA can be in TX state
o t_assoc: Time slot for association
o R: Number of rings in the network
o W: Number of transmission windows
o -: Reserved space (currently not used)
o association_info: Block of fields containing information corresponding to the

association phase of the system. It consists of the following parameters:
 max_rssi: Maximum RSSI allowed in the re-association process
 num ranges: Number of complete association ranges
 gap_r1: RSSI gap of the first association range
 t_range: Time length of an association range
 w_i: Weights to compute the best response to the association proces
 w_1: Weight of the received RSSI
 w_2: Weight of the RSSI received at the candidate node
 w_3: Weight of the ring of the candidate
 w_4: Weight of the number of children of the candidate
 max ch: Maximum number of children per STA set in the network
 num slots: Number of node discovery slots
 t_slot: Time of each node discovery slot

3.3.3.18 Application packets

The INTER-HARE application relies on different packets exchanged between the different
elements of the network. Four different types of packets have been defined: data, statistics,
link ACK and end-to-end ACK packets.

Data packets

Data packets are intended to compile the information collected by sensors. The designed
structure for this kind of packet is shown in Table 46 and contains the following fields:

APPLICATIO
N PACKETS

Byte index

1 2 3 4 5 6 7 8 9 10

Data packet Rime Seq Temp Hum Light Bat (Void
)

Table 46: Field content of a data packet

 Rime: Network address of the STA (although the network address of the sender is
always included in the IEEE 802.15.4 header, it is indispensable to attach this
information in every data packet to avoid misunderstandings about the data source
when performing data aggregation).

 Seq: Data packet sequence number.
 Temp: Temperature measured by the sensor (in °C) with up to three decimals

accuracy. For instance, 25.453 °C. Note that the final accuracy of the measure will
depend on the selected temperature sensor.

 D6.2: Factory Acceptance Test Plan

124

 Hum: Humidity measured by the sensor (in %) with up to three decimals accuracy. For
instance, 58.947 %. Note that the final accuracy of the measure will depend on the
selected humidity sensor.

 Light: Luminance measured by the sensor in % without decimals (for instance, 72 %)
(optional).

 Bat: Remaining battery capacity of the Zolertia Re-Mote in % without decimals (for
instance, 94%).

 (Void): Field reserved, if necessary, for future purposes.

Statistics packets

The statistics packets have been designed to provide the system administrator with information
about the network performance as well as the operational state of STAs. They are periodically
sent by STAs following the same paths established for the transmission of data packets. Their
structure can be reviewed at Table 47 and contain the following fields:

APPLICATI
ON

PACKETS

Byte index

1-2 3 4 5-6 7-8 9-10 11-12 13-14 15-18 19-20

Statistics
packet

Rime Seq (Void) pkts_
sent

pkts_
acked

acks_
sent

rtt_link rtt_e2
e

time_
states

power
_

levels

Table 47: Field content of a statistics packet

 Rime: Network address of the STA (although the network address of the sender is
always included in the IEEE 802.15.4 header, it is indispensable to attach this
information in every data packet to avoid misunderstandings about the data source
when performing data aggregation).

 Seq: Statistics packet sequence number.
 (Void): Field reserved, if necessary, for future purposes.
 pkts_sent: Number of data packets sent by the STA.
 pkts_acked: Number of data packets properly acknowledged by the STA’s parent.
 acks_sent: Number of link ACK’s packets sent to the STA’s children.
 rtt_link: Average Round Trip Time (RTT) at link level expressed in ms.
 rtt_e2e: Average Round Trip Time (RTT) at end-to-end level expressed in s.
 time_states: Percentage of time spent by the STA in each of the possible transceiver

states.
 power_levels: Maximum and minimum power level used by the STA during the

period from the last statistics packets sent.

With all this information gathered from STAs as well as other internal processes, the GW is
able to compute all the following performance metrics:

Variable Metric Type 13 Update period

1 𝑡ை Observation time Accumulate
d

Cycle

2 𝑛, Number of associated STAs cycle 𝑐 Current Cycle

13 There are two types of metrics: accumulated metrics are those which are obtained by gathering the network accumulated
information from the beginning of the execution, and current metrics are those which are obtained processing the partial
information gathered during a cycle.

D6.2: Factory Acceptance Test Plan

125

3 𝐷 Number of duty cycles Accumulate
d

Cycle

4 𝑃𝐷𝑅 Packet delivery ratio Accumulate
d

Cycle

5 𝐶𝑆𝑅 Cycle stability ratio Accumulate
d

Cycle

6 𝑁 Total number of associations Accumulate
d

Cycle

7 𝑁 Number of kills Accumulate
d

Cycle

8 𝑁ഥோ Mean number of rings Accumulate
d

Cycle

9 �̅� Mean association delay Accumulate
d

Cycle

10 𝑁, Number of associations in cycle 𝑐 Current Cycle

11 𝑁 Number of rings in cycle 𝑐 Current Cycle

12 𝑁ഥ, Mean number of ACKs sent per STA
in cycle 𝑐

Current Statistics

13 𝑡̅,ௗ Mean share of time in state 𝑘 in cycle
𝑐

Current Statistics

14 �̅�ௗ Mean number of transmissions per
packet

Accumulate
d

Statistics

15 𝑅𝑇𝑇 RTT at link level Current Statistics

16 𝑅𝑇𝑇ଶ RTT at end-to-end level Current Statistics

17 t̅୩,ୢ Percentage of time in each state Accumulate
d

Statistics

18 P୫ୟ୶ /P୫୧୬ Maximum and minimum employed
power level

Current Statistics

Table 48: Network performance metrics generated by the INTER-HARE gateway

 Observation time and number of duty cycles
Time and number of duty cycles that had taken place during the experiment. We
consider that time starts when the GW button is pressed (first beacon sent). It is
important to note that before pressing the GW button, all the STAs in the network
should be already turned on (in RX/listening state).

 Associations and disassociations
o n,ୡ: Number of associated STAs in the last cycle c. That is, the number of

stations included in the routing table in the last cycle.
o N: Total number of associations performed during the observation time.
o n,ୡ: Number of disassociated STAs in the last cycle c. That is, the number of

stations removed from the routing table in the last cycle.
o N: Total number of disassociations performed during the observation time.

 PDR and CSR
o The Packet Delivery Ratio (PDR) metric measures the network efficiency in

terms of data reception. It is the ratio of the number of expected payloads
received and expected.

𝑃𝐷𝑅 =
𝑁𝑢𝑚. 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑁𝑢𝑚. 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠

o The Cycle Stability Ratio (CSR) metric measures the network stability in terms

of disassociated STAs. It is the ratio of the number of duty cycles without
disassociations and the total number of duty cycles.

 D6.2: Factory Acceptance Test Plan

126

𝐶𝑆𝑅 =
 𝑁𝑢𝑚. 𝑜𝑓 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑛𝑜 𝑑𝑖𝑠𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑆𝑇𝐴𝑠

𝑁𝑢𝑚. 𝑜𝑓 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒𝑠

 Rings
o nୖ,ୡ: Number of rings in the last duty cycle c. The ring is determined by the

maximum number of hops of a branch in the network.
o Nഥୖ,ୡ : Mean number of rings per cycle (dynamic average) in duty cycle c. The

formula uses the last cycle ring mean, which is modified in every cycle with the
new mean.

𝑁ഥோ, =
𝑁ഥ(ିଵ) ∗ (𝑐 − 1) + 𝑛ோ,

𝑐

 Association delay
Mean association time that takes an STA to get associated (i.e. included in the GW
routing table) from the last re-association beacon spread.

dത =
∑ (d,ୱ − t୰ୣୟୱୱ୭ୡ)ୱ∈ୗ

|S|

Where tୟୱୱ୭ୡ,ୱ is the timestamp when the STA s is included in the routing table, t୰ୣୟୱୱ୭ୡ
is the timestamp when the re-association beacon is sent and S is the set of nodes
associated.

 Mean number of transmissions per data packet
Mean number of transmissions per packet14 for the stations associated in cycle d.

ρതୢ =

∑ ൬
Nୟୡ୩ୣୢ,ୱ

Nୱୣ୬୲,ୱ
൰ୱ∈ୗ

|S|

Where Nୟୡ୩ୣୢ,ୱ is the number of packets of station s that have been acknowledged (both
as a consequence of a parent ACK or en e2e ACK), and Nୱୣ୬୲,ୱ is the number of packets
that stations s has sent.

 Number of ACKs sent per STA
Mean number of ACKs sent per STA in the last cycle d. Each STA is expected to send
1 ACK per child; however, some retransmissions could be needed due to packet
losses.

Nഥେ,ୡ =
∑ Nେ,ୱୱ∈ୗ

|S|

Where Nେ,ୱ is the number of ACKs sent by STA s.

 Time in each state
Mean share of time an STA is in each of the possible 4 states during the last cycle d:
CPU, LPM, TX, and RX.

t̅୩,ୢ =
∑ t୩,ୱୱ∈ୗ

|S|

Where t୩,ୱ is the share of time a STA s is in state k.

14 In the INTER-HARE packet hierarchy, we would be counting the number of transmissions needed for transmitting successfully a
transmission (set of segments).

D6.2: Factory Acceptance Test Plan

127

 Round-trip-times
There are two kinds of round-trip-times (RTTs) considered:

o Link, RTT୪୧୬୩: from child’s transmission to parent’s ACK reception.

o End-to-end, RTTୣ ଶୣ: from STA’s transmission to gateway’s end-to-end ACK
reception.

The transmission time is measured right before the unicast_send command for DATA packets
(statistics packets’ RTTs are not computed). There are some instructions expected to be done
before actually transmitting the packet, but measuring in the exact moment when bytes are
starting to be transmitted is not possible. The reception time is measured right after identifying
the ACK packet by its sequence ID as an acknowledgment of the transmitted packet.

Both parameters are obtained averaging the RTT values of the data cycles between two
consecutive statistics cycles. Hence, they only consider the transmission of data packets
(RTTs with respect to the transmission of statistics packets are not considered).

Figure 63: Mechanism of RTT averaging

In addition, if a transmitted packet is not acknowledged in the first transmission, the e2e RTT
will be based on the first transmission time, no matter the number of retransmissions. Instead,
the link RTT will consider the timestamp corresponding to the last transmission start.

Segmentation and link RTTs: If there is more than one packet to be transmitted, the RTT will
be computed taking into account the first segment sent.

Figure 64: Computation of RTT link between a parent and a child when sending more

than one data segment

In addition, two different kinds of histograms are periodically generated:

 Number of cycles an STA is associated
This kind of histogram shows the number of cycles that an STA has been associated
during a given observation time.

 Number of STAs associated
This kind of histogram shows the number of cycles that an STA has been associated
during a given observation time.

Link ACK packets

 D6.2: Factory Acceptance Test Plan

128

The link ACK packet informs about the proper reception of a data packet by a direct parent.
Table 49 shows its internal structure, which includes the following fields:

APPLICATIO
N PACKETS

Byte index

1 2
Link ACK

packet
Segment Seq

Table 49: Field content of a link ACK packet

 Segment: The sequence number of the data packet acknowledged.
 Seq: Link ACK sequence number.

End-to-end ACK packets (e2e ACK)

Similarly, to the link ACK packets, the purpose of the e2e ACK packets is to notify the proper
reception of a data packet by the gateway. They only include a field:

APPLICATIO
N PACKETS

Byte index

1-4
e2e ACK
packet

ack_encoded

Table 50: Field content of an e2e ACK packet

 ack_encoded: This field consists of a binary acknowledgement for each STA in the
network. Such 4 bytes’ value determines which STAs must retransmit their packets if
they were not received by the GW.

Data Acquisition

Once a DAD receives a data primary beacon from its corresponding CH asking for
environmental data or after an explicit request coming from the GW, the installed routines in
the end device ask the corresponding sensor for this data. Every DAD of the INTER-HARE
transport network contains a temperature and humidity sensor. The selected sensor for
performing this task is the DHT22, whose main characteristics are detailed in Annex D: DHT22
temperature and humidity sensor.

3.3.3.19 General considerations

The integration network is responsible for ensuring the communication between the physical
gateway and the rest of the INTER-IoT system (or more specifically, with the virtual gateway).
Communication within this network is bidirectional, as the INTER-IoT system allows both
sending specific requests to deployed devices and receiving information from those nodes.

Specifically, communication between the physical and the virtual gateway can be conducted
through a simple link using one of the following systems (WiFi, GPRS or Ethernet), so that no
further modifications or new developments are considered at this communication level.

As for exchanging messages with the rest of the INTER-IoT system, the most two common
protocols in the IoT will be considered: CoAP and MQTT.

 CoAP (Constrained Application Protocol) is a protocol intended for resource-
constrained IoT devices that enables IoT devices to communicate with the Internet.
CoAP is based on HTTP and the REST model where resources are retrieved from a
server using URIs/URLs, the clients use the well-known methods of GET, PUT, POST,
and DELETE to manipulate these resources. CoAP can be used via other mechanisms,
such as SMS on mobile communication networks.

D6.2: Factory Acceptance Test Plan

129

CoAP is designed to provide multicast support, low overhead, and simplicity. It is
designed to work on microcontrollers with as low as 10 KB of RAM and 100 KB of
storage space while also providing strong security.

 A different approach is provided by the MQTT protocol. MQTT (Message Queuing
Telemetry Transport) is a lightweight protocol. MQTT is best suited for systems that
rely on low bandwidth connections and require code with a small footprint. MQTT
protocols uses the concept of publish-subscribe communications among nodes.

The publish-subscribe schema requires the presence of an intermediate node called a
message broker. Every source of data must publish the data element on the broker
node indicating to which “topic” the data belongs. The nodes interested in receiving
data on a specific topic must subscribe to that topic on the broker. The broker will then
distribute the messages to interested clients based on the topic of a message.

Due to its operation based on well-known request and receive methods, CoAP will be the
preferred protocol to be included in the INTER-IoT gateway of the INTER-HARE platform.

3.3.3.20 Architecture

The architecture of the integration network is closely related to that of the employed gateway.
In the specific case of the INTER-HARE platform, and according to the options presented in
deliverable D3.1. Methods for Interoperability and Integration, the gateway element has
been split into two parts: “the physical part for the embedded device and the part that can be
executed in a virtual container”.

A clear definition of this architecture can be observed in Figure 65, where the two parts of the
gateway (the physical and the virtual) are clearly defined. In the INTER-HARE platform, the
elements performing each role are defined as follows:

 Physical gateway: A combination of a wireless frontend (responsible for the
communication with the rest of the transport network) and a controller (responsible for
the communication with the virtual gateway). Both elements are connected through a
serial link.

 Virtual gateway: A virtual entity which can be executed in a remote location, based in
the Docker15 platform; i.e., a virtual container that provides an additional layer of
abstraction and automation of operating-system-level virtualization on Windows and
Linux.

15 Docker main website - https://www.docker.com/

 D6.2: Factory Acceptance Test Plan

130

Figure 65: Gateway architecture split into two parts

3.3.3.21 Deliverables and version overview

The following table contains a deliverable list which needs to be signed before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components
2 Validation and Test reports of the Pilot system components
3 FAT document

Hardware

4 Zolertia RE-Mote
5 Zolertia Orion Router
6 BeagleBone Black
7 DHT22 temperature and humidity sensor

D6.2: Factory Acceptance Test Plan

131

8 Aaronia Spectran HF-6065 spectrum analyzer
Tools

9 Wireshark 1.7.2 + Sensniff plug-in
10 MCS Spectrum Analyzer 2.1.1a
11 Java viewer tool 1.0
12 Development and demonstration environments setup (in Microsoft Azure Cloud)
13 INTER-FW portal

Table 51: Deliverable checklist

The following table shows the software components and version of which the system release
version 2.0 consists of.

ID Description Version Check

IoT Data Acquisition Device

1 INTER-HARE System - Data Acquistion Device Firmware V1.0
IoT Cluster Head

2 INTER-HARE System - Cluster Head Firmware V1.0
IoT Relay

3 INTER-HARE System - Relay Firmware V1.0
IoT Physical Gateway

4 AN Controller V1.0
5 Protocol Controller V1.0
6 INTER-HARE System - Gateway Firmware V1.0

IoT Virtual Gateway

7 Fiware V4.2.3
8 Virtual gateway docker V0.2.0

Universal container

9 UniversAAL REST API V3.2.1

Table 52: Component version overview

3.3.3.22 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered Test code

Application

239 Support Service choreography and Service
Orchestration

NO

240 Support Mash-up NO
241 Native support services NO
Architecture

2 Scalability. Design YES T4.60.1, T4.60.2, T4.60.5,
T4.60.6, T4.60.7, T4.63.1,
T4.64.1, T4.62.1, T4.62.2,
T4.62.3, T4.62.4, T4.62.5

6 Efficiency of the processing of information YES T4.60.7, T4.63.1, T4.64.1,
T4.62.1, T4.62.2, T4.62.3,
T4.62.4, T4.62.5, T4.46.1

9 Multi-level data processing support YES T4.60.7, T4.63.1, T4.64.1,
T4.62.1, T4.62.2, T4.62.3,
T4.62.4, T4.62.5, T4.46.1

 D6.2: Factory Acceptance Test Plan

132

Communications
7 Support of opportunistic communications to

avoid data loss
YES T4.46.1

14 Platform independent YES

T4.60.4, T4.60.5, T4.60.6,
T4.60.7

15 Common IoT communication protocols must be
supported.

YES T4.60.4, T4.62.3

17 Dynamic network support Partially T4.60.7, T4.46.1, T4.61.1
18 Roaming across networks YES T4.60.3
39 Gateway capabilities YES T4.60.1, T4.60.4, T4.60.5,

T4.60.6
45 Connectivity not based on HW identifiers YES T4.60.4, T4.60.5, T4.60.6,

T4.60.7
78 Automatic and dynamic selection of

communication protocol
NO

80 Support multicast communication among
devices

YES T4.63.1, T4.64.1, T4.62.3,
T4.19.1, T4.61.1

153 System cache in gateways and upper levels Partially T4.63.1, T4.64.1, T4.62.1,
T4.62.2, T4.62.3, T4.62.4,

T4.62.5, T4.46.1
227 Offloading NO
228 MPTCP support NO
229 SDN capabilities NO
230 6LoWPAN and RoLL protocol support NO
231 Network function virtualization NO
232 Fault tolerance YES T4.63.1, T4.64.1, T4.62.1,

T4.62.2, T4.62.3, T4.62.4,
T4.62.5, T4.46.1

233 Flow control and network information tracking YES T4.63.1, T4.64.1, T4.62.1,
T4.62.2, T4.62.3, T4.62.4,

T4.62.5, T4.46.1
Functionality
11 Addressability and reachability Partially T4.60.6, T4.60.7, T4.63.1,

T4.64.1, T4.62.1, T4.62.2,
T4.62.3, T4.62.4, T4.62.5,
T4.46.1, T4.19.1, T4.61.1

19 Mobility Partially T4.60.3, T4.61.1
20 Real time support YES T4.63.1, T4.64.1, T4.62.1,

T4.62.2, T4.62.3, T4.62.4,
T4.62.5, T4.46.1, T4.61.1

21 Real time output Partially T4.63.1, T4.64.1, T4.62.1,
T4.62.2, T4.62.3, T4.62.4,
T4.62.5, T4.46.1, T4.61.1

22 Unique identifier YES T4.60.6, T4.60.7, T4.46.1,
T4.61.1

23 Device semantic definition YES T4.60.6, T4.60.7, T4.61.1
25 Remote programming of devices Partially T4.63.1, T4.64.1, T4.62.1,

T4.62.3, T4.62.4, T4.62.5,
T4.46.1, T4.19.1, T4.61.1

26 Remote device control Partially T4.63.1, T4.64.1, T4.62.1,
T4.62.3, T4.62.4, T4.62.5,

T4.46.1
43 IoT Services discovery YES T4.19.1, T4.61.1
89 Priority of routing and processing of critical

messages upon low-priority sensor data
YES T4.62.3, T4.62.4, T4.62.5,

T4.46.1

D6.2: Factory Acceptance Test Plan

133

179 IoT Platform Semantic Mediator supports
platform to platform communication and
communication between platforms and an
external actor

NO

183 IoT Platform Semantic Mediator does not store
sensor data

NO

API
243 Gateway access API YES T4.19.1, T4.61.1
Interoperability

4 Alignment with other IoT architectures,
especially with AIOTI

NO

13 Extensibility Partially T4.61.1
16 Inter-connection support YES T4.60.6, T4.60.7, T4.61.1
55 Independence of network layer Partially T4.19.1, T4.61.1
56 Secure synchronization YES T4.63.1, T4.64.1, T4.62.1,

T4.62.2, T4.62.3, T4.62.4,
T4.62.5, T4.46.1

86 API for proprietary systems interoperate with
other systems

NO

93 Standard protocol for the device
communications

Partially T4.62.3, T4.62.4, T4.62.5,
T4.46.1

138 User device capability detection YES T4.60.4, T4.60.5, T4.60.6,
T4.60.7, T4.19.1, T4.61.1

226 API for network services YES T4.19.1, T4.61.1
245 Legacy gateway integration NO
Legality
29 Communication legislation and law YES T4.60.1, T4.60.2, T4.60.3

Middleware
234 Provide connectors to middleware standards NO
236 Support of main Internet of Things platforms NO
237 API Middleware for interoperability between

different platforms
NO

238 Virtualization of common objects NO
Operational
57 Device monitoring and self-awareness of the

system
YES T4.63.1, T4.64.1, T4.62.1,

T4.62.2, T4.62.3, T4.62.4,
T4.62.5, T4.46.1

73 Analyzing data from heterogeneous platforms NO
75 The interaction between IoT endpoints may

follow the M2M communication concept
YES T4.62.2, T4.62.3, T4.62.4,

T4.62.5, T4.46.1

76 Interoperability between things from different
administrative/management domains

NO

96 Enable (automated or semi-automated) linking of
relevant data sources

NO

99 Mobility and crowd sensing NO
178 IoT Platform Semantic Mediator provides data

and semantic interoperability functionality
accessible with a set of interfaces

NO

204 Support smart network resources allocation in
heterogeneous wireless sensor networks

YES T4.63.1, T4.64.1, T4.62.1,
T4.62.2, T4.62.3, T4.62.4,

T4.62.5, T4.46.1
205 Provide services to detect and predict devices’

events in heterogeneous wireless networks
YES T4.62.1, T4.62.3, T4.62.4,

T4.62.5, T4.46.1

206 Support scalable devices using power saving
communication protocols

YES T4.63.1, T4.64.1, T4.62.1,
T4.62.2, T4.62.3, T4.62.4,

T4.62.5, T4.46.1

 D6.2: Factory Acceptance Test Plan

134

207 Shall support scalable network topologies YES T4.60.7, T4.62.3, T4.62.4,
T4.62.5, T4.46.1

Performance
72 Communication should be done using protocols

that are efficient in terms of amount of
exchanged information over message size

YES T4.63.1, T4.64.1, T4.62.1,
T4.62.2, T4.62.3, T4.62.4,
T4.62.5, T4.46.1, T4.61.1

Security
27 System security YES T4.63.1, T4.64.1, T4.62.1,

T4.62.2, T4.62.3, T4.62.4,
T4.62.5, T4.46.1

28 System privacy YES T4.63.1, T4.64.1, T4.62.1,
T4.62.2, T4.62.3, T4.62.4,

T4.62.5, T4.46.1
95 Robustness, resilience and availability YES T4.62.2, T4.62.3, T4.62.4,

T4.62.5, T4.46.1
98 Data provenance YES T4.61.1

Semantics
163 Design support for semantic interoperability NO
180 Semantic and syntactic interoperability NO
186 Design of required ontologies NO
224 Location semantic support for mobile smart

objects
NO

225 Special considerations in the semantic ontology
to objects with low resources

NO

235 Support of semantic modelling in the middleware
layer

NO

223 Semantic support for virtual smart objects NO
Virtualization
242 Object/Device virtualization YES T4.60.7, T4.63.1, T4.64.1,

T4.62.1, T4.62.2, T4.62.3,
T4.62.4, T4.62.5, T4.46.1,

T4.61.1
244 Gateway virtualization YES T4.60.4, T4.19.1, T4.61.1

Table 53: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the test(s)
that validate their implementation.

ID Scenario name Covered Test code

1 Chronic disease prevention NO

2 IoT support for transport planning and execution NO

3 IoT Weighbridges NO

4 Monitoring reefer container YES All tests

5 Monitoring of containers carrying sensitive goods NO

6 Dynamic lighting in the port NO

7 SCADA port sensor system integration with IoT platforms NO

8 SEAMS integration with IoT platforms NO

9 Accident at the port area NO

10 Health monitoring system with passengers aboard a ferry NO

11 Primary prevention of cognitive decline NO

12 Health failure disease and mild Alzheimer disease NO

D6.2: Factory Acceptance Test Plan

135

13 IoT interoperability for Vessel Arrivals NO

15 Surveillance systems for prevention programs NO

16 Elderly monitoring NO

17 Health monitoring system with passengers aboard a train NO

18 Containership is entering the harbour region NO

19 Transport on truck breaks down or is hijacked NO

20 Damage or problems to the container during shipment NO

21 Low risk of developing chronic diseases. NO

22 Increased risk of developing chronic diseases NO

23 High risk of developing chronic diseases NO

24 Very high risk of developing chronic diseases NO

25 Extremely high risk of developing chronic diseases NO

26 Alcohol / Drug testing for truck/ bus drivers NO

27 Vitamins intake analyser NO

28 Calories / nutrition mixer / cookware counter NO

29 Reliable control of robotic cranes and trucks in port terminals NO

30 IoT access control, traffic and operational assistance NO

Table 54: Scenario vs test mapping

At this point it is worth noting that the Monitoring Reefer Container scenario has been chosen
due to the suitability of the INTER-HARE platform to gather periodic and event-based
information from different locations through the wireless medium while consuming the
minimum energy consumption in the employed devices.

3.3.3.23 Test environment

Introduction

To test the functionality of the INTER-HARE platform in combination with the IoT framework a
representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

This testbed is considered as the last stage of the design and implementation of the INTER-
HARE platform and will be useful to evaluate the system’s performance in real conditions as
well as to provide developers with enough information to fix and/or improve the detected
failures / weaknesses. Therefore, it is possible to list the mail goals of this testbed (or test setup
for integration) as:

1. To validate in a real scenario, the different hardware elements included in the INTER-
HARE platform.

2. To validate the different communication protocols developed for the INTER-HARE
platform and analyze their performance.

3. To validate (according to the INTER-IoT consortium) an end-to-end communication
scheme with the rest of the INTER-IoT platform, thus ensuring interoperability between
both environments.

Hardware components

 D6.2: Factory Acceptance Test Plan

136

A comprehensive list of all devices (and their consisting hardware components) considered for
the INTER-HARE testbed is provided in Table 55.

Table 55: List of INTER-HARE testbed components

INTER-IoT gateway

The INTER-IoT gateway (specifically, its physical part) is considered the brain of the INTER-
HARE platform and the single point of contact between the physical network and the rest of
the INTER-IoT system. Due to this dual conception, it is easy to split its internal architecture
into the conforming elements responsible for interacting with the network running the INTER-
HARE platform (transport network) and the ones exchanging information with the rest of the
INTER-IoT system (integration network).

Integration network

The main element of the integration network part of the INTER-IoT gateway is a controller
which will interact with the rest of the INTER-IoT system (or more specifically, with the virtual
part of the INTER-IoT gateway).

Among the different controllers existing in the market, the preferred option at this stage of the
project is the BeagleBone Black16, which combines the advantages of using a small, powerful
and lightweight ARM-based computer running a Linux-based OS with its facility to integrate
and interact with other systems (see specifications in Annex C: BeagleBone Black).
However, other options like Raspberry Pi (see Table 56) could even be studied in the current
project as alternative to the BeagleBone.

The controller should also include all the necessary communication interfaces to be able to
communicate with both the rest of the INTER-IoT system (via a WiFi or Ethernet link) and with
the integration network part of the INTER-IoT gateway (via a serial link).

16 BeagleBone main website - http://beagleboard.org/bone

D6.2: Factory Acceptance Test Plan

137

Table 56: Comparison table among Arduino UNO, Raspberry Pi and BeagleBone

Transport network

The main element of the transport network part of the INTER-IoT gateway is the Zolertia RE-
Mote17 (see specifications in Annex A: Zolertia RE-Mote). This device will be responsible for
controlling the two-tier cluster-tree network, gathering all the collected information, and
transmitting this information via serial to the BeagleBone, which in turn acts as the main
element of the integration network.

Figure 66: Zolertia RE-Mote

Figure 67: Zolertia Orion Router

Relay device

Only if it is necessary to extend the range coverage of the LPWAN network and retransmit the
information from both the INTER-IoT gateway and the cluster-heads in the transport network,
a relay device has been also considered in the INTER-HARE architecture. The Zolertia RE-
Mote (whose specifications can be found in Annex A: Zolertia RE-Mote) has been the
selected technology to perform this task.

17 Zolertia RE-Mote main website - https://github.com/Zolertia/Resources/wiki/RE-Mote

 D6.2: Factory Acceptance Test Plan

138

Cluster-head

Cluster-heads are entitled by the INTER-IoT gateway to manage their corresponding LPLAN
in a hierarchic way. They are the only elements with a multiband radio module (working at 868
MHz and 2.4 GHz), so that they gathered the information transmitted by data acquisition
devices of their own LPLAN at 2.4 GHz and retransmit it to the INTER-IoT gateway (or
alternatively, to the closest relay device) at 868 MHz through the LPWAN.

In this case, the device selected to perform the role of cluster-head is the Zolertia Orion
Router18 (see specifications in Annex B: Zolertia Orion Router), due to its ability to
communicate with devices both from 868 MHz and 2.4 GHz band. In this case, the software
application programmed in this device will make the radio module to periodically change of
frequency band depending on the specific communication requirements of the system.

Optionally, and only if feasible in terms of energy consumption, cluster-heads will also contain
a GPS module to inform INTER-IoT of their specific location. Communication between cluster-
heads and their embedded GPS modules will be performed by using serial ports from both
devices. Although the selection of the most appropriate GPS for the INTER-HARE platform will
be studied during the design and implementation stage, wide-known modules from DIY
environments (typically used in combination with Arduino or BeagleBone Black) will be
preferably chosen. In this sense, the SparkFun GPS Logger Shield19 is proposed as an
example.

Data acquisition device

Data acquisition devices are those elements deployed directly on the area where one or more
environmental variables must be monitored. In the current project, the selected data acquisition
device is a Zolertia RE-Mote only working in its 2.4 GHz frequency band.

As for the additional sensor embedded in these devices, the selected one has been the DHT22
temperature and humidity sensor, whose main characteristics are included in Annex D:
DHT22 temperature and humidity sensor. Transmission of environmental data acquired by
the DHT22 sensor is transmitted to the Zolertia RE-Mote by means of an analog connector.

Software components

Contiki 3.0 OS20 is selected to validate the INTER-HARE platform, mainly due to its ability to
easily execute multiple processes concurrently and its powerful COOJA network simulator.
The INTER-HARE platform will be fully programmed in novel hardware-independent modules,
one for each of the four possible network roles (INTER-IoT gateway, relay device, cluster-head
device, and data acquisition device), adding all the required functionalities in order to ensure
the proper operation of the transport network.

As for the integration network, the controller will be programmed by means of OSGi Java-
based bundles. A list of interoperability tasks is detailed in the following lines:

1. Development of controller components according to the INTER-LAYER architecture:
a. INTER-HARE access network module.
b. Protocol modules (at least one from the following ones: CoAP, MQTT).

2. Communication routines between the protocol controller of the INTER-IoT physical
gateway and the dispatcher.

18 Zolertia Orion Router main website - https://github.com/Zolertia/Resources/wiki/Orion
19 SparkFun GPS Logger Shield description - https://www.sparkfun.com/products/13750
20 Contiki OS main website - http://contiki-os.org/

D6.2: Factory Acceptance Test Plan

139

3. Connection between the INTER-HARE access network module and the HARE protocol
stack through an API.

4. Access/collaboration with other elements of the INTER-IoT system to ensure proper
system operation.

5. Serial communication routines with the main element of the transport network.

3.3.3.24 Deployment

Performance evaluation will be performed in an ad hoc testbed located on the 2nd floor, right
wing of the Tanger building at UPF facilities21 (see Figure 68). The proposed testbed will
consist of the elements depicted in Table 57, which will run their own version of the INTER-
HARE platform.

Device Quantity

INTER-IoT gateways 1

Cluster-heads

(868 MHz & 2.4 GHz)

2 or more

Data acquisition devices

(2.4 GHz)

4 or more per cluster-head

(8 in total)

Relay devices (868 MHz) At least 1

Table 57: Estimated pilot equipment

Figure 68: 3D model of UPF facilities

21 UPF communication campus main website - https://www.upf.edu/campus/en/comunicacio/tanger.html

 D6.2: Factory Acceptance Test Plan

140

If no otherwise specified, all tests will be executed considering no mobility and follow these
criteria:

 ‘A’ office from Figure 68 will act as a reefer container

 ‘B’ office from Figure 68 will also act as a reefer container

 ‘C’ office from Figure 68 will act as the room where the INTER-IoT gateway is located

Dimensions of typical Maersk 40’ reefer containers are 40’ x 8’ x 9’6”; that is 12.192 m. x 2.438
m. x 2.591 m. Dimensions of the offices that will be employed in the FAT tests are shown in
Figure 69, Figure 70, and Figure 71. In addition, Table 58 summarizes offices’ dimensions.

Office Depth (m.) Height (m.) Width (m.)

A 6.761 2.655 3.040

B 6.500 2.655 4.686

C 7.066 2.655 4.630

Maersk 40’
reefer container

12.192 2.438 2.591

Table 58: Summary of offices’ dimensions

Figure 69: Office ‘A’ detail and dimensions

D6.2: Factory Acceptance Test Plan

141

Figure 70: Office ‘B’ detail and dimensions

Figure 71: Office ‘C’ detail and dimensions

All STAs will be powered by batteries except the INTER-IoT gateway, which will be
permanently powered by the PC or an alternative power supply. Additional power supply for
cluster-heads will be studied depending on the incorporation of a GPS module. Similarly,
additional energy requirements of relay devices will be assessed.

The testbed deployment will be based on the architecture shown in Figure 72, with two
differentiated networks: the integration network and the transport network (the latter one
running INTER-HARE).

 D6.2: Factory Acceptance Test Plan

142

An INTER-IoT physical gateway will be built, so that it will be able to simultaneously interact
with both networks. While its conforming BeagleBone will act as a client in the client/server
communication scheme with the rest of the INTER-IoT system in the integration network, its
conforming Zolertia RE-Mote will act as the brain of the whole INTER-HARE platform in the
transport network.

The transport network will also consist of at least two cluster-heads (A and B), optionally
powered with GPS modules, which will be responsible for receiving the data gathered by the
data acquisition devices deployed in their 2.4 GHz range coverage area. It is worth noting here
that those two range coverage areas will be separated enough to not create interferences
between them.

All data acquisition devices will include a DHT22 temperature and humidity sensor, from which
they will collect environmental data through an analog connection already developed in the
Zolertia RE-Motes. Lastly, they will send this collected data to their corresponding cluster-head
periodically.

Figure 72: Integration and Factory test setup overview

3.3.3.25 Test setups, tools, hooks and probes

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

D6.2: Factory Acceptance Test Plan

143

Test setups

Test setup Description

TS_01 Point-to-point topology (868 MHz)

TS_02 Point-to-point topology (2.4 GHz)

TS_03 Double CH

TS_04 Point-to-point topology (868 MHz &
2.4 GHz)

TS_05 Relay topology

TS_06 Multi-hop topology (I)

TS_07 Multi-hop topology (II)

TS_08 Full INTER-IoT topology

Table 59: Test setups summary

TS_01 Point-to-point topology (868 MHz)

The point-to-point topology consists of only 1 GW and 1 CH, both working at 868 MHz
frequency band. It is mainly intended to determine the channel conditions at this frequency
band and the maximum coverage range achievable.

Figure 73: TS_01 network topology

TS_02 Point-to-point topology (2.4 GHz)

Similar to the previous topology, only two devices are used in this setup: 1 CH and 1 DAD. In
this case, both devices work at 2.4 GHz frequency band and their main purpose is to determine
the channel conditions.

 D6.2: Factory Acceptance Test Plan

144

Figure 74: TS_02 network topology

TS_03 Double CH

Two CH are used in this setup in order to determine the interference level produced by them
on a single DAD, which may vary its position on the scenario.

Figure 75: TS_03 network topology

TS_04 Point-to-point topology (868 MHz & 2.4 GHz)

This topology establishes full communication between a GW and a DAD through an
intermediate CH. While the GW is placed in the room ‘C’, the other two devices are placed in
the room ‘B’.

D6.2: Factory Acceptance Test Plan

145

Figure 76: TS_04 network topology

TS_05 Relay topology

As indicated by its name, the relay topology incorporates a relay in the room ‘A’ which extends
communications at 868 MHz. More specifically, its main purpose is to retransmit information
from (to) the GW of room ‘C’ to (from) the CH of room ‘B’. In addition, some DADs are located
in room ‘B’.

Figure 77: TS_05 network topology

TS_06 Multi-hop topology (I)

The multi-hop topology (I) replaces the relay of the TS_05 with a new CH in room ‘A’. Some
additional DADs are placed in room ‘A’, too.

 D6.2: Factory Acceptance Test Plan

146

It is worth noting here that CH of room ‘A’ should aggregate data from CH of room ‘B’ to the
data produced by the new DADs placed in room ‘A’.

Figure 78: TS_06 network topology

TS_07 Multi-hop topology (II)

The last test setup establishes direct communication between the two CH and the GW.
Information gathered from DADs could be this way transmitted directly to the GW.

Figure 79: TS_07 network topology

D6.2: Factory Acceptance Test Plan

147

TS_08 Full INTER-IoT topology

Lastly, all the elements of the INTER-HARE platform are interconnected in this test setup, from
the data acquisition devices to the virtual gateway. As described in the system’s architecture,
two different networks collaborate to ensure end-to-end communications:

A. The transport network, consisting of the DADs, the CHs and the GW.
B. The integration network, consisting of the GW (considered in the deployment as the

physical gateway), and the virtual gateway with its related middleware.

Figure 80: TS_08 network topology

Test tools

Test setup Description

TT_01 Java viewer tool

TT_02 Zolertia RE-Mote leds

TT_03 Aaronia Spectran HF-6065 spectrum
analyzer

TT_04 MCS Spectrum analyzer

TT_05 Wireshark

TT_06 Development and demonstration
environments setup

Table 60: Test tools summary

TT_01 Java viewer tool

To facilitate the debug of the programmed protocols, code will contain messages and flags
that will be transmitted via serial output by each system’s device. All Zolertia platforms have
a serial-to-USB converter on-board, meaning that devices can be connected to one USB port
of a PC without any additional hardware but a cable. Serial output implemented in Contiki OS
is supported by the standard C library API for printing.

 D6.2: Factory Acceptance Test Plan

148

However, to see the messages generated by devices is necessary to maintain a Linux terminal
session active, which in turn makes difficult to store the received information. For this reason,
it has been necessary to define the requirements of a new monitoring tool:

 Multi-platform (Windows, Linux, Mac OS)
 No necessity of Contiki OS previously installed
 Connection via USB
 Log recording
 Data filtering
 Debugging

The result is a Java-based monitoring tool able to gather, show and store all the log messages
emitted by an STA directly connected to a PC via an USB cable. As can be seen in Figure 81,
the tool informs about the COM port in which the STA is connected (for instance, /dev/com5)
and show the ID of the STA once it has been properly recognized (in the example, ID is 6).
Different filters based on character strings can be applied on the gathered information in order
to show only some relevant data or those debugging flags placed in the code run by STAs.
Information can also be exported to a .txt file for post-processing purposes.

Figure 81: INTER-HARE monitoring tool based on Java

D6.2: Factory Acceptance Test Plan

149

RE-Mote leds

LEDs are a simple but important tool to communicate with users or to debug programs. Each
one of the hardware platforms over which the INTER-HARE platform will contain its own set of
led codes.

Figure 82: A Zolertia RE-Mote device with its led switched on in red

TT_03 Aaronia Spectran HF-6065 spectrum analyzer

The Aaronia Spectran HF-6065 spectrum analyzer measures the magnitude of an input signal
versus frequency within the full frequency range of the instrument. The primary use is to
measure the power of the spectrum of known and unknown signals.

Figure 83: Aaronia Spectran HF-6065 spectrum analyzer

The spectrum analyzer will be very useful to determine the strength of the different signals
emitted by the devices employed in the different tests as well as to determine possible
interferences between signals.

TT_04 MCS Spectrum analyzer

The Aaronia MCS software is an advanced control and reporting software for the Spectran
series of Aaronia spectrum analyzer devices. The main features of the software are detailed
in the following lines:

 D6.2: Factory Acceptance Test Plan

150

 Runs with any operation system like MAC OS, Linux and Windows.
 Real-Time remote control with any Spectran Spectrum Analyzer.
 Supports an unlimited number of Pre-Compliance limits displays like EN55011,

EN55022, etc., and including various separate limit curves and bar displays.
 Multi-window support.
 Powerful undo feature.
 Channel and provider display.
 Fully customizable skins and look.
 Report and record function.

Figure 84: Screenshot of MCS spectrum analyzer

TT_05 Wireshark

Wireshark is a free and open source packet analyzer. It is used for network troubleshooting,
analysis, software and communications protocol development, and education. As both the
LPWAN and the LPLANs considered in the project are based on the IEEE 802.15.4 PHY layer,
it has been necessary to adapt the Wireshark packet analyzer to this specific technology.

Sensniff 22 has been the selected tool to capture live traffic in IEEE 802.15.4 networks. It
consists of two components:

 Peripheral: This is an embedded device with an IEEE 802.15.4 transceiver which
captures all network frames and streams them over to the host.

 Host: This is a python script which runs on a PC. It reads network packets captured by
the peripheral, converts them to PCAP and pipes them to Wireshark.

Other than network packet capture, the host can send commands to the peripheral to achieve
secondary functionality e.g. change radio channel.

TT_06 Development and demonstration environments setup

As defined in Deliverable 3.2. Methods for Interoperability and Integration, to enable an
homogeneous controlled environment for the development of the different layers, a
development cloud environment has been set up.

This environment is based in the Microsoft Azure Cloud and comprises a set of 7 commodity
servers to decouple the different software modules development and, at the same time, making
the latest features available to be tested. These servers are all accessed through a unique
stepping-stone server. The access to this environment is securized through Microsoft Azure
standard security mechanisms.

22 Sensniff main website in Github - https://github.com/g-oikonomou/sensniff

D6.2: Factory Acceptance Test Plan

151

3.3.3.26 Test hooks

Test setup Description

TH_01 Iterative switching on

TH_02 Continuous traffic injection

TH_03 Random traffic injection

TH_04 Error addition

TH_05 Occasional switching off

TH_06 User browsing

Table 61: Test hooks summary

TH_01 Iterative switching on

A device is switched on repeatedly, executing its initialization process. Although each
considered device (gateway, cluster head, relay and data acquisition device) is programmed
with different functions, they all will try firstly to send a discovery message to their immediate
parent and start their corresponding mechanism in order to be registered in the network.

In some tests, this iterative switching on will be performed in the CHs or the DADs from
increasingly distances to their closer GW or CH, respectively. It will be useful to determine the
maximum distance from which that device can establish a connection with its parent.

TH_02 Continuous traffic injection

Continuous traffic injection consists in the periodic data acquisition and/or simulation by DADs
and its corresponding transmission to their immediate parent. By following the beacon
scheduling of the INTER-HARE platform, DADs will send a data packet every cycle.

TH_03 Random traffic injection

Random traffic injection is conceived as random processes executed in both the GW and the
DADs, generating query-driven and event-driven traffic, respectively.

 Query-driven traffic is generated at the GW and consists of a data request which must
be transmitted to a specific DAD of the network (for instance, a user asks for the
temperature value of a determined station).

 Event-driven traffic is generated at DADs when a predetermined threshold has been
surpassed (for instance, the temperature sensor has detected a value over 40 °C).

TH_04 Error addition

The whole system can be altered with the arbitrarily introduction of a certain error probability
when sending both application packets and their corresponding ACKs (it is worth noting here
that neither messages implied in the association process nor statistics packets are affected by
arbitrary generated errors to not artificially disturb the network setup nor the collection of
operation information).

Errors are generated through a uniformly distributed random variable according to mean error
values from four different error configurations (see Table 62). Before sending a message,
STAs compute this value and discard messages accordingly.

 D6.2: Factory Acceptance Test Plan

152

Error
configuration

Data Error ACK Error

E0/0 0% 0%

E10/5 10% 5%

E20/10 20% 10%

E30/15 30% 15%

Table 62: Definition of error configurations

TH_05 Occasional switching off

In some tests, an STA will be deliberately switched off in order to analyze the behavior of the
rest of the network to overcome this issue and rearrange the routing paths to the GW.

TH_06 User browsing

The user of the platform freely browses the different network configuration options and
receives information regarding the network state and main functionalities.

3.3.3.27 Test probes

Test setup Description

TP_01 Gateway log

TP_02 Cluster Head log

TP_03 Relay log

TP_04 Data Acquisition Device log

TP_05 INTER-FW portal

Table 63: Test probes summary

TP_01 Gateway log

The Gateway log includes information regarding both the transport and the integration network.
It is stored in separated files according to the file system implemented in the device.

A summarized version of this log, only containing net information and network events could be
optionally stored in a microSD connected to the device.

TP_02 Cluster Head log

The Cluster Head log is a file created by this device where all the gathered information as well
as all hooks and flags are stored. It also includes information about the DADs directly
associated to that device.

TP_03 Relay log

Similarly, to other logs, the Relay log is a file which contains all the information received and
transmitted by this device.

TP_04 Data Acquisition Device log

The Data Acquisition Device log is created each time this device is started and includes
information with regard to the data acquired from sensors and to the connection with the
corresponding CH.

D6.2: Factory Acceptance Test Plan

153

TP_05 INTER-FW portal

As described in the example demo of Subsection 4.2.6. Demo from Deliverable 3.2.
Methods for Interoperability and Integration, the INTER-FW portal is used to demonstrate
how the data flows through all the test setup.

3.3.3.28 Test description

S4 – Monitoring reefer containers

The objective of this scenario is to interoperate and use a shipping line’s container IoT platform
that is currently able to monitor reefer containers along its journey with the IoT platforms of the
road hauliers or container terminals. This integration will allow a quick reaction in case of an
alarm regarding the functioning of refrigerated goods and it will benefit container terminals and
road haulier companies (drivers in this case) to avoid the periodic human inspection required
for reefer containers.

Interoperability in this scenario is required to connect the shipping lines, the container terminals
and the road hauliers IoT platforms.

The resulting service will be obtained by the integration of:

 Carrier IoT platform who is owner of the container

 Container terminal IoT platform

 Road haulier cloud IoT platform

In the following lines it is described how the port environment (i.e., reefer containers and
container terminal) is emulated in an ad-hoc testbed located on UPF facilities and the list of
considered use cases together with their associated tests. As described in Subsection
3.3.3.24, while the smallest rooms of our offices are considered as reefer containers, the
container terminal has been located in a larger one.

Use case Associated test

[19] User interacts with sensors or devices T4.19.1 User interaction

[46] Device failure detection T4.46.1 Resilience against failures

[60] Device registry T4.60.1 Range coverage at 868 MHz

T4.60.2 Range coverage at 2.4 GHz

T4.60.3 Interference analysis at 2.4 GHz

T4.60.4 (Physical) Gateway registration

T4.60.5 Container registration

T4.60.6 Sensor registration

T4.60.7 Multiple sensor registration

[61] Platform Configuration on the Gateway T4.61.1 Platform setup and simulation

[62] Device (sensor) triggers information T4.62.1 Event-driven data delivery model
test
T4.62.2 Continuous data delivery model
test
T4.62.3 Hybrid data delivery model test

T4.62.4 Data aggregation test

T4.62.5 Relay operation test

 D6.2: Factory Acceptance Test Plan

154

[63] Platform requests information from a
device (sensor)

T4.63.1 Query-driven data delivery model
test (requests)

[64] Platform sends information to device
(actuator)

T4.64.1 Query-driven data delivery model
test (responses)

Table 64: Summary of FAT tests and definition

D6.2: Factory Acceptance Test Plan

155

Concept Test
code

Test name Test
setup

Tools Hooks Probes Outcomes

A. Range
coverage

T4.60.
1

Range coverage at 868 MHz TS_01 TT_01,
TT_02,
TT_03,
TT_04

TH_01 TP_01,
TP_02

Max. distance

T4.60.
2

Range coverage at 2.4 GHz TS_02 TT_01,
TT_02,
TT_03,
TT_04

TH_01 TP_02,
TP_04

Max. distance

T4.60.
3

Interference analysis at 2.4
GHz

TS_03 TT_01,
TT_02,
TT_03,
TT_04,
TT_05

TH_01 TP_02,
TP_04

Interference
map

B. Association
& Registration

T4.60.
4

(Physical) Gateway
registration

TS_04 TT_01,
TT_02,
TT_06

TH_01 TP_01,
TP_05

Pass/Fail,
Assoc. delay

T4.60.
5

Container registration TS_04 TT_01,
TT_02,
TT_06

TH_01 TP_01,
TP_02,
TP_05

T4.60.
6

Sensor registration TS_04 TT_01,
TT_02,
TT_06

TH_01 TP_01,
TP_02,
TP_04,
TP_05

T4.60.
7

Multiple sensor registration TS_07 TT_01,
TT_02,
TT_06

TH_01 TP_01,
TP_05

C. Data
transmission

T4.63.
1

Query-driven data delivery
model test (requests)

TS_07 TT_01,
TT_06

TH_03,
TH_04

TP_01,
TP_05

 D6.2: Factory Acceptance Test Plan

156

T4.64.
1

Query-driven data delivery
model test (responses)

TS_07 TT_01,
TT_06

TH_03,
TH_04

TP_01,
TP_05

Pass/Fail,
PDR (%),

Delay,
Throughput,

PRM,
Energy

consumption

T4.62.
1

Event-driven data delivery
model test

TS_07 TT_01,
TT_06

TH_03,
TH_04

TP_01,
TP_05

T4.62.
2

Continuous data delivery
model test

TS_07 TT_01,
TT_06

TH_02,
TH_04

TP_01,
TP_05

T4.62.
3

Hybrid data delivery model test TS_07 TT_01,
TT_06

TH_02,
TH_03,
TH_04

TP_01,
TP_05

T4.62.
4

Data aggregation test TS_06 TT_01,
TT_06

TH_02,
TH_03,
TH_04

TP_01,
TP_05

T4.62.
5

Relay operation test TS_05 TT_01,
TT_05,
TT_06

TH_02,
TH_03,
TH_04

TP_01,
TP_03,
TP_05

D. Resilience T4.46.
1

Resilience against failures TS_07 TT_01,
TT_06

TH_02,
TH_03,
TH_05

TP_01,
TP_05

Pass/Fail

E. Integration
network

T4.19.
1

User interaction TS_08 TT_02,
TT_06

TH_02,
TH_03,
TH_06

TP_05 Pass/Fail

T4.61.
1

Platform setup and simulation TS_08 TT_02,
TT_06

TH_01,
TH_02,
TH_03,
TH_05,
TH_06

TP_05 Pass/Fail

Table 65: Diagram compiling the different test setups

D6.2: Factory Acceptance Test Plan

157

A
R

C
H

IT
E

C
T

U
R

E

C
O

M
M

U
N

IC
A

T
IO

N
S

F
U

N
C

T
IO

N
A

L
IT

Y

A
P

I

IN
T

E
R

O
P

E
R

A
B

IL
IT

Y

L
E

G
A

L
IT

Y

O
P

E
R

A
T

IO
N

A
L

P
E

R
F

O
R

M
A

N
C

E

S
E

C
U

R
IT

Y

V
IR

T
U

A
L

IZ
A

T
IO

N

CONCEPT TEST

CODE 2 6 9 7 14

15

17

18

39

45

80

15
3

23
2

23
3

11

19

20

21

22

23

25

26

43

89

24
3

13

16

55

56

93

13
8

22
6

29

57

75

20
4

20
5

20
6

20
7

72

27

28

95

98

24
2

24
4

A. Range
Coverage T4.60.1

X X X

T4.60.2
X X

T4.60.3
 X X X

B.
Association

&
Registration

T4.60.4
 X X X X X X

T4.60.5
X X X X X

T4.60.6
X X X X X X X X X

T4.60.7
X X X X X X X X X X X X X X

C. Data
transmission T4.63.1

X X X X X X X X X X X X X X X X X X X X

T4.64.1
X X X X X X X X X X X X X X X X X X X X

T4.62.1
X X X X X X X X X X X X X X X X X X X X

T4.62.2
X X X X X X X X X X X X X X X X X X X

T4.62.3
X X X X X X X X X X X X X X X X X X X X X X X X X X X

T4.62.4
X X X X X X X X X X X X X X X X X X X X X X X X X

T4.62.5
X X X X X X X X X X X X X X X X X X X X X X X X X

D. Resilience
T4.46.1

 X X X X X X X X X X X X X X X X X X X X X X X X X X X

E. Integration
network T4.19.1

 X X X X X X X X X

T4.61.1
 X X X X X X X X X X X X X X X X X X X X

Table 66: List of requirements to be analyzed in each test

 D6.2: Factory Acceptance Test Plan

158

3.3.3.29 U19 – User interacts with sensors or devices

The whole platform is accessed remotely by the user, who can change some configuration
settings. The user experience is analyzed.

T4.19.1 User interaction

ID T4.19.1

Test User experience analysis when configuring the INTER-HARE platform

Type E. Integration network

Setup Need test setup TS_08

Start All DADs, CHs and the GW are already registered.

Req. [80], [11], [25], [43], [243], [55], [138], [226], [244]

Input Test hooks TH_02, TH_03, and TH_06

Output Check system’s ability to configure the parameters selected by the user.

Logs E. Integration\T4.19.1_ux.txt

Outcome Pass / Fail

3.3.3.30 U46 – Device failure detection

The system is able to detect problems in intermediate devices (CHs and DADs) and to act
consequently, by reconstructing routing paths and ensuring data transmissions.

T4.46.1 Resilience against failures

ID T4.46.1

Test INTER-HARE resilience analysis against failures

Type D. Resilience

Setup Need test setup TS_07

Start All DADs, CHs and the GW are already registered.

Req. [6], [9], [7], [17], [153], [232], [233], [11], [20], [21], [22], [25], [26], [89], [56], [93],
[57], [75], [204], [205], [206], [207], [72], [27], [28], [95], [242]

Input Test hooks TH_02, TH_03, and TH_05

Output Check if the system is able to rebuild routing routes after one (or more) DAD (or
CH) switches off.

Check if the system is able to maintain high reliability levels after one (or more)
DAD (or CH) switches off.

Logs D. Resilience\T4.46.1_resilience.txt

D6.2: Factory Acceptance Test Plan

159

Outcome Pass / Fail

3.3.3.31 U60 – Device registry

Devices are able to determine if they are within the range coverage of their immediate parent.
If so, they execute the association process to be part of the network by receiving the
corresponding network address and listening to the schedule beacons.

T4.60.1 Range coverage at 868 MHz

ID T4.60.1

Test Analysis of range coverage at 868 MHz

Type A. Range coverage

Setup Need test setup TS_01

Start GW located in a fixed position.

CH initially located close to the GW.

CH is moved further from the GW.

Req. [2], [39], [29]

Input Test hook TH_01 in different CH positions

Output CH inside or outside the range coverage of the GW.

Logs A. Range\T4.60.1_868.txt

Outcome Max. distance

T4.60.2 Range coverage at 2.4 GHz

ID T4.60.2

Test Analysis of range coverage at 2.4 GHz

Type A. Range coverage

Setup Need test setup TS_02

Start CH located in a fixed position.

DAD initially located close to the CH.

DAD is moved further from the CH.

Req. [2], [29]

Input Test hook TH_01 in different DAD positions

 D6.2: Factory Acceptance Test Plan

160

Output DAD inside or outside the range coverage of the CH.

Logs A. Range\T4.60.2_24.txt

Outcome Max. distance

T4.60.3 Interference analysis at 2.4 GHz

ID T4.60.3

Test Evaluation of interference between two LPLANs

Type A. Range coverage

Setup Need test setup TS_03

Start 2 CHs located in different rooms (‘containers’).

DAD initially located close to one CH.

DAD is moved to the other CH.

Req. [18], [19], [29]

Input Test hook TH_01 in different DAD positions

Output DAD receives a certain RSSI level from one or both CHs.

Logs A. Range\T4.60.3_interference.txt

Outcome Interference ‘map’

T4.60.4 (Physical) Gateway registration

ID T4.60.4

Test GW registration into the INTER-IoT network

Type B. Association & Registration

Setup Need test setup TS_04

Start GW located in a fixed position.

Req. [14], [15], [39], [45], [138], [244]

Input Test hook TH_01

Output Check proper GW registration into the INTER-IoT network.

Logs B. Association\T4.60.4_gw_reg.txt

Outcome Pass / Fail

D6.2: Factory Acceptance Test Plan

161

 Assoc. delay

T4.60.5 Container registration

ID T4.60.5

Test CH (container) registration into the INTER-IoT network

Type B. Association & Registration

Setup Need test setup TS_04

Start GW & CH located in a fixed position.

Req. [2], [14], [39], [45], [138]

Input Test hook TH_01

Output Check proper CH registration into the INTER-IoT network.

Logs B. Association\T4.60.5_ch_reg.txt

Outcome Pass / Fail

 Assoc. delay

T4.60.6 Sensor registration

ID T4.60.6

Test DAD (sensor) registration into the INTER-IoT network

Type B. Association & Registration

Setup Need test setup TS_04

Start GW, CH & DAD located in a fixed position.

Req. [2], [14], [39], [45], [11], [22], [23], [16], [138]

Input Test hook TH_01

Output Check proper DAD registration into the INTER-IoT network.

Logs B. Association\T4.60.6_dad_reg.txt

Outcome Pass / Fail

 Assoc. delay

T4.60.7 Multiple sensor registration

 D6.2: Factory Acceptance Test Plan

162

ID T4.60.7

Test Multiple DAD (sensor) registration into the INTER-IoT network

Type B. Association & Registration

Setup Need test setup TS_07

Start 1 GW, 2 CHs & multiple DADs located in a fixed position.

Req. [2], [6], [9], [14], [17], [45], [233], [11], [22], [23], [16], [138], [207], [242]

Input Test hook TH_01

Output Check proper CHs & DADs registration into the INTER-IoT network.

Logs B. Association\T4.60.7_multiple_reg.txt

Outcome Pass / Fail

 Assoc. delay

3.3.3.32 U61 – Platform Configuration on the Gateway

The whole platform is accessed remotely by the user. The user configures the system,
activates the devices and controls the execution, even applying setup changes and/or sending
specific requests to selected DADs.

T4.61.1 Platform setup and simulation

ID T4.61.1

Test INTER-HARE setup and full simulation

Type E. Integration network

Setup Need test setup TS_08

Start All devices (1 GW, 2 CHs and multiple DADs) are located in a fixed position but
are not associated to the network yet.

Req. [17], [80], [11], [19], [20], [21], [22], [23], [25], [43], [243], [13], [16], [55], [138],
[226], [72], [98], [242], [244]

Input Test hooks TH_01, TH_02, TH_03, TH_05, and TH_06

Output Check system’s ability to configure the parameters selected by the user.

Check correct transmission of packets from/to DADs according to the hybrid
data delivery model.

Logs E. Integration\T4.61.1_platform_conf.txt

Outcome Pass / Fail

D6.2: Factory Acceptance Test Plan

163

3.3.3.33 U62 – Device (sensor) triggers information

A device, typically a sensor, triggers an event sending determined information to the gateway
in order to be stored in the platform.

T4.62.1 Event-driven data delivery model test

ID T4.62.1

Test Performance analysis of event-driven traffic

Type C. Data transmission

Setup Need test setup TS_07

Start All DADs, CHs and the GW are already registered.

Req. [2], [6], [9], [153], [232], [233], [11], [20], [21], [25], [26], [56], [57], [204], [205],
[206], [72], [27], [28], [242]

Input Test hooks TH_03 and TH_04

Output Check performance of different network metrics.

Logs C. Transmission\T4.62.1_event.txt

Outcome Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy consumption

T4.62.2 Continuous data delivery model test

ID T4.62.2

Test Performance analysis of continuous traffic

Type C. Data transmission

Setup Need test setup TS_07

Start All DADs, CHs and the GW are already registered.

Req. [2], [6], [9], [153], [232], [233], [11], [20], [21], [56], [57], [75], [204], [206], [72],
[27], [28], [95], [242]

Input Test hooks TH_02 and TH_04

 D6.2: Factory Acceptance Test Plan

164

Output Check performance of different network metrics.

Logs C. Transmission\T4.62.2_continuous.txt

Outcome Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy consumption

T4.62.3 Hybrid data delivery model test

ID T4.62.3

Test Performance analysis of hybrid traffic

Type C. Data transmission

Setup Need test setup TS_07

Start All DADs, CHs and the GW are already registered.

Req. [2], [6], [9], [15], [80], [153], [232], [233], [11], [20], [21], [25], [26], [89], [56], [93],
[57], [75], [204], [205], [206], [207], [72], [27], [28], [95], [242]

Input Test hooks TH_02, TH_03, and TH_04

Output Check performance of different network metrics.

Logs C. Transmission\T4.62.3_hybrid.txt

Outcome Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy consumption

T4.62.4 Data aggregation test

ID T4.62.4

Test Performance analysis of data aggregation mechanism

D6.2: Factory Acceptance Test Plan

165

Type C. Data transmission

Setup Need test setup TS_06

Start All DADs, CHs and the GW are already registered.

Req. [2], [6], [9], [153], [232], [233], [11], [20], [21], [25], [26], [89], [56], [93], [57], [75],
[204], [205], [206], [207], [72], [27], [28], [95], [242]

Input Test hooks TH_02, TH_03, and TH_04

Output Check performance of different network metrics.

Logs C. Transmission\T4.62.4_aggregation.txt

Outcome Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy consumption

T4.62.5 Relay operation test

ID T4.62.5

Test Performance analysis of relay device & mechanism

Type C. Data transmission

Setup Need test setup TS_05

Start All DADs, CHs and the GW are already registered.

The Relay is activated.

Req. [2], [6], [9], [153], [232], [233], [11], [20], [21], [25], [26], [89], [56], [93], [57], [75],
[204], [205], [206], [207], [72], [27], [28], [95], [242]

Input Test hooks TH_02, TH_03, and TH_04

Output Check performance of different network metrics.

Logs C. Transmission\T4.62.5_relay.txt

 D6.2: Factory Acceptance Test Plan

166

Outcome Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy consumption

3.3.3.34 U63 – Platform requests information from a device (sensor)

The user asks for data from a specific DAD.

T4.63.1 Query-driven data delivery model test (requests)

ID T4.63.1

Test Performance analysis of query driven traffic (requests)

Type C. Data transmission

Setup Need test setup TS_07

Start All DADs, CHs and the GW are already registered.

Req. [2], [6], [9], [80], [153], [232], [233], [11], [20], [21], [25], [26], [56], [57], [204],
[206], [72], [27], [28], [242]

Input Test hooks TH_03 and TH_04

Output Check performance of different network metrics.

Logs C. Transmission\T4.63.1_query_requests.txt

Outcome Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy consumption

3.3.3.35 U64 – Platform sends information to device (actuator)

Once the DAD receives the data request, it transmits the information through its pre-
established path to the GW.

T4.64.1 Query-driven data delivery model test (responses)

D6.2: Factory Acceptance Test Plan

167

ID T4.64.1

Test Performance analysis of query driven traffic (responses)

Type C. Data transmission

Setup Need test setup TS_07

Start All DADs, CHs and the GW are already registered.

Req. [2], [6], [9], [80], [153], [232], [233], [11], [20], [21], [25], [26], [56], [57], [204],
[206], [72], [27], [28], [242]

Input Test hooks TH_03 and TH_04

Output Check performance of different network metrics.

Logs C. Transmission\T4.64.1_query_responses.txt

Outcome Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy consumption

3.3.3.36 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Concept Test Description Outcome Value

A. Range
coverage

T4.60.1 Range coverage at 868 MHz Max. distance

T4.60.2 Range coverage at 2.4 GHz Max. distance

T4.60.3 Interference analysis at 2.4 GHz Interference
map

B.
Association &
Registration

T4.60.4 (Physical) Gateway registration Pass / Fail

Assoc. delay

T4.60.5 Container registration Pass / Fail

Assoc. delay

 D6.2: Factory Acceptance Test Plan

168

T4.60.6 Sensor registration Pass / Fail

Assoc. delay

T4.60.7 Multiple sensor registration Pass / Fail

Assoc. delay

C. Data
Transmission

T4.63.1 Query-driven data delivery model
test (requests)

Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy
consumption

T4.64.1 Query-driven data delivery model
test (responses)

Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy
consumption

T4.62.1 Event-driven data delivery model
test

Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy
consumption

T4.62.2 Continuous data delivery model
test

Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy
consumption

T4.62.3 Hybrid data delivery model test Pass / Fail

D6.2: Factory Acceptance Test Plan

169

PDR (%)

Delay

Throughput

PRM

Energy
consumption

T4.62.4 Data aggregation test Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy
consumption

T4.62.5 Relay operation test Pass / Fail

PDR (%)

Delay

Throughput

PRM

Energy
consumption

D. Resilience T4.46.1 Resilience against failures Pass / Fail

E. Integration
network

T4.19.1 User interaction Pass / Fail

T4.61.1 Platform setup and simulation Pass / Fail

 FAT Outcome Pass / Fail

Table 67: Test outcome overview

3.3.3.37 Integration ethics and security

Our research group, as a member of the Universitat Pompeu Fabra, has established
guidelines regarding ethics in all its projects. The university created the Internal Committee of
Projects (CIREP-UPF) in December 2014. The committee wants to improve the evaluation of
the ethical standards and personal data protection in research activities and academics
practices.

Every research project performed by our group is previously analyzed by the members of our
group following the guidelines of CIREP. The procedure is the following:

 D6.2: Factory Acceptance Test Plan

170

1. A self-assessment is performed by the principal investigators by filling an Ethics
Checklist Form. If a YES answer is checked, the IP must send the form and proceed
to step 2.

2. The IP has to prepare the following documents for the ethics committee: a summary
information form that includes the title of the project and a summary of the research
activity (including all the activities that involve any personal data or humans
participating in them); a procedure form, that includes a detailed description of the
methodology that the project will use in order to be evaluated by the CIREP; and, finally,
an informed consent form that will be used during the research activities.

3. An external evaluation by a reviewer in the specific research field is performed. A peer
review will be submitted by him/her to CIREP members.

4. Finally, the CIREP experts meet and discuss the researcher’s documents and the peer
review, to issue an Ethics Review Report to the researcher.

Our research project has been analysed following the Ethics checklist form, and, as it neither
contemplates the participation of humans nor uses any human data, the ethics of our project
has been evaluated and the basics requirements are fulfilled.

On the other hand, the use of confidential data along the pilot is not either contemplated.
Hence, the security is not compromised. The user IDs in our network are codified, so that any
external intruder with non-authorized access to the sensor network will not have any
knowledge on the data due to the codification of the elements belonging to the network.

D6.2: Factory Acceptance Test Plan

171

 D6.2: Factory Acceptance Test Plan

172

3.3.3.38 Annex A: Zolertia RE-Mote

Re-Mote is a powerful development board to build real IoT projects and solutions. It can be
considered as an Ultra-Low Power Wireless platform for 2.4 GHz and 863-950 MHz IEEE
802.15.4, 6LoWPAN, and ZigBee Applications.

Re-Mote IoT hardware board was developed jointly with universities and industrial partners
from different countries in the context of a European Project to create powerful IoT hardware
for Smart cities, logistics, lighting and industrial project. Fully compatible with main IoT
operation systems, RE-Mote is the perfect hardware platform to create and work in real IoT.

Figure 85: Zolertia RE-Mote front view

Figure 86: Zolertia RE-Mote back view

 Microcontroller
o Powerful ARM® Cortex® -M3
o 32-MHz Clock Speed
o 512KB In-SystemProgrammable Flash
o 32KB of RAM (16KB With Retention)
o USB 2.0 Full-Speed Device (12 Mbps)
o Security Hardware acceleration (AES-128/256, SHA2, ECC-128/256, RSA

Hardware Acceleration Engine for Secure Key Exchange)
o 1 x I2C, 1 x SPI, 1 x UART, µDMA, 12-Bit ADC with configurable resolution
o General Purpose Pin (GPIO) 4/20mA

 Features
o Micro-SD support
o Shutdown Mode (190nA)
o Real Time Clock Calendar (RTCC)
o External Watchdog Timer and battery monitor (optional)
o Built-in LiPo Battery Charger
o RF switch to programatically drive either 2.4 GHz or Sub-1GHz RF interface to

RP-SMA connector
 RF 2.4 GHz

o ISM 2.4 GHz IEEE 802.15.4 & Zigbee/Thread compliant
o 2394-2507 MHz frequency range with 1MHz/5MHz programable steps
o Sensitivity -97 dBm, ACR 44 dB, up to 7 dBm transmission power
o Data Rate 250 Kbps with DSSS Modulation

D6.2: Factory Acceptance Test Plan

173

 RF Sub-1 GHz
o ISM 863-868, 915-, 920-, 950 MHz ISM/SRD Band, IEEE 802.15.4g compliant
o Sensitivity -109 dBm (50Kbps), down to -123 dBm (1.2 Kbps), ACR up to 60

dB, up to +16 dBm transmission power
o Channels from 12.5 KHz - 1.66 MHz
o Supported modulations 2-FSK, 2-GFSK, 4-FSK, 4-GFSK, MSK, OOK
o Supports Data Rate Up to 1.25 Mbps in Transmit and Receive Modes

 Operational values

Parameter Minimu
m

Averag
e

Maximu
m

Unit

Operation supply voltage 3.4 4.7 16 V
General purpose pin voltage
output

0 3.3 - V

General purpose pin current
output

0 4 20 mA

Shutdown mode 150 - - nA
PM3 power mode - 0.4 - µA
PM1 power mode - 0.6 - mA

Active mode (2.4 GHz RX,
CPU idle)

- 20 - mA

Active mode (2.4 GHz TX, 0
dBm, CPU idle)

- 24 - mA

Operation Temperature -40 25 100 ºC

Table 68: Zolertia RE-Mote operational values

 Pin-out distribution and components
o Front view

 D6.2: Factory Acceptance Test Plan

174

Figure 87: Zolertia RE-Mote schematic front view

o Back view

Figure 88: Zolertia RE-Mote schematic back view

 Compliances
o Europe: ETSI EN 300 220, ETSI EN 54-25, EN 300 328, EN 300 440.

D6.2: Factory Acceptance Test Plan

175

o US: FCC CFR47 Part 15, FCC CFR47 Part 90, 24, 101.
o Japan: ARIB RCR STD-T30, ARIB STD-T66, ARIB STD-T67, ARIB STD-T108

 Development tools
o Contiki OS: contiki-os.org
o RIOT OS: www.riot-os.org
o Thingsquare Platform
o OpenWSN (upcoming)
o Eclipse IDE for C/C++
o Code Composer Studio™
o IAR Embedded Workbench ® for ARM
o SmartRF™ Studio
o SmartRF Flash Programmer
o Built-in programming support over USB

 Zolertia resources
o Zolertia site: www.zolertia.io
o Zolertia Online Store: zolertia.io/store
o Resource Page: www.zolertia.io/resources
o Zolertia Github repository: github.com/Zolertia
o Hackster Page: www.hackster.io/zolertia

3.3.3.39 Annex B: Zolertia Orion Router

The Orion Router is a capable IPv4/IPv6 routing device, with an Ethernet interface and dual
wireless radio, powered either via micro-USB or Power Over Ethernet (POE). The device
integrates the ENC28J60 Ethernet module, and an external POE module, supporting up to
48VDC.

The Zolertia Ethernet Router exposes a Power DPDT push button, a RESET button to reboot
the CC2538 system-on-chip, and a programmable USR button. The RP-SMA connector for a
2.4GHz external antenna is located next to the RJ Ethernet connector, whereas the SMA
connector for sub-GHz antenna is located on the opposite side. The micro-USB connector is
used for both powering the device over USB (5VDC), and programming/debugging.

The female RJ-45 Ethernet support active Power Over Ethernet (POE) 802.3af, up to 48VDC.
Using POE allows to carry both data and power over the same cabling, reducing the number
of elements required to connect and power the Zolertia Ethernet Router.

A non-populated JTAG connector is also available to further debug the device using an
external JTAG tool. Two on-board LEDs are available over a light-guide. The green LED next
to the Power switch shows the device power status (lit when on, else off).

 Features
o ARM Cortex-M3 with 512KB flash and 32KB RAM (16KB retention), 32MHz
o ISM 2.4-GHz IEEE 802.15.4 & Zigbee compliant
o ISM 868-, 915-, 920-, 950-MHz ISM/SRD Band
o RP-SMA connector for a 2.4GHz external antenna
o SMA connector for a 868/915MHz external antenna
o RJ45 ethernet connector
o Ethernet 10BASE-T IPv4/IP64
o AES-128/256, SHA2 Hardware Encryption Engine
o ECC-128/256, RSA Hardware Acceleration Engine for Secure Key Exchange

 D6.2: Factory Acceptance Test Plan

176

o On-board CP2104/PIC to flash over its micro-USB connector
o User and reset buttons
o Power on/off button and LED to show power state
o RGB LED to allow more than 7 colour combinations
o Indoor enclosure
o Layout 40.29 x 73.75 mm

 Mezzanine

o Two radios to use both residential/indoor and long-range applications. The
maximum range is between 100 meters and 20 km, with highly configurable
radio parameters such as modulation, data rate, transmission power, etc.

o Two radios (short and long range), compatible with existing and trending
protocols such asThread, but you can also develop your own applications on
top of very well supported protocols like 6LoWPAN and IEEE 802.15.4, without
vendor restrictions or licenses.

o Increased security with on-board hardware security (SHA2, AES-128/256,
ECC-128/256 and RSA for secure key exchange).

o Out of the box connectivity with IPv6 and IPv4 networks and services, using
IP64 (NAT64, DHCP64).

o Power the device using Active POE (up to 48VDC, using auto-negotiation), or
over its micro-USB connector with any regular USB charger.

o Slick indoor enclosure.
o Compatibility with 6lbr.

 Pin-out distribution and components

There are additional connectors (not populated as default) with 2.54mm pitch spacing,
exposing the CC2538 pins. The JP4 and JP6 connectors exposes pins mostly to
interface sensors, actuators and communication buses. The JP6 even-numbered pins
are compatible with the I2C default pins used by other platforms such as the Firefly or
the RE-Mote).

The JP5 exposes the pins of the CC2538 connected to the CC1200 sub-GHz
transceiver, and the ENC28J60 Ethernet module.

D6.2: Factory Acceptance Test Plan

177

Figure 89: Zolertia Orion Router schematic view

3.3.3.40 Annex C: BeagleBone Black

The Beaglebone Black is a small computer that will control the integration network. With a size
similar to a credit card, it can be used as a PC, connecting it to a keyboard, monitor and mouse,
viewing video using the HDMI connector. In addition, it has Internet connection and has 92
GPIO (General Purpose Input / Output) pins to interact with sensors, buttons or any other
electronic circuit.

Figure 90: BeagleBone Black front view

Figure 91: BeagleBone Black
rear view

The microcomputer works on the basis of an ARM processor of the Sitara class of Texas
Instrument. It has a 2-core CPU, Cortex A8, and runs 1GHz instructions with its 512MB of
DDR3 RAM and a 3D graphics processor. It offers a number of programming ports similar to
the Arduino and additionally has more than 30 "Capes" that expand its capabilities and allow
connection to 3D printers, lighting controllers, Geiger counters, telerobotic submarines or LCD
touch screens, among other applications.

 D6.2: Factory Acceptance Test Plan

178

It has a 10/100 Ethernet port, 1 USB host port and 1 OTG USB, 2GB of built-in memory and
space for a MicroSD. The default operating system is Ångström Linux, but it is possible to
install Android or Ubuntu. It includes preinstalled Cloud9 IDE (an open source development
environment integrated in the cloud and web-based, which supports several programming
languages). In addition, Beaglebone Black includes two 46-pin ports into which expansion
modules can be inserted.

A detailed description of technical specifications from the BeagleBone Black Rev. A5C used
in the current project is offered in Figure 92.

Figure 92: BeagleBone Black Rev. A5C technical specifications

3.3.3.41 Annex D: DHT22 temperature and humidity sensor

The DHT22 is a basic, low-cost temperature and humidity sensor. It uses a capacitive humidity
sensor and a thermistor to measure the surrounding air, and spits out a signal on the data pin.
It is fairly simple to use, but requires careful timing to grab data. The only real downside of this
sensor is that new data can only be got from it once every 2 seconds; however, this is not a
drawback for the INTER-HARE platform, as time between two consecutives measures will be
always much higher.

D6.2: Factory Acceptance Test Plan

179

Figure 93: DHT22 temperature and humidity sensor

From the datasheet of the DHT22 temperature and humidity sensor23, we can extract its main
features, which are summarized in the following lines (for more detailed information, see Figure
94 and Figure 95):

 Supply Voltage: 3.3 - 5.5V
 Temperature Range: -40 - 80 °C / resolution 0.1 °C / error < ±0.5 °C
 Humidity Range: 0 - 100% RH / resolution 0.1% RH / error ±2% RH

 Wiring map: VCC, GND, S
 Size: 38 x 20mm (1.50x0.79")

Figure 94: Main features of the DHT22 temperature and humidity sensor

23 AOSONG, "Temperature and humidity module DHT22/AM2302 Product Manual," [Online]. Available:
http://akizukidenshi.com/download/ds/aosong/AM2302.pdf.

 D6.2: Factory Acceptance Test Plan

180

Figure 95: Electrical parameters of the DHT22 temperature and humidity sensor

The RE-Mote has 2 x ADC available ports that can be used with the Molex 3-pin WM4901-ND
male header connector, providing the normally used GND and VCC pins to connect analogue
sensors. Depending on the sensor power operation requirement you can use the ADC1 (3.3V)
or the ADC3 (5V). The pins are 2.54 mm spaced and the connector has the following pin-out:

Figure 96: Zolertia Re-mote’s analog connector pin-out

In this case, the Zolertia RE-Mote uses one of the two ADC connectors to communicate with
the DHT22 temperature and humidity sensor breakout. ADC communication libraries included
in Contiki OS porting of the Zolertia RE-Mote have been used for this purpose.

D6.2: Factory Acceptance Test Plan

181

 Third Party: Mission Critical operations based on IoT analytics

The “Mission Critical operations based on IoT analytics” (MiCrOBIoTa) project, aims at
exploiting the INTER-IoT platform as a means to gather information from heterogeneous
sensors in a converged way. As a result, Nemergent will integrate a new “IoT monitoring and
analytics” component in its mission critical product portfolio, and especially into the Nemergent
Control Room application. Figure 97 illustrates the overall Nemergent mission critical
applications framework and the specific scope of the work proposed in MiCrOBIoTa.

Figure 97: Scope of MiCrOBIoTa activities.

Figure 98 depicts an overall description of the main system to be used, tested and integrated
in the scope of the INTER-IoT project.

Figure 98: Overall system description.

The Nemergent Control Room system is made up of two main components.

The Nemergent Frontend component is an extensible HTML5-capable control interface that
communicates through a Java backend with a plethora of different services and data providers.
This component is built upon a series of state-of-the-art web technologies. The protocol used

 D6.2: Factory Acceptance Test Plan

182

to sync real-time data between the Java backend and the HTML frontend is defined as a series
of JSON messages encapsulated through a WebSocket tunnel, in order to provide bidirectional
real-time flows between the final user and the rest of the system.

The Nemergent Back-end is a Java-based component that implements most of the business
logic related to data gathering and the specific interfaces to the different underlying systems.
Similarly, to the front-end, the back-end component uses several modern technologies and
implements specific connectors to each underlying communications system.

In the scope of INTER-IoT, a new connector is being developed to cover the communication
with the INTER-IoT platform. This connector will implement all the necessary calls to the
INTER-IoT API in order to gather the selected information with the corresponding message
formats and data types.

The anticipated benefits of interoperable “Mission Critical operations based on IoT analytics”
are unquestionable. A typical situation in mission critical operations support systems is to
include information coming from specifically deployed devices to gather environmental
measurements. Examples of these devices are temperature sensors, meteorological and
hydrological probes, traffic monitoring cameras, etc. We propose to add the Mission Critical
IoT (MC-IoT) system, which includes a new monitoring and analytics component and an
evolved Control Room interface tailored to the specific needs of the use case. In the case of a
simulated crisis, significant information from on-body health-related sensors and port logistics
devices will provide life-saving information to the mission critical operations support system.
Besides, the available mission critical communications components can be used to
demonstrate the crisis handling use case.

Figure 99. IoT-aided Mission Critical operations scenario.

Taking into account the overall picture and the availability of different IoT platforms, a complex
use case could be created for an emergency simulation exercise. This scenario would include

D6.2: Factory Acceptance Test Plan

183

a typical emergency intervention, enhancing the operations support through the use of new
communication technologies over commercial networks.

An example operational procedure is provided hereafter:

1. A road haulier comes into the port area. Upon an incident / health issue, the on-board
health monitoring sensor reports the anomalous data to the INTER-IoT system through
the road haulier company IoT platform.

2. The relevant data arrives at the Port Authority emergency control centre (CCE), which
manages incidents taking place within the port and coordinates with other first
responders (police, firefighters, ambulances, etc.).

3. The CCE operator accesses the MC-IoT system through the web-based Graphical
User Interface (GUI), which will provide different types of icons for the different sources
of information, and different views targeted at different emergency response units.

4. The CCE operator can use this platform to communicate with field response units (e.g.,
ambulance driver), providing them not only with location and navigation support but
also with specific context information useful for the intervention.

5. Besides the IoT-related data processing, the extended use case will make use of the
Nemergent Mission-Critical Push-To-Talk (MCPTT) communication systems in order
to resemble real-time communication between the different entities involved.

3.3.4.1 Integration of IoT framework

From a high level architectural standpoint, the integration of the MC-IoT external application is
depicted hereafter.

Figure 100. High-level perspective of the integration.

The MC-IoT system will run as an external application to the INTER-IoT platform. In order to
access the heterogeneous data from different IoT platforms, the MC-IoT application needs to
interact with the INTER-LAYER “Platform interoperability” functional component, which
involves the “Communication and Control” and “MW2MW services” INTER-LAYER
components. This MC-IoT component will also need to interaction with the “Semantics”
functional component, which is implemented through the INTER-LAYER IPSM module.

 D6.2: Factory Acceptance Test Plan

184

Additionally, the MC-IoT external application may need the use of composite IoT-related
services. Thus, the invoking of the “Service interoperability” functional component may be
needed. This would require the involvement of the INTER-LAYER “Orchestrator” and “Service
management” components.

In order to interoperate with the INTER-IoT platform (e.g., registration, authorisation, etc.) and
being able to invoke the API functions, the MC-IoT external application will make use of the
INTER-FW tools and API. To some extent, the INTER-FW API acts as a wrapper of the INTER-
LAYER API, exposing only those methods available to the external applications.

From a use case perspective, the external application interfaces with the INTER-IoT
platforms in order to gain access to two / potentially three types of information:

1. Access to the port monitoring information (WSO2 platform).
2. Access to the health monitoring information installed on a haulier company (data

coming from MyDriving and universAAL systems and integrated through Microsoft
Azure platform).

3. Access to well-formed incident / emergency information, as potentially detected by a
third party Early Warning System and submitted to the INTER-IoT platform.

Figure 101. Use case perspective of the integration.

Following the proposed pilot, the trucks will be monitored once they are in the port facilities. In
case an accident or a medical problem is detected, the system will publish a notification to the
port authority in a standard format (EDXL). Once the emergency control centre receives the
notification, it can start communication with the driver with a push to talk protocol in the driver’s
mobile.

The main benefits we can get from this scenario are: apply in the port communications a
standard format in accident reporting like EDXL, real time identification of the location of the

D6.2: Factory Acceptance Test Plan

185

accident, direct communication with the closest control centre when an accident occurs and
monitoring driver's health if it is necessary.

3.3.4.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components
2 Validation and Test reports of the Pilot system components

Hardware

3 Gigabyte Barebone on which the Nemergent System is installed
4 Additional Laptop with basic Internet Browsing Capabilities
5 Connection cables (Ethernet connection between both systems and Internet)

Tools

7 Preferably a recent Linux OS
8 TestNG Java
9 Jenkins 2

Table 69: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

ID Description Version Check

Nemergent CtrlRoom Frontend

1 JSONoWS API V1.3.0
2 WebRTC API V1.0.0
3 GUI V1.0.0

Nemergent CtrlRoom Backend

4 JSONoWS API V1.3.0
5 MCPTT MS API V1.0.1
6 InterIOT API V1.0.0

Table 70: Component version overview

3.3.4.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

47 API for third-party developers T1.1.1, T1.1.2, T1.2.1,

T1.2.2, T1.2.3, T1.2.4,
T1.3.1, T1.3.2, T1.3.3

51 API for data publication T1.2.3, T1.2.4, T1.3.1,
T1.3.2, T1.3.3

53 Location of sensor and measurement is included in semantic
models

T1.2.1, T1.2.2

 D6.2: Factory Acceptance Test Plan

186

123 Use of standards T1.1.1, T1.1.2, T1.2.3,
T1.2.4, T1.3.1, T1.3.2,
T1.3.3

Table 71: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the test(s)
that validate their implementation.

ID Scenario name Covered by

5 Monitoring of containers carrying sensitive goods T1.2.1, T1.2.3, T1.3.1

9 Accident at the port area T1.2.1, T1.2.3, T1.3.1

17 Health monitoring system with passengers aboard a train T1.2.1, T1.2.3, T1.3.1

32 Third party developer using INTER-FW to access data from
two different platforms

T1.1.1, T1.1.2, T1.2.1,
T1.2.3, T1.2.4, T1.3.1,
T1.3.2, T1.3.3

Table 72: Scenario vs test mapping

3.3.4.4 Test environment

Introduction

To test the functionality of the collaboration module in combination with the IoT framework a
representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test environment and the complete system setup used during
this FAT.

Test setups, tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this document
defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers, packet
sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the needed
functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 – Dedicated Docker Image

All of the Nemergent testing activity will be performed inside an ad-hoc developed Docker
image, containing all of the neccesary software tools to perform this testing phase.

D6.2: Factory Acceptance Test Plan

187

This image will contain the Jenkins instance, and will have a copy of the software repositories
freshly obtained in the moment of the Docker image building. This way, Nemergent can assure
maximal compatibility between hardware vendors, software distributions and network
environments. This image itself it’s prone to be tested inside a continuous integration scheme.

With a command launched in the host Linux system, the integrated Jenkins tool will execute
alll the test’s sequentially, making detailed reports of the results available through it’s web
interface, along with performance measurements and precise timings. This Jenkins builds will
archive as artifacts all the network recordings, profiling files and log files produced during the
test executions.

The Nemergent CtrlRoom software will communicate with the InterIOT components through
the virtual network interface offered by Docker to the container, helping with the network
debugging issue.

TT_01 - TestNG Java

As a testing environment we will use different suites of TestNG Java testing framework, which
will implement the different business logic associated with the working model. For example, a
different test suite can be generated for each different EDXL document type, thus assuring
maximal code coverage for each module and case.

TT_02 - Jenkins 2

The TestNG Java tests will be orchestrated though a Jenkins 2 server, using the newly
released Pipelines functionality, providing expressive description of the test case scenarios.

TH_01 - Jenkins Pipelines

Jenkins Pipelines definitions support parameterized runs, which can be used to inject relevant
EDXL messages right into the message broker, depending on target of the tests.

TP_01 – Protractor

Graphical testing can be performed through the implementation of Protractor tests. These tests
can assure that frontend graphics being rendered on a virtual screen corresponds to what the
requirements require. This would provide similar confidence as a real human visual testing, for
example that a specific EDXL document triggers the area and information painting on the Port
Control Centre.

3.3.4.5 Test description

Test output log files… Folder “Tx_Output”, prefix “Tx.y.1_”

T1.1.1 Boot up and first contact

ID T1.1.1

Test Nemergent MC-IoT Module boots up and contacts INTER-IOT Platform

Type System Testing

Setup Need test setup TS_01

Start Nemergent CtrlRoom is not launched

 D6.2: Factory Acceptance Test Plan

188

Req. [47], [122]

Input Launch the jenkins job labeled as “T1.1.1”

Output Check Jenkins job output, wether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.1.2 INTER-FW Authentication

ID T1.1.2

Test Nemergent MC-IoT Module authenticates correctly against INTER-FW gateway.

Type System Testing

Setup Need test setup TS_01

Start Nemergent CtrlRoom is already launched, but module has only made first
contact.

Req. [47], [122]

Input Launch the jenkins job labeled as “T1.1.2”

Output Check Jenkins job output, wether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.2.1 Obtain a list of trackeable entities

ID T1.2.1

Test Nemergent MC-IoT Module queries INTER-FW for a list of authorised trackable
entities.

D6.2: Factory Acceptance Test Plan

189

Type Service Discovery

Setup Need test setup TS_01

Start Nemergent CtrlRoom is properly launched and authenticated

Req. [47], [53]

Input Launch the jenkins job labeled as “T1.2.1”

Output Check Jenkins job output, wether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.2.2 Paint all of the trackeable entities obtained

ID T1.2.2

Test Nemergent MC-IoT Module passes the processed data to the Nemergent
CtrlRoom main module and paints the listed entities on a map.

Type System Testing

Setup Need test setup TS_01

Start Nemergent CtrlRoom is properly launched and authenticated

Req. [47], [53]

Input Launch the jenkins job labeled as “T1.2.2”

Output Check Jenkins job output, wether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.2.3 Subscribe to the event streams

 D6.2: Factory Acceptance Test Plan

190

ID T1.2.3

Test Nemergent MC-IoT Module performs subscription for the appropiate entities in
order to maintain updated information about them, but without over saturating
network and system resources.

Type System Testing

Setup Need test setup TS_01

Start Nemergent CtrlRoom is properly launched and authenticated

Req. [47], [51], [122]

Input Launch the jenkins job labeled as “T1.2.3”

Output Check Jenkins job output, wether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.2.4 Receive updates from INTER-FW

ID T1.2.4

Test Nemergent MC-IoT Module passes the processed data to the Nemergent
CtrlRoom main module and repaints the listed entities on a map.

Type System Testing

Setup Need test setup TS_01

Start Nemergent CtrlRoom is properly launched and authenticated

Req. [47], [51], [122]

Input Launch the jenkins job labeled as “T1.2.4”

Output Check Jenkins job output, wether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap

D6.2: Factory Acceptance Test Plan

191

 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.3.1 Receive detailed sensor data stream from INTER-FW

ID T1.3.1

Test Nemergent MC-IoT Module queries INTER-FW gateway for data streams
specific to a device or sensor of an entity.

Type System Testing

Setup Need test setup TS_01

Start Nemergent CtrlRoom is properly launched and authenticated

Req. [47], [51], [122]

Input Launch the jenkins job labeled as “T1.3.1”

Output Check Jenkins job output, wether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.3.2 Receive detailed sensor updates from INTER-FW

ID T1.3.2

Test Nemergent MC-IoT Module passes the processed data to the Nemergent
CtrlRoom main module and displays detailed sensor info (ECG, Speed, Temp)
in a detailed view.

Type System Testing

Setup Need test setup TS_01

Start Nemergent CtrlRoom is properly launched and authenticated

Req. [47], [51], [122]

Input Launch the jenkins job labeled as “T1.3.2”

Output Check Jenkins job output, wether the job has succeeded or it has failed.

 D6.2: Factory Acceptance Test Plan

192

Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

Outcome Pass / Fail

T1.3.3 Stop receiving detailed sensor data stream from INTER-FW

ID T1.3.3

Test Nemergent MC-IoT Module queries INTER-FW gateway to stop (unsubscribe)
from sensor data stream.

Type System Testing

Setup Need test setup TS_01

Start Nemergent CtrlRoom is properly launched and authenticated

Req. [47], [51], [122]

Input Launch the jenkins job labeled as “T1.3.3”

Output Check Jenkins job output, wether the job has succeeded or it has failed.

Check outputted artifacts for debugging purposes.

Logs Jenkins Job artifacts section:

 backend_log.txt
 frontend_log.txt
 network_eth0.pcap
 network_capture_logs.txt
 test_report.html

3.3.4.6 Integration ethics and security

Introduction

During the Ethical Review it was requested that ethics had to be included within the project
scope. This section addresses recommendations and proposed solutions to the ethical and
security points of the integration.

Mission Critical operations based on IoT analytics

During the pilot execution, all the sensitive information (e.g., making reference to the INTER-
IOT system or to personal data of people taking part of the pilot) should be hidden from non-
authorized eyes at the moment of displaying the information at the Nemergent CtrRoom. The
Nemergent CtrlRoom, as the user-endpoint of the system, is the last step in a chain of
information processing, where all the information should have been secured and automated

D6.2: Factory Acceptance Test Plan

193

by design. Thus, special effort will be paid to ensuring that user privacy and system security is
enforced at the Nemergent CtrlRoom GUI.

 D6.2: Factory Acceptance Test Plan

194

 Third Party: Early Warning System (EWS)

The goal of the H2020 INTER-IoT project is to support interoperability between heterogeneous
IoT platforms across the logistics and e-health domains. For demonstration and validation
purposes, the project described scenarios to decrease the risk of fatal accidents at the port of
Valencia, improving health prevention and enabling quick reaction by reducing time response
. The goal of this scenario is to exploit how e-Health and e-Care can use IoT platforms
dedicated to logistics to prevent the occurrence of accidents and to support evacuation or
attention in case of emergency situations.

An early warning system (EWS) is a distributed system that monitors the physical world and
issues warnings if it detects abnormal situations. The Internet-of-Things (IoT) offers
opportunities to improve monitoring capabilities of EWS and to realize (near) real-time warning
and response. The INTER-IoT-EWS goal is to detect accident risks with trucks that deliver
goods at the Valencia port area, interoperating different IoT platforms. The solution addresses
the semantic integration of a variety of data sources with processing in safety-critical
applications for effective emergency response. The solution considers existing domain-specific
ontologies and standards, along with their serialization formats. Accident risks are assessed
by monitoring the drivers’ vital signs with ECG medical wearables, and the trucks’ position with
speed and accelerometer data. Use cases include the detection of health issues and vehicle
collision with dangerous goods. This EWS is developed with the SEMIoTICS framework, which
is composed of a model-driven architecture that guides the application of data representations,
transformations and distributed software components. This framework enables EWSs to be a
semantic broker for situation-aware decision support.

Early Warning System (EWS)

A EWS is a system for “the provision of timely and effective information, through identified
institutions, that allows individuals exposed to a hazard to take action to avoid or reduce their
risk and prepare for effective response”. An effective EWS must be people-centered and
integrate knowledge about the risks, risks’ monitoring and warning, dissemination of
meaningful warnings and public awareness. Modern EWSs comprise software and hardware
for data acquisition, situation awareness, decision making, and information dissemination.
Current experimental prototypes incorporate IoT technology to improve their functionality. The
conceptual architecture of EWS typically consists of three parts:

1. Upstream data acquisition: Distributed sensor systems transform observations into
digital signals, pre-process the associated data values to ensure that they represent
relevant information for decision making and transmit these data values to a message-
and/or event-oriented middleware (broker).

2. Decision support: The data is stored in a data storage and is subjected to rules to
detect situations of interest. The rules are represented as models, which can be
deterministic (rule-based) and/or non-deterministic (machine learning) approaches.
Once a situation is detected, the EWS considers the requirements of the alert targets
to assess the risk and determine the emergency response.

3. Downstream information dissemination: Different target groups, comprising
humans (e.g. the public) and machines (e.g. sirens), receive adequate messages.

Interoperability is an important feature of effective EWSs for the integration of internal
components and interworking of different EWSs. The level of interoperability depends on the
standardization of interfaces, data exchange formats and protocols . The design problem to be
addressed here is the improvement of IoT EWSs’ interoperability with data sources, alert
targets, and other EWS to detect emergency risks.

D6.2: Factory Acceptance Test Plan

195

3.3.5.1 INTER-IoT-EWS

Requirements and use cases

The requirements given in the scenario are:

(FR1) IoT platforms should be able to coordinate with emergency systems by detecting risks
of accidents and accidents with trucks within the port area (collision and drivers’ health issues),
alerting urgency and severity. The acceptance criterion is to check if the port IoT platform is
able to coordinate with emergency systems located in the vicinity.

(FR2) The haulier IoT platform and the port IoT platform should be able to share health
information about the driver, monitored in real-time through an ECG device. These data need
to be integrated with the port emergency control system.

(NFR1) IoT platforms should be semantically and syntactically interoperability. The acceptance
criterion is the existence of a mechanism to translate data format and semantics of exchanged
message to achieve communication with common understanding on both sides.

(NFR2) E-Health and logistics should be integrated at the application and semantics level,
including primitives for data interpretation of medical and transportation data. (NFR3) The
energy consumption of the devices being used for the situation identification mechanism
should be monitored

Five use cases were conceived to test these requirements:
 (UC01) Vehicle collision detection: use of accelerometer data of the truck from mobile

phone and health device;
 (UC02) Hazardous health changes: detect occurrences of stress and arrhythmia (e.g.

bradycardia and tachycardia);
 (UC03) Temporal relations between UC01 and UC02: detect if a health issue occurred

before, during or after a vehicle collision;
 (UC04) Wrong-way driving: integrate the trucks location data and the streets’ direction

within the port;
 (UC05) Accidents with dangerous goods: monitor dangerous goods being transported

(according to UN list of dangerous goods) in all use cases (1-4), adding the adequate
information regarding emergency procedures for effective response.

Note that UC03 has situations that require the integration of data from both domains (health
and logistics) and can represent complex behaviors. For example, there is a possibility that
bradycardia is detected followed by continuous decrease of the heart rate after a vehicle
collision is detected. This situation reflects a car collision where the driver got injured and is
classified as extreme severe with immediate urgency. In this situation the vehicle collision will
be identified with both accelerometers from the ECG device and from the smartphone,
considering device features, as accuracy and energy consumption.

3.3.5.2 Semantic IoT EWS framework

The “SEmantic Model-driven development for IoT Interoperability of emergenCy serviceS”
(SEMIoTICS) is a framework to improve the semantic interoperability within and among EWSs.
It consists of an architecture, technologies and guidelines based on model-driven engineering
(MDE). SEMIoTICS uses the Endsley’s situation awareness theory, which is harmonized with
the Unified Foundational Ontology (UFO) and aligned to the semantic healthcare system
architecture.

 D6.2: Factory Acceptance Test Plan

196

Figure 102: Typical EWS architecture (top) and the SEMIoTICS architecture (bottom).

The architecture has six elements addressing the 3 main functions of an EWS: (1) Input
handler: upstream data acquisition through adaptors; (2) Abstraction: foundational ontology;
(3) Context model: domain ontology; (4) Situation model: complex event processing; (5)
Situation awareness: data flows, (6) Output handler: downstream emergency notification. It
follows the publisher/subscriber pattern and RESTful services with JSON-LD and XML.

Adaptors are implemented as syntactic and semantic translations. The input handler is
responsible for message translation, which relies on the syntax of each ontology being used
and, therefore, will also require semantic as well as syntactic translations, e.g. from RDF/XML
to JSON-LD and from HL7 to EDXL. Messages are translated from the original ontologies to
our context model (core ontology), which is aligned to W3C SSN and incorporates terms from
EDXL and HL7. This approach aims on optimizing the data and semantics maintenance when
integrating distinct domains. The abstraction component refers to foundational ontologies,
which are designed to maximize the support for interoperability of high level categories, e.g.
event, process, physical object and system. The core ontology and SSN are grounded on the
UFO (through OntoUML) and DOLCE Ultralite (DUL), respectively. UFO and DOLCE share
the same definitions for some conceptualizations, facilitating the alignment between the
ontologies extended with them.

The situation model is responsible for the situation identification mechanism, i.e. the
formalization of the emergency risk detection. We adopted a rule-based approach, allowing
the specification and implementation of complex event processing (CEP). CEP is a common
component of IoT platforms to correlate data using temporal predicates (events’ relations), as
Cepheus, the CEP engine of FIWARE IoT platform. Guidelines describe how CEP
technologies can implement the situation models, e.g. in Java ESPER24 and Drools Fusion
technologies. Decision support is enabled by the adoption of a workflow management system
that enables the end user to design business processes, e.g. emergency plans, as data flows.
Big data integration tools for workflow development automatically generates code and is able

24 http://www.espertech.com/

D6.2: Factory Acceptance Test Plan

197

to deploy data flows at runtime, e.g. Node-Red25. This component also covers the deployment
and execution of the data flows for decision making. The output handler is responsible for
brokering the emergency risk notifications to the correct targets, according to the emergency
procedures defined on the decision support component. For each predetermined risk, targets
are enumerated with their information requirements. The data format of the notifications follows
EDXL standards serialized as JSON-LD. The risk notification services are exposed as data
publishers.

3.3.5.3 Solution

The solution architecture Figure 103 includes the Shimmer ECG 3 device26 to collect ECG data
from drivers. This device has high accuracy and usability, and is compatible with the SPINE
framework27, which was chosen by the project consortium. SPINE comprises a TinyOS
application responsible for transmitting data from the ECG device to a mobile phone through
Bluetooth. SPINE also includes an Android application to receive and then forwards the data
to the cloud, as a gateway. These data is sent to the cloud and published in a broker as
RDF/XML messages following the ETSI SAREF28 ontology extended with HL7 aECG,
supported by the UniversAAL IoT platform29.

Figure 103: EWS to detect accident risks and accidents at the port of Valencia.

Similarly, the MyDriving mobile application for logistics (open use case of Azure IoT
platform30) transmits the data about the truck position, speed, accelerometer and goods
information, to the cloud infrastructure. These logistics data are serialized as JSON messages,
following the structure of SAREF ontology aligned to LigiCO ontology31. SAREF was chosen
because of its capabilities for tracking devices’ energy consumption. IPSM module is
responsible for syntactically and semantically translate these data: from JSON and RDF/XML

25 https://nodered.org/
26 http://www.shimmersensing.com/products/ecg-development-kit
27 http://spine.deis.unical.it/spine.html
28 http://ontology.tno.nl/saref/
29 http://www.universaal.info/
30 https://azure.microsoft.com/en-us/campaigns/mydriving/
31 http://ontology.tno.nl/logico/

 D6.2: Factory Acceptance Test Plan

198

to the INTER-IoT JSON-LD syntax, which is structured JSON-LD (two @graph) with
middleware information; and from SAREF to the INTER-IoT core ontology semantics, which is
aligned to SSN. Theses translations are configured priory in IPSM by the application developer
through a REST service.

The data represented as INTER-IoT JSON-LD syntax and INTER-IoT core ontology semantics
are published in the broker in a topic, which the EWS subscribes to receive real-time data.
Then, the EWS input handler certifies whether new translations to harmonize the data in the
SEMIoTICS core ontology are necessary and, if so, the input handler requests the translations
to IPSM.

The data is annotated with the core ontology and stored in a NOSQL database (MongoDB) for
historic data storage. Both real-time data and historic data are used by the risk identification
component, i.e. the NESPER CEP engine. Situation types are defined a priori, as rule sets,
describing the risky situations of interest based on emergency plans. Each situation type is
linked to a response process, i.e. the specific workflow to be executed once a situation is
identified. Therefore, the risk identification component triggers the workflow management,
which executes the linked processes. The workflow component is responsible for checking the
information requirements of each alert target, passing this information to the output handler,
which is responsible to transform the data to EDXL compliant messages semantically enriched.
Therefore, the output handler enables the brokering of notifications of situations detected,
following the JSON-LD syntax and the EDXL structure, which is able to link to the semantics
used. A web UI application shows each alert sent by the EWS with its severity and urgency,
and other information, including the targets that received the notification and the message sent
to each target. The EWS is developed with NodeJS and Node-Red. Table 1 summarizes the
involved data.

External Health Logistics

Data Driver’s ECG, accelerometer
Position, speed, accelerometer,
goods

Device Shimmer (SPINE), Mobile Mobile (MyDriving Android or iOS)

IoT platform UniversAAL MS Azure IoT

Ontologies ETSI SAREF, HL7/FHIR aECG ETSI SAREF, LogiCO

Table 73. Data sources.

3.3.5.4 Validation plan

Validating the achievement of providing effective situation awareness and emergency
response requires a comparison whether the response processes triggered through the
workflow management is adherent to emergency procedures, reflecting pragmatic
interoperability between the EWS and an emergency manager. This will measure whether the
system works for the intended risks’ detection and warning. So, it includes simulation of the
use cases (test cases) with multiple target groups with different information requirements.
EDXL validators will be used to check that proper EDXL messages are generated, e.g.
Google’s EDXL-CAP validator.

The validation plan is organized as (a) factory acceptance tests: in a lab environment the EWS
will be deployed in a cloud environment and the components integration will be tested through
mock objects; and (b) site acceptance tests: a pilot in the port, where accidents will be
simulated in accordance with the port emergency exercises, e.g. vehicle collision through hard

D6.2: Factory Acceptance Test Plan

199

breaks, bradycardia/tachycardia by decreasing the thresholds and adequate response
procedures for accidents with dangerous goods.

The validation plan includes the performance evaluation of data transfer, processing and
storing JSON-LD as payload. Total time to be observed: (i) for data acquisition; (ii) to
semantically translate a message; (iii) to annotate data with the core ontology and insert into
the NOSQL database; (iv) to access data (from memory and database) and process (serialize
and deserialize) for risk identification; and (v) to create the alert messages, i.e. serialize the
output data as EDXL linked to ontologies. The brokering performance will also be evaluated in
terms of scalability and resilience for single cluster and multi-broker, as the semantic IoT EWS
approach.

Validating the achievement of semantic interoperability depends on whether the components
of the solution have the same “understanding” of the data. Since the approach is based on
multiple semantic translations, semantic loss will be a variable to calculate semantic
interoperability, measured by executing the transformations in sequence from ontology A (e.g.
SAREF) to ontology B (e.g. SSN) and from B to A, i.e. check how x is different to T(T(x)A>B)
B>A, where T(x)A>B represents the semantic translation function from A to B.

This plan includes data management with the FAIR data principles.

3.3.5.5 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components
2 Validation and Test reports of the Pilot system components

Hardware

4 Application server (EWS orchestrator)
5 Application server (CEP NESPER)
6 Database server

Tools

7 EWS (see section 3.2 and 6.2)

Table 74: Deliverable checklist

3.3.5.6 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

Application

239 Support Service choreography and Service Orchestration All functional
Architecture

6 Efficiency of the processing of information Non-functional (7.1.6.2-4)
Functionality
20 Real time support All functional
21 Real time output All functional
23 Device semantic definition All functional and 7.1.6.1

 D6.2: Factory Acceptance Test Plan

200

179 IoT Platform Semantic Mediator supports platform to platform
communication and communication between platforms and an
external actor

All functional

Interoperability
13 Extensibility Tests involving SAREF

Operational
57 Device monitoring and self-awareness of the system All functional
73 Analyzing data from heterogeneous platforms 7.1.3
76 Interoperability between things from different

administrative/management domains
 7.1.3

178 IoT Platform Semantic Mediator provides data and semantic
interoperability functionality accessible with a set of interfaces

 All functional and 7.1.6.1

Performance
72 Communication should be done using protocols that are

efficient in terms of amount of exchanged information over
message size

 All functional (track battery
consumption)

Semantics
163 Design support for semantic interoperability All functional (semantic

translations) and 7.1.6.1.
180 Semantic and syntactic interoperability All functional
186 Design of required ontologies All functional
224 Location semantic support for mobile smart objects SAREF and SSN support
225 Special considerations in the semantic ontology to objects with

low resources
 All functional (battery
consumption tracking with
SAREF).

Table 75: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the test(s)
that validate their implementation.

ID Scenario name Covered by

1 Chronic disease prevention

2 IoT support for transport planning and execution

3 IoT Weighbridges

4 Monitoring reefer container

5 Monitoring of containers carrying sensitive goods

6 Dynamic lighting in the port

7 SCADA port sensor system integration with IoT platforms

8 SEAMS integration with IoT platforms

9 Accident at the port area [All tests]

10 Health monitoring system with passengers aboard a ferry

11 Primary prevention of cognitive decline

12 Health failure disease and mild Alzheimer disease

13 IoT interoperability for Vessel Arrivals

15 Surveillance systems for prevention programs

16 Elderly monitoring

17 Health monitoring system with passengers aboard a train

18 Containership is entering the harbour region

19 Transport on truck breaks down or is hijacked

D6.2: Factory Acceptance Test Plan

201

20 Damage or problems to the container during shipment

21 Low risk of developing chronic diseases.

22 Increased risk of developing chronic diseases

23 High risk of developing chronic diseases

24 Very high risk of developing chronic diseases

25 Extremely high risk of developing chronic diseases

26 Alcohol / Drug testing for truck/ bus drivers

27 Vitamins intake analyser

28 Calories / nutrition mixer / cookware counter

29 Reliable control of robotic cranes and trucks in port terminals

30 IoT access control, traffic and operational assistance

Table 76: Scenario vs test mapping

3.3.5.7 Test environment

Introduction

To test the functionality of the T_AccidentPort module in combination with the IoT framework
a representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

As illustrated in Figure 103, the system under tests is the INTER-IoT early warning system
(INTER-IoT-EWS or EWS), thus, the focus of this validation plan is to evaluate whether the
INTER-IoT-EWS addresses the involved requirements.

How FAT will be performed: The EWS will be deployed in a cloud environment, organized as:

1. Workflow/dataflow deployed in NodeRed test environment of INTER-IoT.
2. The EWS deployed in an application server.
3. The MongoDB NOSQL deployed in a database server.
4. The CEP engine deployed in an application server.

Where FAT will be performed: in the U.Twente laboratory, accessing the cloud environment
described above.

Test environment

This paragraph describes the test environment and the complete system setup used during
this FAT.

As described above, the EWS components will be deployed in 3 servers in the cloud, which
will be coordinated through the NodeRed test environment of INTER-IoT32. The exact servers
are still being analyzed, but the options are:

(a) Internal (private) cloud environment of U.Twente;
(b) Cloud services of Amazon AWS or MS Azure or Google Cloud, according to the privacy

issues required.

The application server of the EWS will require Windows OS with .NET framework (4.5.2), being
able to access the data provided by INTER-MW through NodeRed workflows (REST service).
The EWS will also require access to the database and CEP servers, to store and reason over

32 https://nodered.inter-iot.eu

 D6.2: Factory Acceptance Test Plan

202

the data. The EWS will publish emergency notification messages in INTER-MW through
NodeRed (and/or NodeJS).

3.3.5.8 Test setups, tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this document
defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers, packet
sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the needed
functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

Obs.: Test data generation will be detailed in the data management plan.

TS_01 EWS deployment with I/O of messages with files

Basic environment for deployment of the EWS components:

 Application server running the EWS (Node-Red, NodeJS)
 Application server running CEP (Drools SCENE or NESPER)
 Database server running NOSQL database (MongoDB)

TS_02 EWS deployment consuming from INTER-MW

Same as TS_01, but input data acquired with INTER-MW test environment.

TS_03 EWS deployment publishing on EMS

Same as TS_01, but output data being consumed by an emergency system (either EMS or
incident management system or equivalent).

TS_04 EWS deployment consuming from INTER-MW and publishing on EMS

Conjunction of TS_02 with TS_03.

TT_01 Visual Studio unit tests

Unit tests coded in Visual Studio will be used to generate test data from the devices being used
(smartphone and Shimmer ECG).

TT_02 NodeJS unit tests

Mocha and Chai libraries for creating unit tests for each component of the EWS

https://www.codementor.io/davidtang/unit-testing-and-tdd-in-node-js-part-1-8t714s877

TT_03 Wireshark

For testing issues regarding network level, especially on the communication of the EWS
components and between the EWS with input provider and output consumer.

https://www.wireshark.org/

D6.2: Factory Acceptance Test Plan

203

TT_04 MongoDB NodeJS unit test

Mongo-unit test library for NodeJS will be used to test the storage of data, i.e. basic CRUD
methods.

https://www.npmjs.com/package/mongo-unit

TT_05 CEP unit test

Unit test tooling support includes CEP tests.

If SCENE (Drools) is used in the solution, then Junit will be considered:

https://www.packtpub.com/books/content/testing-your-jboss-drools-business-rules-using-unit-
testing

If EPL (Event Processing Language) is used (with another CEP engine, e.g. NESPER), then
an EPL-based unit test library will be used, such as:

https://github.com/antoinewaugh/aunit

http://www.apamacommunity.com/unit-testing-with-aunit/

TT_06 EDXL validator

An EDXL validator will be used to syntactically validate the messages generated, such as
Google’s EDXL-CAP validator:

https://cap-validator.appspot.com/

And SharpEDXL:

https://edxlsharp.codeplex.com/

TT_06 Google MyMaps and MyGeoData

Common routes in the port area of trucks (from the involved haulier company) will be generated
with support of Google MyMaps (http://google.com/mymaps). For example, this route from
Noatum to TVC terminal:

https://drive.google.com/open?id=1GiFTkT1-YhJqb7Y3GMWHeWTaeyLRX8zI&usp=sharing

Once the routes are created, each route will be exported as KML (KMZ) and then converted
either for GeoJSON with support of MyGeoData (https://mygeodata.cloud/conversion). The
route points in the converted data file will be used for the representation of “trip points” within
the input test messages.

3.3.5.9 Test description

Test output log files… Folder “Tx_Output”, prefix “Tx.y.1_”

Scenario: accidents at the port area [id.9]

The functional goal of this scenario is to decrease the risk of fatal accidents at the port of
Valencia, improving health prevention and enabling quick reaction by reducing time response.

The non-functional goal of this scenario is to exploit how e-Health and e-Care can use IoT
platforms dedicated to logistics to prevent the occurrence of accidents and to support
evacuation or attention in case of emergency situations: “interoperate the wearable medical
devices with IoT platforms (…) to react quickly, thus reducing time responses during accidents
and health prevention” [INTER-IoT deliverable 2.4].

 D6.2: Factory Acceptance Test Plan

204

Interoperability in this scenario is required to connect the port authority (including emergency
systems) and the road hauliers IoT platforms. The haulier solution is composed by two IoT
platforms: one representing logistics data (implemented with Azure IoT) and one representing
health data (implemented with BodyCloud (including SPINE) and UniversAAL).

This scenario involves these requirements:

ID Description Covered by

6 Efficiency of the processing of information

20 Real time support

23 Device semantic definition

179 IoT Platform Semantic Mediator supports platform to platform
communication and communication between platforms and an
external actor

73 Analyzing data from heterogeneous platforms

72 Communication should be done using protocols that are
efficient in terms of amount of exchanged information over
message size

163 Design support for semantic interoperability
180 Semantic and syntactic interoperability [T1.3], [T2.1]…
186 Design of required ontologies

249 NFR: Semantic interoperability among platforms [D2.3]
251 FR: IoT platforms to coordinate with emergency systems [D2.3]

3.3.5.9.1 UC01: Vehicle collision detection

Monitor the truck’s location and detect possible collisions (impacts). In general, the approaches
use an accelerometer within the vehicle to collect time series data about its location, i.e. the
device’s acceleration about the corresponding axes (X, Y, Z), allowing the calculation of the
G-Force felt in each instant. Then, for each instant, the detection mechanism compares if the
G-Force is above a certain threshold, which is usually 3G for devices deployed in the vehicle
chassis. According to the patent for “vehicle security with accident notification and embedded
driver analytics” (US 9491420 B2), “instances of high acceleration/deceleration are due to a
large change in velocity over a very short period of time. These speeds are hard to attain if a
vehicle is not controlled by a human driver, which simplifies accident detection since we can
assume any instance of high acceleration constitutes a collision involving human drivers”. An
approach using a smartphone sharing accelerometer data is described. The Shimmer ECG 3
also provides accelerometer data, thus, it can also provide accelerometer data, providing an
opportunity to integrate the health and logistics solutions.

Classification of severity and urgency according to accelerometer data (A) and threshold (B)
is described in the table below. In summary, if the cross-axial energy computed is greater than
the threshold and less than 20% above the threshold, then it might be a light collision (minor
severity). If it is in-between 20% and 40%, then the collision is greater (moderate severity), if
it is in-between 40% and 60%, then the collision is severe. Above 60% represents a strong
impact, thus, an extreme severity, which probably needs immediate urgency for emergency
response.

Range Severity Urgency

B < A <= B * 1.2 Minor Expected

B * 1.2 < A <= B * 1.4 Moderate Immediate

D6.2: Factory Acceptance Test Plan

205

B * 1.4 < A <= B * 1.6 Severe Immediate

B * 1.6 < A Extreme Immediate

Each test case has an equivalent input and output data file, named TX.Y. json (input and output
folders). The type of all test cases here are system testing using scripted data.

This use case involves these requirements: [23], [72], [180], [249] and [251].

Detected with smartphone accelerometer

ID T1.1

Test Vehicle collision detected with smartphone accelerometer data.

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [251]

Input T1_input/T1.1.json: during a trip within the port area the accelerometer
changes above the threshold, i.e. accelerometer value within an one trip point.

Output T1_output/T1.1.json: EDXL (SitRep and TEP)

Logs T1_output/T1.1_logname

Outcome Pass / Fail

Detected with medical wearable accelerometer

ID T1.2

Test Vehicle collision detected with smartphone accelerometer data.

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [251]

Input T1_input/T1.2.json: during a trip within the port area the accelerometer
changes above the threshold, i.e. accelerometer value within an one trip point.

Output T1_output/T1.2.json: EDXL (SitRep and TEP)

Logs T1_output/T1.2_logname

Outcome Pass / Fail

 D6.2: Factory Acceptance Test Plan

206

Detected with smartphone and medical wearable accelerometer

ID T1.3

Test Vehicle collision detected by using both accelerometer data within a window
time.

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T1_input/T1.3_logistics.json, T1.3_health.json: during a trip
within the port area the accelerometer changes above the threshold, i.e.
accelerometer value within an one trip point.

Output T1_output/T1.3.json: EDXL (SitRep and TEP)

Logs T1_output/T1.3_logname

Outcome Pass / Fail

Detected with smartphone or medical wearable accelerometer

ID T1.4

Test Vehicle collision detected through the rule that checks the battery consumption
of the devices and decides which accelerometer data should be used.

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T1_input/T1.4_logistics.json, T1.4_health.json: during a trip
within the port area the accelerometer changes above the threshold, i.e.
accelerometer value within an one trip point.

Output T1_output/T1.4.json: EDXL (SitRep and TEP)

Logs T1_output/T1.4_logname

Outcome Pass / Fail

Detected according to T1.1 with 4 classifications of severity + urgency

ID T1.5

D6.2: Factory Acceptance Test Plan

207

Test Four executions of T1.1 resulting on the classifications of severity and urgency
below (green, yellow, light red, dark red).

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [251]

Input T1_input/T1.5_level[1,2,3,4].json: during a trip within the port area
the accelerometer changes above the threshold according to the levels of
urgency/severity (table XX).

Output T1_output/T1.5_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T1_output/T1.5_logname

Outcome Pass / Fail

Detected according to T1.2 with 4 classifications of severity + urgency

ID T1.6

Test Four executions of T1.2 resulting on the classifications of severity and urgency
above (green, yellow, light red, dark red).

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [251]

Input T1_input/T1.6_level[1,2,3,4].json: during a trip within the port area
the accelerometer changes above the threshold according to the levels of
urgency/severity (table XX).

Output T1_output/T1.6_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T1_output/T1.6_logname

Outcome Pass / Fail

Detected according to T1.3 with 4 classifications of severity + urgency

ID T1.7

Test Four executions of T1.3 resulting on the classifications of severity and urgency
above (green, yellow, light red, dark red).

 D6.2: Factory Acceptance Test Plan

208

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T1_input/T1.7_level[1,2,3,4].json: during a trip within the port area
the accelerometer changes above the threshold according to the levels of
urgency/severity (table XX).

Output T1_output/T1.7_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T1_output/T1.7_logname

Outcome Pass / Fail

Detected according to T1.4 with 4 classifications of severity + urgency

ID T1.8

Test Four executions of T1.4 resulting on the classifications of severity and urgency
above (green, yellow, light red, dark red).

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T1_input/T1.8_level[1,2,3,4].json: during a trip within the port area
the accelerometer changes above the threshold according to the levels of
urgency/severity (table XX).

Output T1_output/T1.8_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T1_output/T1.8_logname

Outcome Pass / Fail

3.3.5.9.2 UC02: Hazardous health changes

Detect medical issues with the driver by monitoring his/her ECG and derived heart rate,
checking possible cardiovascular emergencies. Cardiovascular emergencies are life-
threatening disorders that must be recognized as soon as possible to minimize morbidity and
mortality. By allowing the EWS to detect cardiovascular emergencies with trucks’ drivers, it is
possible to reduce the risk of an accident at the port area. The EWS provides messages that
include the information of the cardiovascular emergency situation.

This can be achieved, basically, by using the the INTER-Health IoT solution with Shimmer
ECG device attached to the driver’s chest, wired to electrodes, and an Android-based mobile
phone, both part of the Body module of the BodyCloud approach implemented with the SPINE

D6.2: Factory Acceptance Test Plan

209

framework. Thresholds used by the detection mechanism should be based on existing
classifications to detect health risks. For example, target heart rates used for fitness is a
classification of indicators that can be used as a baseline for thresholds. The table below
illustrates such indicators (red, green, yellow, blue) depending on the person’s age. Besides
these thresholds, this use case also considers the situations which the driver presents
bradycardia and tachycardia, which can be detected with the ECG device (event monitor)33.

Classification of severity and urgency according to ComputeBPM output (A) and the threshold
(B) is described in the table below. In summary, if the BPM calculated is greater than the
threshold and less than threshold more 10%, then it might be a light tachycardia (minor
severity). If it is in-between 10% and 20%, then the tachycardia is greater (moderate severity),
if it is in-between 20% and 30%, then the tachycardia is severe. Greater than 30% represents
a strong tachycardia, thus, an extreme severity, which probably needs immediate urgency for
emergency response.

Range Severity Urgency

B < A <= B * 1.1 Minor Expected

B * 1.1 < A <= B * 1.2 Moderate Immediate

B * 1.2 < A <= B * 1.3 Severe Immediate

B * 1.3 < A Extreme Immediate

Each test case has an equivalent input and output data file, named TX.Y. json (input and output
folders). The type of all test cases here are system testing using scripted data.

This use case involves these requirements: [23], [72], [180], [249] and [251].

Bradycardia detected with fixed threshold

ID T2.1

Test From ECG data, the heart rate is calculated and compared to a threshold.

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T2_input/T2.1_level[1,2,3,4].json: during a trip within the port area
the heart rate is below the threshold according to the levels of urgency/severity
(table XX).

Output T2_output/T2.1_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T2_output/T2.1_logname

33 http://www.mayoclinic.org/diseases-conditions/bradycardia/diagnosis-treatment/diagnosis/dxc-20321665
http://www.mayoclinic.org/diseases-conditions/tachycardia/diagnosis-treatment/diagnosis/dxc-20253919

 D6.2: Factory Acceptance Test Plan

210

Outcome Pass / Fail

Bradycardia detected with dynamic threshold

ID T2.2

Test From ECG data, the heart rate is calculated and compared to a threshold.

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T2_input/T2.2_level[1,2,3,4].json: during a trip within the port area
the heart rate is below the threshold according to the levels of urgency/severity
(table XX).

Output T2_output/T2.2_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T2_output/T2.2_logname

Outcome Pass / Fail

Tachycardia detected with fixed threshold

ID T2.3

Test From ECG data, the heart rate is calculated and compared to a threshold.

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T2_input/T2.3_level[1,2,3,4].json: during a trip within the port area
the heart rate is above the threshold according to the levels of urgency/severity
(table XX).

Output T2_output/T2.3_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T2_output/T2.3_logname

Outcome Pass / Fail

Tachycardia detected with dynamic threshold

ID T2.4

D6.2: Factory Acceptance Test Plan

211

Test From ECG data, the heart rate is calculated and compared to a threshold.

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T2_input/T2.4_level[1,2,3,4].json: during a trip within the port area
the heart rate is above the threshold according to the levels of urgency/severity
(table XX).

Output T2_output/T2.4_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T2_output/T2.4_logname

Outcome Pass / Fail

Multiple occurrences of bradycardia detected with fixed threshold

ID T2.5

Test Several occurrences of T2.1 over a window of time (5 min).

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T2_input/T2.5_level[1,2,3,4].json: during a trip within the port area
the heart rate is below the threshold for a time window, according to the levels
of urgency/severity (table XX).

Output T2_output/T2.5_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T2_output/T2.5_logname

Outcome Pass / Fail

Multiple occurrences of bradycardia detected with dynamic threshold

ID T2.6

Test Several occurrences of T2.2 over a window of time (5 min).

Type System testing using scripted data

Setup Need test setup TS_01

 D6.2: Factory Acceptance Test Plan

212

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T2_input/T2.6_level[1,2,3,4].json: during a trip within the port area
the heart rate is below the threshold for a time window, according to the levels
of urgency/severity (table XX).

Output T2_output/T2.6_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T2_output/T2.6_logname

Outcome Pass / Fail

Multiple occurrences of tachycardia detected with fixed threshold

ID T2.7

Test Several occurrences of T2.3 over a window of time (5 min).

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T2_input/T2.7_level[1,2,3,4].json: during a trip within the port area
the heart rate is above the threshold for a time window, according to the levels
of urgency/severity (table XX).

Output T2_output/T2.7_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T2_output/T2.7_logname

Outcome Pass / Fail

Multiple occurrences of tachycardia detected with dynamic threshold

ID T2.8

Test Several occurrences of T2.4 over a window of time (5 min).

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

D6.2: Factory Acceptance Test Plan

213

Input T2_input/T2.8_level[1,2,3,4].json: during a trip within the port area
the heart rate is above the threshold for a time window, according to the levels
of urgency/severity (table XX).

Output T2_output/T2.8_level[1,2,3,4].json: EDXL (SitRep and TEP)

Logs T2_output/T2.8_logname

Outcome Pass / Fail

Large variation of heart rate

ID T2.9

Test Detect whether variations occur. If there is a variation of more than 50% of the
heart rates collected during a period of 5 minutes, then this situation is detected.

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T2_input/T2.9.json: during a trip within the port area the heart rate suffers
large variation.

Output T2_output/T2.9.json: EDXL (SitRep and TEP)

Logs T2_output/T2.9_logname

Outcome Pass / Fail

Detect high level of stress

ID T2.10

Test Based on UNICAL solution with Cardiac Defense Response (CDR).

Type System testing using scripted data

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (entering the port area).

Req. [180], [249], [251]

Input T2_input/T2.10.json: during a trip within the port area high-level of stress
is detected.

Output T2_output/T2.10.json: EDXL (SitRep and TEP)

Logs T2_output/T2.10_logname

 D6.2: Factory Acceptance Test Plan

214

Outcome Pass / Fail

3.3.5.9.3 UC03: Temporal relations (UC01 ~ UC02)

This use case exploits the possible temporal relations between UC01 and UC02 for detection
of an accidents in the port area. For example, if a truck collision is detected from the
accelerometers of the medical and mobile devices (T1.3) and right after (e.g. within 1-2
minutes) detecting large variation of heart rate (T2.9) then there is a high probability that a
severe accident occurred, the driver is injured and he/she requires urgent medical help. Notice
that the temporal relationship (“right after”) is crucial to integrate these use cases.

Vehicle collision followed by bradycardia

ID T3.1

Test Slow heart rate right after (within 2 minutes) a collision is detected can represent
that an accident just occurred and the driver is probably injured.

Type System testing

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

3.3.5.9.4 UC04: Wrong-way driving

This use case exploits the possible temporal relations between UC01 and UC02 for detection
of an accidents in the port area.

Truck on opposite direction of a street within the port

ID T4.1

Test From the position data (mobile), the EWS will check the street direction and
compare to the truck’s position change within 30 seconds.

Type System testing

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

D6.2: Factory Acceptance Test Plan

215

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

3.3.5.9.5 UC05: Accident involving dangerous goods

This use case will extend the use cases UC01-04 by checking whether dangerous goods are
being transported, which will increase the situation urgency and severity and include the
dangerous goods classification according to UNECE34. Data test will include simulation of trips
including the transportation of class 1 (explosives), 3 (flammable liquids), 4 (flamed solids), 6
(toxic and infectious) and 7 (radioactive).

3.3.5.9.6 UC01 with dangerous goods

ID T5.1

Test Tests of UC01 incremented with a check whether dangerous goods are being
transported.

Type System testing

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

 Input

 Output

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

34 https://www.unece.org/fileadmin/DAM/trans/danger/publi/unrec/rev17/English/Rev17_Volume1.pdf

 D6.2: Factory Acceptance Test Plan

216

3.3.5.9.7 UC02 with dangerous goods

ID T5.2

Test Tests of UC01 incremented with a check whether dangerous goods are being
transported.

Type System testing

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

3.3.5.9.8 UC03 with dangerous goods

ID T5.3

Test Tests of UC03 incremented with a check whether dangerous goods are being
transported.

Type System testing

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

D6.2: Factory Acceptance Test Plan

217

3.3.5.9.9 UC04 with dangerous goods

ID T5.4

Test Tests of UC04 incremented with a check whether dangerous goods are being
transported.

Type System testing

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

3.3.5.10 Non-functional tests

The tests will include measuring semantic interoperability, availability, logging, input and output
messaging capabilities of the EWS. Measurements include the total transaction time, CPU
processing and memory consumption history (of the EWS components, e.g. application and
CEP servers). Moreover, it will provide thresholds related to overload of resources, which can
be used as input for distribution deployment calculations (e.g. multi-broker among federated
clouds).

Each test case has an equivalent input and output data file, named TX.Y.json (input and output
folders).

This use case involves these requirements: [6], [20], [23], [72], [180], [186] and [249].

Semantic interoperability: semantic loss

ID T6.3

Test Since the INTER-IoT approach is based on multiple semantic translations,
semantic loss will be a variable to calculate semantic interoperability, measured
by executing the transformations in sequence from ontology A (e.g. SAREF) to
ontology B (e.g. SSN) and from B to A, i.e. check how x is different to
T(T(x)A>B)B>A, where T(x)A>B represents the semantic translation function from A
to B [12].

Type System testing

 D6.2: Factory Acceptance Test Plan

218

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

Performance: load testing

ID T6.1

Test <load test is usually conducted to understand the behaviour of the system under
a specific expected load. This load can be the expected concurrent number of
users on the application performing a specific number of transactions within the
set duration. This test will give out the response times of all the important
business critical transactions. The database, application server, etc. are also
monitored during the test, this will assist in identifying bottlenecks in the
application software and the hardware that the software is installed on.>

Type System testing

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

Performance: stress testing

ID T6.2

D6.2: Factory Acceptance Test Plan

219

Test <understand the upper limits of capacity within the system. This kind of test is
done to determine the system's robustness in terms of extreme load and helps
application administrators to determine if the system will perform sufficiently if
the current load goes well above the expected maximum.>

Type System testing

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

Performance: soak/endurance testing

ID T6.4

Test <endurance testing, is usually done to determine if the system can sustain the
continuous expected load. During soak tests, memory utilization is monitored to
detect potential leaks. Also important, but often overlooked is performance
degradation, i.e. to ensure that the throughput and/or response times after some
long period of sustained activity are as good as or better than at the beginning
of the test. It essentially involves applying a significant load to a system for an
extended, significant period of time. The goal is to discover how the system
behaves under sustained use.>

Type System testing

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

 D6.2: Factory Acceptance Test Plan

220

Logging tests

ID T6.5

Test Check whether the logging capability of the EWS works, which might be spread
in the involved servers (TS_01 components)

Type Auditing test

Setup <Describe the needed setup, tools, hooks and probes needed for this test>

Start <Describe the system state for the start of the test>

Req. <Define the requirements involved in [x], format>

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

3.3.5.11 Suggested: integration tests

Since device, network and middleware layers are out of the scope of the INTER-IoT-EWS
validation, we list some suggestions here top enable health and logistics data to be provided
according to the INTER-IoT framework.

Execute all test cases but instead of using test data from files, acquire data from IoT platforms
(including network and device layers) and publishing data in IoT platform(s), i.e. Port Authority
Mosquitto broker.

A use case that enables the INTER-IoT application layer (INTER-IoT-EWS) to consume data
provided by the two involved platforms and their respective devices. As output of this use case
it is expected that the device, network and middleware are able to provide data through a
pub/sub approach (INTER-MW with IPSM), where the application layer can receive real-time
data (by subscribing to topics in a broker) formatted as JSON-LD messages in accordance to
INTER-IoT ontology patterns.

This use case involves these requirements: [180] and [249].

Acquire health data

ID T1.1

Test Vehicle collision detected with smartphone accelerometer data.

Type System testing

Setup Need test setup TS_01

D6.2: Factory Acceptance Test Plan

221

Start Vehicle is in one of the port gates (to enter the port area)

Req. [X], [Y]

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

Acquire logistics data

ID T1.1

Test Vehicle collision detected with smartphone accelerometer data.

Type System testing

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (to enter the port area)

Req. [X], [Y]

Input <Define the test input steps, e.g. Inject data x in interface y>

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

Publish alerts in the Port Authority IoT platform

ID T1.1

Test Execution of functional test cases (T1-T5) in Mosquitto broker.

Type System testing

Setup Need test setup TS_01

Start Vehicle is in one of the port gates (to enter the port area)

Req. [X], [Y]

Input <Define the test input steps, e.g. Inject data x in interface y>

 D6.2: Factory Acceptance Test Plan

222

Output <Define the expected result, e.g. Expected to receive event z>

Logs <Define where the output log is stored, e.g.: Folder “Tx_Output”, prefix
“Tx.y.1_logname” >

Outcome Pass / Fail

3.3.5.12 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Test Description Outcome

T1.1 Vehicle collision detected with smartphone accelerometer Pass / Fail

T1.2 Vehicle collision detected with medical wearable accelerometer Pass / Fail

T1.3 Vehicle collision detected with smartphone and medical wearable
accelerometer

Pass / Fail

T1.4 Vehicle collision detected with smartphone or medical wearable
accelerometer

Pass / Fail

T1.5 Vehicle collision detected according to T1.1 with 4 classifications of
severity + urgency

Pass / Fail

T1.6 Vehicle collision detected according to T1.2 with 4 classifications of
severity + urgency

Pass / Fail

T1.7 Vehicle collision detected according to T1.3 with 4 classifications of
severity + urgency

Pass / Fail

T1.8 Vehicle collision detected according to T1.4 with 4 classifications of
severity + urgency

Pass / Fail

T2.1 Bradycardia detected with fixed threshold Pass / Fail

T2.2 Bradycardia detected with dynamic threshold Pass / Fail

T2.3 Tachycardia detected with fixed threshold Pass / Fail

T2.4 Tachycardia detected with dynamic threshold Pass / Fail

T2.5 Multiple occurrences of bradycardia detected with fixed threshold Pass / Fail

T2.6 Multiple occurrences of bradycardia detected with dynamic threshold Pass / Fail

T2.7 Multiple occurrences of tachycardia detected with fixed threshold Pass / Fail

T2.8 Multiple occurrences of tachycardia detected with dynamic threshold Pass / Fail

D6.2: Factory Acceptance Test Plan

223

T2.9 Large variation of heart rate Pass / Fail

T2.10 Detect high level of stress Pass / Fail

T3.1 Vehicle collision followed by bradycardia Pass / Fail

T4.1 Truck on opposite direction of a street within the port Pass / Fail

T5.1 UC01 with dangerous goods Pass / Fail

T5.2 UC02 with dangerous goods Pass / Fail

T5.3 UC03 with dangerous goods Pass / Fail

T5.4 UC04 with dangerous goods Pass / Fail

T6.1 Semantic interoperability: semantic loss Pass / Fail

T6.2 Performance: load testing Pass / Fail

T6.3 Performance: stress testing Pass / Fail

T6.4 Performance: soak/endurance testing Pass / Fail

T6.5 Logging tests Pass / Fail

FAT Outcome Pass / Fail

Table 77: Test outcome overview

3.3.5.13 Integration ethics and security

Introduction

During the Ethical Review it was requested that ethics had to be included within the project
scope. This section addresses recommendations and proposed solutions to the ethical and
security points of the integration.

For each pilot the ethics is discussed in paragraphs 8.2 until 8.5. The security aspects of each
layer is discussed in paragraph 8.7 and 8.8.

The information for the pilots for both ethics and security comes from the partners and may be
included in other documents as well.

Privacy issues of personal data from INTER-IoT-EWS

Health data (ECG) generated for the FAT will be based on public simulated data made
available by the ECG device manufacturer (Shimmer) and based on data collected from the
U.Twente researcher involved/responsible by this project (Joao Moreira). This researcher will
sign a consent form enabling the data generated to be public.

Data about truck position, speed, acceleration, transported goods, haulier company and
drivers’ information will be generated through simulations. These data will be based on fictional
information, avoiding any links to existing people (besides the researcher above) and
companies.

Although the FAT do not include the privacy issues identified regarding health-related data and
personal information, the SAT should consider the classification of the data according to the
INTER-IoT data management plan (D8.4_INTER-IoT_Data_Management_Plan.pdf) in section
2.3. Therefore, after the FAT, data should be classified within the four levels of protection and

 D6.2: Factory Acceptance Test Plan

224

the test environment changed to address the constraints of this table. For example, information
of truck driver will be classified as protection level 2 (high business impact).

D6.2: Factory Acceptance Test Plan

225

 Third Party: Senshook

Smart Mosquito Trap

The port of Valencia is one of the most important hubs in the world and thus a critical point of
entry of invasive species that must be monitored, according to the European Centre of Disease
Control.

The pilot will consist on deploying a surveillance network of 5 observation static IoT nodes in
critical points of the port of Valencia.

Each node is composed of a Smart Mosquito Trap capable of mimicking the human body
(scent and respiration) and of automatically counting captured mosquitoes, identify the gender
and the species. The information collected by each node is then sent to a server.

The pilot will start in May-June 2018 and will last until October 2018. This corresponds exactly
with the period of the year when disease-vector mosquitoes are active and must be monitored.

Following is a diagram that gives a high-level overview of the system. When a mosquito
enters the trap it gets detected by the sensor which also captures the necessary data
to identify it.

The sensor is connected to a Senscape board which sends the information to the
server running SensHook.

A client can retrieve the gathered information.

Objectives of the project

The specific objectives of the project are to:

 Perform a technical feasibility assessment of the Senshook solutions as part of the
INTER-IoT project

 Implement Senshook according to INTER-IoT requirements

 Carry out a series of tests/pilots to evaluate the performance and benefits of the tool.

Figure 104: Mosquitto trap system architecture.

 D6.2: Factory Acceptance Test Plan

226

Collaboration approach

Irideon will contribute to the INTER-IoT project by providing a new open tool for the INTER-
LAYER building block, which will allow the evolution of products based on INTER-IoT, but at
the same time will allow us to evolve our products in order to add new interoperability features.

By contributing to the development of INTER-IoT, Irideon will be able to address new IoT
scenarios in which different IoT platforms, apart from those based on Senscape, are involved,
and also in those in which more than one application domain is addressed.

Senshook Arquitecture Overview

The system consists of the Senscape hardware and a D2D virtual gateway which provides
connection to the middleware platform.

Following is a description of the different components of the gateway.

Dispatcher

The central part of the virtual gateway is the dispatcher, it consists of a communication layer
which connects to the hardware via MQTT and a service layer which implements the IEEE
1451 standard.

IEEE 1451 is a set of smart transducer interface standards developed by the Institute of
Electrical and Electronics Engineers (IEEE).

Irideon has developed a specific lightweight implementation of this standard for the Senscape
hardware devices.

This implementation includes communication protocols, transducer electronic data sheet
(TEDS) and common functions.

The dispatcher is implemented in two OSGi bundles:

 Dispatcher API bundle: This bundle defines and exports the interface.

 Dispatcher provider bundle: This bundle implements the service layer, which includes
the IEEE 1451 standard and the communication layer with the MQTT connector.
Furthermore, it registers a service with the dispatcher API.

Middleware Controller

The middleware controller consists of the three bundles:

 Middleware controller API Bundle: This bundle defines the OSGi interface for the
bundle and exports it as a package.

 Middleware Controller Provider Bundle: This bundle implements the middleware
controller and provides it as an OSGi service with the middleware controller API.

 Middleware Controller Application Bundle: This bundle consumes the service published
by the provider and implements an application that exposes a REST API.

Measure Storage

The measure storage has two bundles:

 Measure storage API Bundle: This bundle defines the interface for the bundle and
exports it as a package.

D6.2: Factory Acceptance Test Plan

227

 Measure storage provider bundle: This bundle provides the connection to a local
database to store and retrieve the values sent and requested by the dispatcher. This
bundle implements the interface defined by the API bundle and registers it as a service.

API / Web Application

This component provides a REST API to the dispatcher and also includes a web application
which serves as a front-end to interact with the Senscape hardware.

It consists of one bundle which is an OSGi application that consumes the service offered by
the dispatcher.

In Figure 105 you can see a screenshot of the web front-end:

Figure 105: Web Application of Senscape Connector.

 D6.2: Factory Acceptance Test Plan

228

And in Figure 106, in shown a diagram of the virtual gateway with their components and
respective bundles:

Figure 106: Virtual gateway bundles architecture.

System interfaces

The virtual gateway offers interfaces to two of its components, the middleware controller and
the dispatcher.

Dispatcher

The dispatcher comes with four interfaces:

 Terminal interface: This interface features an Apache Felix Gogo Shell. It is thought for
debugging.

 OSGi interface: The component registers an OSGi service API which can be used to
incorporate the dispatcher in a modular OSGi application.

 REST API: The dispatcher also offers a REST API, so it is possible to communicate
with it over the Internet making it possible to use it in a web application.

 Web front-end: Serves for testing and demonstration.

Middleware Controller

The middleware controller comes with four interfaces:

 Terminal interface: This interface features a gogo shell. It is thought for debugging.

D6.2: Factory Acceptance Test Plan

229

 OSGi interface: The component registers a OSGi service API which can be used to
incorporate the middleware in a modular OSGi application.

 REST API: The middleware controller also offers a REST API, so it is possible to
communicate with the component over the Internet making it possible to use it in a web
application.

3.3.6.1 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents

1 FAT Document
Hardware

2 Senscape Mosquito Trap
3 Computer with Internet access
4 Server running the Senshook bundles

Tools

5 Eclipse
6 JUnit
7 Postman

Table 78: Deliverable checklist

The following table shows the software components and version of which the system release
version SensHook consists of.

ID Description Version Check

IoT Virtual Gateway

1 Dispatcher API Bundle V1.0.0
2 Dispatcher Provider Bundle V1.0.0
3 Dispatcher Application Bundle V1.0.0
4 Measure Storage API Bundle V1.0.0
5 Measure Storage Provider Bundle V1.0.0

Table 79: Component version overview

3.3.6.2 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

Communications
14 Platform independent T15.1.2, T15.1.3, T15.2.2,

T15.2.3, T15.3.2, T15.3.3,
T15.5.2

15 Common IoT communication protocols must be supported. T15.1.1, T15.1.2, T15.1.3,
T15.2.1, T15.2.2, T15.2.3,
T15.3.1, T15.3.2

 D6.2: Factory Acceptance Test Plan

230

39 Gateway capabilities T15.1.2, T15.1.3, T15.2.2,
T15.2.3, T15.3.2, T15.3.3,
T15.5.2,T15.5.2

153 System cache in gateways and upper levels T15.5.1, T15.5.2
Functionality
21 Real time output T15.1.1, T15.1.2, T15.1.3,

T15.2.1, T15.2.2, T15.2.3,
T15.3.1, T15.3.2, T15.3.3

26 Remote device control T15.1.2, T15.1.3, T15.2.2,
T15.2.3, T15.3.2, T15.3.3

API
243 Gateway access API T15.1.1, T15.1.2,T15.1.3,

T15.2.1, T15.2.2, T15.2.3,
T15.3.1, T15.5.1

Interoperability
93 Standard protocol for the device communications T15.1.1, T15.1.2, T15.1.3,

T15.2.1, T15.2.2, T15.2.3,
T15.3.1, T15.3.2, T15.3.3

226 API for network services T15.1.2, T15.2.2, T15.2.3,
T15.3.2, T15.5.2

Middleware
234 Provide connectors to middleware standards Not implemented because

we do not have information
about the middleware layer

Operational
57 Device monitoring and self-awareness of the system T15.1.1, T15.2.1, T15.3.1

Virtualization
244 Gateway virtualization T15.1.2, T15.1.3, T15.2.2,

T15.2.3, T15.3.2, T15.3.3,
T15.5.2

Table 80: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the test(s)
that validate their implementation.

ID Scenario name Covered by

15 Surveillance systems for prevention programs T15.5.1, T15.5.2

Table 81: Scenario vs test mapping

3.3.6.3 Test environment

Introduction

To test the functionality of the SensHook in combination with the IoT framework a
representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test environment and the complete system setup used during
this FAT.

Test setups, tools, hooks and probes

D6.2: Factory Acceptance Test Plan

231

This paragraph describes the test setups, tools, hooks and probes used in the by this document
defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers, packet
sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the needed
functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Unit Test Setup

The unit testing used for testing the Java/OSGI API is done with the IDE Eclipse and the
framework JUnit.

TS_02 REST API Test setup

For REST API testing we use the following setup. On one hand there is a client which executes
the tests, on the other is the Senscape device and in between there is a server running the
bundle. The connection between client and server uses HTTP and between server and the
Senscape board it is established via MQTT.

TS_03 Web Interface Front-End testing

To test the web interface, we need a computer with a browser with access to the web interface.

In Figure 107 you can see a diagram of the test setup:

 D6.2: Factory Acceptance Test Plan

232

Figure 107: Diagram of the Web Interface Front-end testing.

TT_01 JUnit

JUnit is a framework for unit testing in Java, it will be used for the testing of the Java/OSGI API
tests.

TT_02 Eclipse

Eclipse is an IDE widely used for developing in Java.

TT_03 Postman

Postman is a free API development environment. It offers the option to write complete tests for
a REST API, so we use it to do status code validation, data type validation, etc.

TH_01 JUnit test script

For the unit tests the JUnit test script is responsible for setting up the context of the different
tests.

TH_02 Postman test script

For the REST API tests the postman script is responsible for setting up the context of the
differents tests

TP_01 JUnit test script

For the unit tests the JUnit test script is responsible for writing the logs of the test results.

D6.2: Factory Acceptance Test Plan

233

3.3.6.4 Test description

3.3.6.4.1 Scenario 15 Surveillance systems for prevention programs

Non-native species cost the EU €12 billion per year in damage and control costs. In the last
decades several species of disease carrying mosquitoes have invaded Europe through the
transport of goods, increasing international travel and climate change.

SensHook will reduce inspection costs and improves surveillance programs. With our new
electronic trap, we will be the first in the world to combine human mimicking with automatic
pest information in their value proposition. This allows a whole new population of consumers
to establish surveillance programs that were only accessible to those with significant
resources.

The demonstration of the Senshook architecture will be based on JAVA bundles that makes
up the Virtual Gateway of SensHook. The virtual gateway will be designed to enable bi-
directional communication between the middleware platform and the Virtual Gateway and
between the Virtual Gateway and Traps. The Virtual Gateway will be developed for receiving
data from the traps in the field, and database architecture will be defined for the storage of
data gathered by the traps. This software module will be able to read data received from the
field and store it, after pre-processing it, in the system database. This module will also
incorporate the ability to perform system checks, detect failures in nodes and sensors,
troubleshooting guide, auto-calibration and to incorporate “plug and work” devices.

3.3.6.4.2 Connecting and detecting devices

Connecting and detecting Senscape devices. Currently there are three interfaces from which
it is possible to achieve this, a Java/OSGI API, a REST API and a web interface.

T15.1.1 Device identification over Dispatcher API

ID T15.1.1

Test Device Identification over Dispatcher API
Type System Testing
Setup TT_01, TT_02, TS_01, TH_01, TP_01
Start Device is not yet connected.
Req. [243], [57], [21], [93], [15]
Input Connect device

 Perform a call to the Dispatcher API method ‘discoverTims’
Output String containing the device ID
Logs log/T15-1-1.log
Outcome Pass / Fail

T15.1.2 Device identification over REST API

ID T15.1.2

Test Device Identification over REST API
Type System Testing
Setup TT_03, TS_02, TH_02
Start Device is not yet connected.
Req. [21], [26], [243], [93], [226], [14], [15], [39], [244]
Input Connect device

 D6.2: Factory Acceptance Test Plan

234

 Perform a call to the REST API method ‘discoverTims’
Output String containing the device ID
Logs -
Outcome Pass / Fail

T15.1.3 Device identification over Web Interface

ID T15.1.3

Test Device Identification over Web Interface
Type System Testing
Setup <Describe the needed setup, tools, hooks and probes needed for this test>
Start TS_03
Req. [21], [26], [243], [93], [226], [14], [15], [39], [244]
Input Connect device

 Click ‘TIM Discovery’ Button
Output String containing the device ID
Logs -
Outcome Pass / Fail

3.3.6.4.3 Obtain information about connected sensors

Information about the connected sensors to the different Senscape devices is retrieved.
Senscape implements the IEEE 1451.4 Transducer Electronic Data Sheets (TEDS) standard.
Besides the ability to retrieve detailed information about the connected sensors it also provides
plug and play functionality for sensors.

Currently there are three interfaces from which it is possible to read the TEDS, a Java/OSGI
API, a REST API and a web interface.

T15.2.1 Read TEDs over Dispatcher API

ID T15.2.1

Test Read TEDs over Dispatcher API
Type System Testing
Setup TT_01, TT_02, TS_01, TH_01, TP_01
Start Device connected
Req. [243], [57], [21], [93], [15]
Input Perform a call to the Dispatcher API method ‘readTeds
Output String containing the TEDs
Logs log/T15-2-1.log
Outcome Pass / Fail

T15.2.2 Read TEDs over REST API

ID T15.2.2

Test Read TEDs over REST API
Type System Testing
Setup TT_03, TS_02, TH_02
Start Device connected
Req. [21], [26], [243], [93], [226], [14], [15], [39], [244]

D6.2: Factory Acceptance Test Plan

235

Input Perform a call to the REST API method ‘readTeds’
Output String containing the TEDs
Logs -
Outcome Pass / Fail

T15.2.3 Read TEDs over Web Interface

ID T15.2.3

Test Read TEDs over Web Interface
Type System Testing
Setup TS_03
Start Device connected
Req. [21], [26], [243], [93], [226], [14], [15], [39], [244]
Input Fill out fields: TIM Id, Channel Id, TEDs type

 Click on ‘Read TEDs’ button.
Output String containing the TEDs
Logs -
Outcome Pass / Fail

3.3.6.4.4 Read sensor

The current value of a connected sensor is read. Currently there are three interfaces from
which it is possible to read the sensors, a Java/OSGI API, a REST API and a web interface.

T15.3.1 Read sensor data over Dispatcher API

ID T15.3.1

Test Read sensor data over Dispatcher API
Type System Testing
Setup TT_01, TT_02, TS_01, TH_01, TP_01
Start Device connected
Req. [243], [57], [21], [93], [15]
Input Perform a call to the Dispatcher API method ‘readData’
Output String containing the current value of the sensor
Logs log/15-3-1.log
Outcome Pass / Fail

T15.3.2 Read sensor data over REST API

ID T15.3.2

Test Read sensor data over REST API
Type System Testing
Setup TT_03, TS_02, TH_02
Start [21], [26], [243], [93], [226], [14], [15], [39], [244]
Req. <Define the requirements involved in [x], format>
Input Perform a call to the REST API method ‘data’String containing the current

value of the sensor
Output String containing the current value of the sensor.
Logs -
Outcome Pass / Fail

 D6.2: Factory Acceptance Test Plan

236

T15.3.3 Read sensor data over Web Interface

ID T15.3.3

Test Read sensor data over Web Interface
Type System Testing
Setup TS_03
Start Device connected
Req. [21], [26], [243], [93], [226], [14], [15], [39], [244]
Input Fill out TIM Id and Channel Id field.

 Click on ‘Read Data’ button.
Output String containing the current value of the sensor.
Logs -
Outcome Pass / Fail

3.3.6.4.5 Send mosquito flight data to Data Storage

A mosquito entered the trap and the flight is detected and sent to the data storage. This can
be done via the Java/OSGI API.

T15.4.1 Send mosquito flight data over Dispatcher API

ID T15.4.1

Test TT_01, TT_02, TS_01, TH_01, TP_01
Type System Testing
Setup <Describe the needed setup, tools, hooks and probes needed for this test>
Start Device connected

 Flight data extracted
Req. [15], [153], [243], [93]
Input Perform a call to the Dispatcher API method ‘writeDataDb’
Output -
Logs log/15-4-1.log
Outcome Pass / Fail

3.3.6.4.6 Retrieve flight data from the data base

The mosquito flight data is retreived from the data base for further use. This can be done via
the Java/OSGI API and the REST API.

T15.5.1 Retrieve flight data from the data base over Dispatcher API

ID T15.5.1

Test Retrieve flight data from the data base over Dispatcher API
Type System Testing
Setup TT_01, TT_02, TS_01, TH_01, TP_01
Start Device connected
Req. [153], [243]
Input Perform a call to the Dispatcher API method ‘readLastValuesDb’
Output Flight data results
Logs Log/15-5-1.log
Outcome Pass / Fail

D6.2: Factory Acceptance Test Plan

237

T15.5.2 Retrieve flight data from the data base over REST API

ID T15.5.2

Test Retrieve flight data from the data base over REST API
Type System Testing
Setup TT_03, TS_02, TH_02
Start Device connected
Req. [14], [39], [153], [226], [244], [39], [244]
Input Perform a call to the REST API method ‘readLastValuesDb’Flight data

results
Output Flight data results
Logs -
Outcome Pass / Fail

3.3.6.5 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Test Description Outcome

T15.1.1 Device identification over Dispatcher API Pass / Fail
T15.1.2 Device identification over REST API Pass / Fail
T15.1.3 Device identification over Web Interface Pass / Fail
T15.2.1 Read TEDs over Dispatcher API Pass / Fail
T15.2.2 Read TEDs over REST API Pass / Fail
T15.2.3 Read TEDs over Web Interface Pass / Fail
T15.3.1 Read sensor data over Dispatcher API Pass / Fail
T15.3.2 Read sensor data over REST API Pass / Fail
T15.3.3 Read sensor data over Web Interface Pass / Fail
T15.4.1 Send mosquito flight data over Dispatcher API Pass / Fail
T15.5.1 Retrieve flight data from the data base over Dispatcher API Pass / Fail
T15.5.2 Retrieve flight data from the data base over REST API Pass / Fail
FAT Outcome Pass / Fail

Table 82: Test outcome overview

3.3.6.6 Integration ethics and security

Introduction

During the Ethical Review it was requested that ethics had to be included within the project
scope. This section addresses recommendations and proposed solutions to the ethical and
security points of the integration.

For each pilot the ethics is discussed in paragraphs 8.2 until 8.5. The security aspects of each
layer is discussed in paragraph 8.7 and 8.8.

The information for the pilots for both ethics and security comes from the partners and may be
included in other documents as well.

Smart Mosquito Trap

 D6.2: Factory Acceptance Test Plan

238

There are at least 3,528 species of mosquitoes. The majority are harmless to humans, but a
few dozen species transmit diseases. SensHook addresses the major problem of disease-
carrying Invasive Mosquito Species (IMS) that invade Europe due to climate change. The most
threatening is the Asian Tiger Mosquito (Aedes albopictus), a vector that can transmit several
serious and life threatening diseases.

D6.2: Factory Acceptance Test Plan

239

 Third Party: SOFOS

The imminent arrival of the Internet of Things (IoT), which consists of a vast variety of devices
with heterogeneous characteristics, means that future networks need a new architecture to
accommodate end-to-end IoT networking, dealing with: i) the expected increase in data
generation, ii) the problems related to the end-to-end IP networking of the resource-
constrained IoT devices, iii) the capacity mismatch between devices, and iv) the rapid
interaction between services and infrastructure.

Software defined networking (SDN) and network function virtualization (NFV) are two
technologies that promise to cost-effectively provide the scale and versatility necessary for IoT
services in order to address efficiently the aforementioned challenges. Moreover, given that
SDN and NFV are considered a fundamental component in the 5G landscape, since it is widely
recognized that 5G networks will be software-driven and most components of future
heterogeneous 5G architectures should be capable to support software-network technologies,
both SDN and NFV are promising candidate technologies for a Software Defined Approach of
end-to-end IoT Networking.

Figure 108: The proposed SDN/NFV end-to-end IoT Gateway overview

SOFOS aims at advancing the existing INTER-IoT framework with SDN and NFV
functionalities towards a Software-defined end-to-end IoT infrastructure with IoT service
chaining support. The main objective of the proposed SDN/NFV-enabled framework is to
enhance the interoperability of the INTER-IoT framework in order to facilitate the interoperable
management of a large number of diverse smart objects that currently operate utilizing a variety
of different IoT protocols.

In this framework, specific objectives of the proposal include:
 To add SDN/NFV Automation and Verification in IoT Infrastructure
 To relocate various IoT functions from HW appliances to Virtual Machines (VMs) (i.e.

Virtual Network Functions - VNFs).
 To enhance the interoperability support of the INTER-IoT platform by deploying VNFs

that map IoT protocols (such as CoAP, MQTT) to standard IP networking
 To connect and chain the software-defined IoT functions (i.e. VNFs) together.
 To abstract the IoT’s control plane by exploiting the SDN concept and advances.
 Inter-IoT Infrastructure with the proposed advances can be enhanced by means of

NFV with integration of SDN, making it more agile and introducing a high degree of
automation in service delivery and operation—from dynamic IoT service parameter
exposure and negotiation to resource allocation, service fulfillment, and assurance.

 D6.2: Factory Acceptance Test Plan

240

3.3.7.1 Integration of IoT framework

SOFOS experiment considers that INFOLYSiS will deploy on top of INTER-IoT vGW modules
that provide SDN/NFV Automation in IoT Infrastructure, such as the INFOLYSiS SDN/NFV
Network Manager. By applying appropriate OPENFLOW commands, INFOLYSiS add-on will
steer the data traffic from the INTER-IoT vGW to the various VNFs that will have been deployed
in order to enhance the interoperability functions of INTER-IoT, allowing to the application layer
to represent the received data in a unified way.

Figure 109: SOFOS Integration and Factory test setup overview.

Thus, with the mapping VNFs provided by INFOLYSiS and the support of the SDN/NFV
techniques, the data provided by Raspberry and panStamp are mapped to a common protocol
(e.g. HTTP). For the instantiation of the virtual functions, an SDN-compatible (i.e. OpenFlow
compliant) cloud computing platform is considered at the MW layer for enterprise users, such
as the Docker approach of the INTER-IoT framework.

The container-based topology of the Factory test setup overview, is depicted in the following
figure, where each box represents a container on top of the docker-based virtualization.

D6.2: Factory Acceptance Test Plan

241

Figure 110: SOFOS Integration and Factory test setup logical topology.

The IoT node generators for the factory setup (i.e. httpgen1/2, mqttgen1/2, and coapgen1/2)
will be based on data provided by Raspberry and panStamp units of the INTER-IoT platform
or other HW-based IoT nodes that will be available by INTER-IoT system during the early
integration phase.

Figure 111: Collaboration approach of the proposed SDN/NFV end-to-end IoT

infrastructure within the INTER-IoT architecture.

SOFOS experiment considers that INFOLYSiS will deploy the necessary mapping VNFs (i.e.
proxies) on the top of the relevant virtual INTER-IoT GWs. The necessity for the SDN
management on top of each testbed it is depicted in the Figure 2, where it is shown that without
the proposed SOFOS SDN/NFV-based IoT system, the IoT nodes forwards the data traffic
directly to the respective IoT GW, which is not capable to understand the different protocols
and therefore communication is not achieved. With SOFOS SDN/NFV-based IoT system, by
applying appropriate OPENFLOW commands via the SDN Controller, the data traffic from the
IoT nodes will be routed (1) to the SDN-node/switch, then (2) will be diverted/routed/steered
by the SDN switch of the testbed (due to appropriate Openflow commands/programming)
towards the mapping function in order to be translated to the “interoperable” protocol (e.g.
HTTP in the example) and (3) then (once it has been translated) will be further

 D6.2: Factory Acceptance Test Plan

242

forwarded/routed back to the SDN switch and finally (4) from there to the original destination
i.e. the IoT vGW.

Figure 112: Detailed approach of SDN applicability in SOFOS experiment on top of the
INTER-IoT testbed.

3.3.7.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components
2 Validation and Test reports of the Pilot system components

Hardware

4 Raspberry and panStamp units or other IoT sensors that are available by
the INTER-IoT platform

Tools

7 OpenVPN

Table 83: Deliverable checklist

The following table shows the software components and version of which the system release
version consists of.

ID Description Version Check

IoT Physical Gateway

1 AN Controller V1.0.3
IoT Virtual Gateway

4 Fiware V4.2.3
5 Docker
6 Ubuntu

Universaal container

7 UniversAAL REST API V3.2.1

Table 84: Component version overview

D6.2: Factory Acceptance Test Plan

243

3.3.7.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

15 Support of common IoT communication protocols INFOLYSiS mapping

functions
21 Real time output INFOLYSiS vGW

70 Easy-to-use user interface INFOLYSiS vGW

78 Automatic and dynamic selection of communication
protocol

INFOLYSiS vGW

229 SDN capabilities INFOLYSiS vGW

231 Network function virtualization INFOLYSiS vGW

Table 85: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the test(s)
that validate their implementation.

ID Scenario name Covered by

9 Accident at the port area

10 Health monitoring system with passengers aboard a ferry

30 IoT access control, traffic and operational assistance

Table 86: Scenario vs test mapping

3.3.7.4 Test environment

Introduction

To test the functionality of the SOFOS in combination with the IoT framework a representative
test system is needed. The test system needs to approach the “real world” as much as
possible. The pilot setups must be recreated and proven. This chapter will describe this
environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test environment and the complete system setup used during
this FAT.

3.3.7.5 Test setups, tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this document
defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers, packet
sniffer like e.g. Whireshark, developed scripts, etc.

 D6.2: Factory Acceptance Test Plan

244

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the needed
functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Test setup x

The following topology refers to the FAT test setup that will be used for verifying the SOFOS
solution. The IP addresses of the figure refer to the ones that have been already used for
testing at INFOLYSiS testbed envorionemnt. Appropriate ones will be used, while the IoT
nodes/emulators that are currently used for testing will be replaced by actual HW-based IoT
nodes provided by INTER-IoT ecosystem.

Figure 113: FAT test setup of SOFOS solution.

TT_01 Test tool x

Packet sniffers can be used for verifying the IoT protocols that are entering to the SOFOS
systems and the ones that are translated when are existing the system.

TH_01 Test hook x

For testing purposes SOFOS systems utilizes IoT nodes emulator in order data to feed the
system. Appropriate hooks that produce MQTT/COAP and HTTP traffic will be used by the
SOFOS system in order to demonstrate the SDN-based IoT interoperability provision.

TH_01 Test probe x

INFOLYSiS IoT vGW provides a detailed monitoring interfaces, which shows in real time the
data that are translated by the mapping functions to generic UDP streams, proving that the
system is handling the scenario as it should.

D6.2: Factory Acceptance Test Plan

245

3.3.7.6 Test description

3.3.7.6.1 S1 – Accident at the port area: Health monitoring system with passengers

aboard a ferry

This scenario considers an emergency situation where vessels with casualties are
approaching the port where the health units/rescue teams should be prioritized/coordinated
depending on the health condition of each casualty. The implementation and use of the SDN
paradigm by SOFOS will speed up IoT connections, provide interoperability among different
IoT health devices and centralize the management between the vessels domains and the port
domain. Moreover, the SDN applicability will allow the prioritization of IoT data flows using
traffic engineering, achieving a general overview of the whole network at any time. SOFOS
pilot will provide at the first responders’ commander, who will coordinate the rescue teams, a
unified view of IoT data visualisation. More specifically, the proposed SDN/NFV-enabled IoT
GW will be used to provide interoperability between eHealth IoT systems on the different
vessels with the coordination center at the port with scope to provide a common unified view
of the patients/casualties and the location of the available rescue teams. For this purpose, a
virtual mapping function that implements an existing interoperability standards commonly used
in healthcare information systems will be deployed by the SDN/NFV orchestrator, offering
interoperable and continuous data transmission, allowing to the coordinator to allocate at each
available rescue unit the appropriate casualty.

Interoperability in this scenario is required to connect IoT health devices.

The resulting service will be obtained by the integration of:

 IoT wearable health sensor platform
 SOFOS SDN-based interoperable vGW

If IoT wearable health sensors are not available by INTER-IoT project, the described scenario
will be adapted to containers with IoT sensors and prioritizing their disembarking based on the
data received.

Agile IoT protocol translation/mapping

Design, implementation and integration of interoperable networking layer components (in the
form of VNFs) for INTER-FW. The proposed SDN/NFV extension facilitates the deployment of
virtual mapping functions and other networking layer components (such as virtual SDN
switches), which are based on different standards higher-level communication standards (e.g.
TCP/IP, HTTP, CoAP, etc).

This use case involves these requirements: [15], [21], [70], [78], [227] and [231].

Provision of interoperability over heterogeneous IoT units based on SDN/NFV
techniques

Test Provision of interoperability over heterogeneous IoT units based on
SDN/NFV techniques

Type System testing

Setup Integration of SOFOS with INTERIOT via a VPN

 D6.2: Factory Acceptance Test Plan

246

Start IoT sensors produce data

Req. [15], [21], [70], [78], [227], [231].

Input Enable the sensor within range of the physical gateway

Output no # of heterogeneous IoT nodes that are connected in an interoperable
way no # of heterogeneous IoT nodes that provide data to be visualized
in a unified way

 no # of VNF deployments and SDN rules of heterogeneous IoT nodes
that are connected in an interoperable way

Outcome Pass / Fail

3.3.7.7 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Test Description Outcome

T1 MQTT mapping to UDP-based raw data Pass / Fail

T2 CoAP mapping to UDP-based raw data Pass / Fail

T3 HTTP mapping to UDP-based raw data Pass / Fail

FAT Outcome Pass / Fail

Table 87: Test outcome overview

3.3.7.8 Integration ethics and security

Introduction

SOFOS will give prompt attention to any ethical issues that may arise as a result of project
activities, and will address them in a professional way following established and upcoming EU
regulations and the corresponding national laws about data protection, digital and property
rights issues and protection of minors very closely.

SOFOS

In case that ehealth IoT sensors are available by INTER-IoT project, then the execution of
SOFOS experiment involves human participants. If such sensors are not available and IoR
container sensors will be used, then human participants are not involved and therefore
Ethics/Privacy aspects are not considered.

In the case of ehealth sensors, the human participants for these activities will be recruited by
INTERIOT consortium and not the third party for the needs of the execution of the experiments
of the Open Call. Established procedures will be followed that respect all pertinent laws
(Directive 95/46/EC and General Data Protection Regulation) and ethics standards, in
particular related to contacting individuals, providing comprehensive and clear information
about the objectives of the conducted research and the use of the collected data, obtaining
their consent and not sharing any of the collected personal data with third parties.

D6.2: Factory Acceptance Test Plan

247

The precise documentation that will be communicated to users participating in the pilot studies
will be made available before the execution of the experiment and will be included as
appendices to the final deliverable.

 D6.2: Factory Acceptance Test Plan

248

 Third Party: ACHILLES

Access control and endpoint authentication in the IoT is a challenging problem. Things are
usually small devices with limited storage capacity, power, energy, and processing capabilities,
in order to be inexpensive and practical. In many cases Things are “exposed” to tampering,
whereas in many application scenarios, after Things are deployed, it is not easy to access
them. Things usually are not able to perform “heavy” tasks, such as complex cryptographic
operations. Storing user credentials or any other sensitive information in a Thing creates
security risks, adds storage overhead, and makes security management an impossible task.
When it comes to interoperable applications, Things (or even gateways) cannot interpret
complex business roles and processes. Moreover, companies are not willing to share sensitive
information about their users with a Thing (or a gateway), even if this information is required
by an access control mechanism, neither do they want to invest in yet another security system.

The ACHILLES project overcomes these limitations by allowing the delegation of security
operations to a third party, referred to as the Access Control Provider (ACP), which can be
implemented by a trusted separate entity, or even the service provider itself. The ACHILLES
concept is depicted in Figure 114.

The main idea of the ACHILLES concept is that IoT service providers store access control
policies in ACPs and in return ACPs generate secret keys which are stored in Things (steps 1-
2). These keys are generated, during a setup phase, using a secure hash with input the Thing
identifier. Additionally, Things are configured with pointers (e.g., a URL that points to an ACP
and a particular file) to the access control policies that protect sensitive resources (step 3).
Every time a client requests access to a protected resource (step 4) the Thing uses a secure
hash function to generate a session key (step 5). The secret key used by that function is the
key generated by the ACP and the hash inputs are: (a) the pointer to the policy that protects
the resource and (b) a random nonce. The Thing transmits the nonce and the pointer to the
client (step 6), which in return requests authorization from the appropriate ACP (over a secure
channel) (step 7). The ACP has all the necessary information required to calculate the session
key: if the client is authorized, the ACP calculates the session key and transmits it back to the
client (step 8). Providing that: (i) the Thing has not lied about its identity and (ii) the messages
exchanged between the client and the Thing have not been modified, the Thing and the client
end up sharing a secret key. This key can be used for securing subsequent communications
(e.g., by using DTLS).

3.3.8.1 Testing system

Our testing system is illustrated in Figure 115.

ACP

Thing

(1) Policy, Thing Identifier

(2) Secret key

(3) Secret key,
 pointer to policy

Client

 (4) Unauthorized request

(6) Nonce, pointer to policy
(5) Calculate session key

(7) Authorization request for
policy, nonce

(8) Session key

Service provider

Figure 114: The concept of the ACHILLES project.

D6.2: Factory Acceptance Test Plan

249

Figure 115: Testing System.

Our testing system is composed of the following components: a CoAP server running in a
RIOT-based device, a Java-based CoAP Client, Java-based access control providers (ACP)
and a Java-based extension bundle running in an Inter-IoT GW implementing the ACHILLES
protocol. In the device, a CoAP resource is provided only to authorized clients. The resource
access is regulated by a username-password based access control policy. The access control
policy is stored in the ACP and in essence maps the username of a client to a Boolean output
(true, false). When the output of an access control policy invocation is true (i.e., an appropriate
username-password pair was provided), the client is considered authorized.

For testing purposes we assume an out-of-band, secured, setup phase. It is assumed that the
ACP has generated a Master Secret Key (MSK) and a Uniform Resource Identifier (URI) for
the policy (steps 1-2). Moreover, the Inter-IoT GW is equipped with a secret key generated by
the ACP using as input the MSK and the resource URI (step 3). The gateway maintains an
Access Table that contains a tuple of the form [Resource,Policy,SK] where Resource is the
URI of the protected resource, Policy is the URI of the policy that protects the resource, and
SK is the secret key that has been generated by the ACP. The client initially sends an
unauthorized CoAP request to the Inter-IoT GW (step 4). Upon receiving this request, the GW
retrieves the Policy URI and the SK from the Access Table and generates a token. The token
is a (public) variable unique among all sessions of that specific GW. Then, the GW uses SK to
calculate a session key. All tokens and session keys are stored in a Token Table (step 5).
Finally, the GW sends the URI and the Token back to the client (step 6). Upon receiving the
GW response, the client sends an authentication request to the ACP, including her username
and password (step 7). The ACP authenticates the client, examines if the username and the
password are correct, calculates a secret key and transmits it back to the client (step 8). The
keys calculated by the ACP and the device are identical if the following conditions hold: (i) the
GW is a legitimate device, (ii) messages have not been tampered with by an attacker. Finally,
the client performs an authorized request (step 9) which is forwarded to the CoAP server (step
9). The CoAP server responds to the GW (step 10), the GW encrypts the response using the
session key and sends it back to the client (step 11).

 A sequence diagram of our testing system follows.

 D6.2: Factory Acceptance Test Plan

250

Client
(C1)ACP

(A1)

R1, C1

URIpolicy1, Token1

G1, URIpolicy1,Token1,C1

 Token Table
SessionId Token Expires Resource SK
IP:Portc1 Token1 ts R1 HMACSKA1,R1

(URIpolicy1,Token1,C1)

HMACSKacp,GW(URIpolicy1,Token1,C1)

 Access Table
Resource Policy SK

R1 URIpolicy1 HMACMSKA1(R1)

HMACMSKA1(G1)

GW
(G1)

Figure 116: Message sequence diagram of the core functions of the testing system.

3.3.8.2 Integration of IoT framework

ACHILLES will interact with the following D2D Gateway Components:

 Logging: This component will be used for creating test logs.

 Protocol Controller: ACHILLES will extent the protocol controller with a new
component specific to the ACHILLES protocol. We refer in the following to this
component as Achilles GW module.

 CoAP Protocol Module: The Achilles GW module will utilize the CoAP GW protocol
module in order to dispatch CoAP requests to the appropriate devices.

 Gateway Configuration: The gateway configuration component will be extended to
hold ACHILLES specific configuration.

 API: ACHILLES will extend the appropriate D2D GW APIs in order to enable Access
Table modifications.

The following table contains a list of D2D gateway components that will be used during FAT
tests.

ID Component Tests

1 Logging All

2 Protocol Controller All

3 CoAP Protocol Module
T1.2.2,
T2.2.2

4 Gateway Configuration
T1.1.1,
T2.1.1, T2.1.2

5 API
T1.1.1,
T2.1.1, T2.1.2

Table 88: List of GW components that will be used during the Tests

D6.2: Factory Acceptance Test Plan

251

3.3.8.3 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components
2 Validation and Test reports of the Pilot system components
3

Tools
7 Wireshark

Table 89: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

ID Description Version Check

IoT Physical Gateway

1 Logging VX.X.X
3 Protocol Controller VX.X.X
3 CoAP VX.X.X
4 Gateway Configuration VX.X.X

ACHILLES
4 ACP V1.0.0
5 ACHILLES CoAP Client V1.0.0
6 GW Module V1.0.0
7 CoAP Server V1.0.0

Table 90: Component version overview.

3.3.8.4 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

Architecture

2 Scalability. Design Τ1.1.1, Τ2.1.1
6 Efficiency of the processing of information Τ1.1.1, Τ2.1.1

Communications
14 Platform independent Τ1.2.2, Τ2.2.2
15 Common IoT communication protocols must be supported. Τ1.2.2, Τ2.2.2

Functionality
11 Addressability and reachability Τ1.1.1, Τ2.1.1
22 Unique identifier (this is the new 256 requirement) Τ1.1.1, Τ2.1.1

API
243 Gateway access API Τ1.1.1, Τ2.1.1
Interoperability
13 Extensibility T2.1.2

Legality
76 Interoperability between things from different

administrative/management domains
Τ2.2.2

 D6.2: Factory Acceptance Test Plan

252

Performance
72 Communication should be done using protocols that are

efficient in terms of amount of exchanged information over
message size

Τ1.2.2, Τ2.2.2

Security
27 System security T 1.2.1, T 2.2.1, Τ3.1.1,

Τ3.2.1, Τ3.2.2
28 System privacy Τ3.1.1, Τ3.2.1, Τ3.2.2
95 Robustness, resilience and availability Τ3.1.1, Τ3.2.1, Τ3.2.2
98 Data provenance Τ1.1.1, Τ2.1.1

Table 91: Requirements vs test mapping.

The following table provides an overview of the relation between the scenarios and the test(s)
that validate their implementation.

ID Scenario name Covered
 by

1 IoT Data sharing T1.1.1, T1.2.1, T1.2.2

2 B2B Services T2.1.1, T2.2.1, T2.2.2

3 System under attack T3.1.1, T3.2.1, T3.2.2

Table 92: Scenario vs. test mapping.

3.3.8.5 Test environment

Introduction

To test the functionality of the ACHILLES project in combination with the IoT framework a
representative test system is needed. The test system needs to approach the “real world” as
much as possible. The pilot setups must be recreated and proven. This chapter will describe
this environment and the used hardware, software, tools and platforms.

Test environment

Our testing environment is composed of the following components: a CoAP server running in
a RIOT-based device, a Java-based CoAP Client, Java-based access control providers (ACP)
and a Java-based extension bundle running in an Inter-IoT GW implementing the ACHILLES
protocol. In the device, a CoAP resource is provided only to authorized clients. The CoAP-
Client and the ACP server will be executed in isolated virtual machines running in a single
laptop. The hosting laptop will be in the same LAN as the Inter-IoT GW. The CoAP server will
accept CoAP GET, as well as CoAP PUT requests. The latter type of requests will be used for
controlling the usage of an (emulated, probably) actuator.

3.3.8.6 Test setups, tools, hooks and probes

TS_01 Test setup 1

This setup is used by all tests that involve a single ACP. During this setup the ACP is configured
with username-password pairs. Moreover, the ACP generates and securely stores a Master
Secret Key (MSK). In addition, access control policies are created and stored in ACPs, and a
Uniform Resource Identifier (URI) for each policy is generated. The ACP uses a secure HMAC
and the MSK to calculate a secret key as follows: SKacp,GW = HMACMSK(IDGW). The calculated
SK is then configured to the GW. Finally, each CoAP client is configured with an ACP
username and password as well as with the URI of the desired resources.

D6.2: Factory Acceptance Test Plan

253

TS_02 Test tool 2

This setup is used by all tests that involve multiple ACPs. This setup is in essence TS_01
repeated for each ACP. Each ACP is responsible for protecting different resources. Moreover,
each CoAP client is configured with a single ACP.

TT_01 Packet sniffer

In order to visualize the exchanged messages, we will use the Wireshark network sniffer.

TH_01 Test configurator

This hook is used for configuring the ACP with the appropriate parameters, as well as for
injecting into the Inter-IoT GW the generated secret keys and proper configuration files. The
configuration files contain entries related to the available CoAP resources.

TH_02 Session re-player

This hook is used for replaying requests from authorized users with or without modifications
and it is used for testing the security properties of the system.

TP_01 GW Dumper

This probe will output all state related to ACHILLES maintained by the Inter-IoT GW. This
includes configuration files, access control tables, as well as Token Tables.

TP_03 Actuator output

This probe is used for outputting the state of the actuator.

3.3.8.7 Test description

3.3.8.7.1 S1 - IoT data sharing

The objective of this scenario is to enable a resource owner to share measurement data with
other authorized users. In this scenario resource owners have Things they own connected to
an Inter-IoT GW. These Things perform various measurements. Measurements are grouped
based on the Thing location and can be accessed in real-time using the appropriate CoAP
resource URIs (e.g., coap://window.bedroom.user1/temperature). Resource owners define
access control policies in the ACP (e.g., “Friends”, “Family”) and define in the GW the access
control policy that protects each group of measurements (e.g., “window.bedroom.user1 can be
accessed by Friends”).

3.3.8.7.2 U1: New measurement group creation

The resource owner creates a new group of measurements and registers them in the GW,
providing at the same time a pointer to the access control policy that protects them.

T1.1.1 New measurement group creation

ID T1.1.1

Test Registration of a new group of measurements

Type System testing

Setup Needs setup TS_01

 D6.2: Factory Acceptance Test Plan

254

Start Access Table in GW is empty

Req. [2],[6],[11],[22],[243],[98]

Input Resource owner invokes the resource registration API call

Output Access Table is updated

Logs Folder “T1_Output”, prefix “T1.1.1_achilles” >

Outcome Pass / Fail

3.3.8.7.3 U2- User request

A user is interested in a receiving a measurement protected under a specific access control
policy. The user performs an initial request (an unauthorized request) to learn all information
required for authorization. Then, it authenticates himself in the appropriate ACP and obtains
an authorization token. The latter is used for performing an authorized request.

T1.2.1 Unauthorized request

ID T1.2.1

Test Request from an unauthorized user for a protected resource

Type System Testing

Setup Needs setup TS_01

Start Access Table contains some entries

Req. [27]

Input A CoAP request from an unauthorized user

Output ● Check if the resource is included in the Access Table
● Generate session key
● Generate token
● Respond to the user with the ACP URI and the token

Logs Folder “T1_Output”, prefix “T1.2.1_achilles” >

Outcome Pass / Fail

T1.2.2 Authorized request

ID T1.2.2

Test Request from an authorized user for a protected resource

Type System Testing

Setup Needs setup TS_01

Start Access Table and Token Table contains some entries

D6.2: Factory Acceptance Test Plan

255

Req. [14],[15],[72],[76]

Input A CoAP request from an authorized user

Output ● Check if the resource is included in the Access Table
● Check if the Token is included in the Token Table and it is still valid
● Perform a CoAP request to the appropriate Thing
● Encrypt the response and send it back to the user

Logs Folder “T1_Output”, prefix “T1.2.2_achilles” >

Outcome Pass / Fail

3.3.8.7.4 S2 - B2B services

The objective of this scenario is to enable protected resources for multiple groups of authorized
users belonging to diverse administrative domains. In this a scenario, a resource owner owns
actuators connected to an Inter-IoT GW. These actuators can accept commands as CoAP
PUT requests. Various stakeholders define access control policies in their corresponding ACP
(e.g., “Employees”, “Managers”). Moreover, the resource owner defines in the GW the access
control policies that protect each operation (e.g., “switch1 can be turned on by the “Employees”
of the company that has business relationships with ACP A, or the “Employees” of the company
that has business relationships with ACP B).

3.3.8.7.5 U1: New operation creation and management

The resource owner defines an operation that can be performed on an actuator and provides
pointers to the policies that protect this operation. Moreover, later on, the resource owner can
modify the list of the pointers to policies by adding or removing a pointer.

T2.1.1 New operation registration

ID T2.1.1

Test Registration of a new resource protected by multiple policies

Type System testing

Setup Needs setup TS_02

Start Access Table in GW is empty

Req. [2],[6],[11],[22],[243],[98]

Input Resource owner invokes the resource registration API call

Output Access Table is updated

Logs Folder “T1_Output”, prefix “T2.1.1_achilles” >

Outcome Pass / Fail

 D6.2: Factory Acceptance Test Plan

256

T2.1.2 List of policies modification

ID T2.1.2

Test Add or remove a pointer to an access control policy

Type System testing

Setup Needs setup TS_02

Start Access Table in GW has some entries

Req. [13]

Input Resource owner invokes the resource registration API call

Output Access Table is modified

Logs Folder “T1_Output”, prefix “T2.1.2_achilles” >

Outcome Pass / Fail

3.3.8.7.6 U2- User request

A user is interested in triggering an actuator protected by some access control policies. The
user performs an initial request (an unauthorized request) to learn all information required for
authorization. Then it authenticates himself in the appropriate ACP and obtains an
authorization token. The latter is used for performing an authorized request.

T2.2.1 Unauthorized request

ID T2.2.1

Test Request from an unauthorized user for a protected actuator

Type System Testing

Setup Needs setup TS_02

Start Access Table contains some entries

Req. [27]

Input A CoAP request from an unauthorized user

Output ● Check if the resource is included in the Access Table
● Generate session key
● Generate token
● Respond to the user with the ACP URIs and the token

Logs Folder “T1_Output”, prefix “T2.2.1_achilles” >

Outcome Pass / Fail

D6.2: Factory Acceptance Test Plan

257

T2.2.2 Authorized request

ID T2.2.2

Test Request from an authorized user for a protected resource

Type System Testing

Setup Needs setup TS_02

Start Access Table and Token Table contains some entries

Req. [14],[15],[72],[76]

Input A CoAP request from an authorized user

Output ● Check if the resource is included in the Access Table
● Check if the Token is included in the Token Table and it is still valid
● Perform a CoAP request to the appropriate Thing
● Encrypt the response and send it back to the user

Logs Folder “T1_Output”, prefix “T2.2.1_achilles” >

Outcome Pass / Fail

3.3.8.7.7 S3 - System under attack

The objective of this scenario is to evaluate the security of the integrated platform in the
presence of malicious users.

3.3.8.7.8 U1-New sessions

An attacker is able to capture and record successful sessions. He then replays the messages
in order to gain access to a protected resource.

Replay attack

ID T3.1.1

Test Emulate an attacker that repeats captured sessions

Type Security Test

Setup Needs setup TS_01 or TS_02 and Test hook 1

Start Access Table and Token Table contains some entries

Req. [27],[28],[95]

Input A CoAP request that appears to be from an authorized user

Output ● Check if the resource is included in the Access Table
● Check if the Token is included in the Token Table and it is still valid
● Reply with an error

Logs Folder “T1_Output”, prefix “T3.1.1_achilles” >>

Outcome Pass / Fail

 D6.2: Factory Acceptance Test Plan

258

3.3.8.8 U2-Tampering with existing sessions

An attacker is able to intercept the communication between an authorized user and a Thing.
His goal is to modify the transmitted packets in way that will give him access to protected
resources.

Packet modification attack

ID T3.2.1

Test Emulate an attackers that modifies transmitted packets

Type Security Test

Setup Needs setup TS_01 or TS_02 and Test hook 1

Start Access Table and Token Table contains some entries

Req. [27],[28],[95]

Input A CoAP request that appears to be from an authorized user

Output ● Check if the resource is included in the Access Table
● Check if the Token is included in the Token Table and it is still valid
● Reply with an error

Logs Folder “T1_Output”, prefix “T3.2.1_achilles” >>

Outcome Pass / Fail

T3.2.2 Man-in-the-middle attack

ID T3.2.2

Test Emulate an attackers that perform man-in-the-middle attack

Type Security Test

Setup Needs setup TS_01 or TS_02 and Test hook 1

Start Access Table and Token Table contains some entries

Req. <Define the requirements involved in [x], format>

Input A CoAP request that appears to be from an authorized user

Output ● Check if the resource is included in the Access Table
● Check if the Token is included in the Token Table and it is still valid
● Reply with an error

Logs Folder “T1_Output”, prefix “T3.2.2_achilles” >>

Outcome Pass / Fail

D6.2: Factory Acceptance Test Plan

259

3.3.8.9 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Test Description Outcome

T1.1.1 Container registration Pass / Fail

T1.2.1 Unauthorized request Pass / Fail

T1.2.2 Authorized request Pass / Fail

T2.1.1 New operation registration Pass / Fail

T2.1.2 List of policies modification Pass / Fail

T2.2.1 Unauthorized request Pass / Fail

T2.2.2 Authorized request Pass / Fail

T3.1.1 Replay attack Pass / Fail

T3.2.1 Packet modification attack Pass / Fail

T3.2.2 Man-in-the-middle attack Pass / Fail

FAT Outcome Pass / Fail

Table 93: Test outcome overview.

3.3.8.10 Integration ethics and security

Introduction

During the Ethical Review it was requested that ethics be included within the project scope.
This section addresses recommendations and proposed solutions to the ethical and security
points of the integration.

Achilles

The FAT plan presented in this document does not raise any ethical issue, since the data that
will be used during the tests will be artificially created and will not affect any real entity.
Moreover, all experiments will be conducted in a closed system that does not interact with the
external world, hence no concerns should be raised. When it comes to the actual deployment
of ACHILLES, various risks should be taken into consideration. ACHILLES ACPs may have
access to sensitive user information, including user names, passwords, and access control
policies. Moreover, ACHILLES ACPs may have access to the “seed” used by the Things to
generate session secret keys. For these reasons, a security incident handling plan should be
considered.

 D6.2: Factory Acceptance Test Plan

260

 Third Party: Inter-HINC

The following figure describes the current design of INTER-HINC, which fits well into the design
of the Inter-IoT framework. Two main components that will interact with other IoT platforms
and services outside the Inter-IoT framework are:

 LocalManagementService: instances of Local Management Service are used to
interface to IoT providers.

 Global Management Service: instances of Global Management Server are used to the
application and other middleware to use INTER-HINC to control IoT devices, networks
and services and acquire IoT data.

Figure 117: INTER-HINC Architecture overview.

Both Local Management Service and Global Management Service provide

 REST APIs: standard REST APIs for any clients to use our services.

 Client libraries: for applications to program calls to Service.

3.3.9.1 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

Application

239 Support Service choreography and Service Orchestration T1.1.2, T2.1.5
240 Support Mash-up T1.2.1, T1.2.2, T2.1.5
241 Native support services T2.2.1, T2.2.2
Architecture

2 Scalability. Design T1.1.2, T1.2.1, T2.1.2,
T2.1.3, T2.1.4, T2.1.5,
T2.1.6, T.2.1.7, T2.1.8,

D6.2: Factory Acceptance Test Plan

261

T2.1.9, T2.2.1, T3.1.1,
T3.1.2, T3.2.1, T3.2.2

6 Efficiency of the processing of information T1.1.1, T1.1.2, T1.2.1,
T2.1.3,

9 Multi-level data processing support T1.1.1, T1.1.2, T1.2.1,
T1.2.2

Communications
7 Support of opportunistic communications to avoid data loss T2.1.3, T2.1.4, T2.1.8,

T2.2.1, T2.2.2
14 Platform independent T1.2.1, T3.1.1, T3.1.2
15 Common IoT communication protocols must be supported. T1.2.1, T2.1.1, T2.1.9
17 Dynamic network support T2.1.1, T2.1.9
18 Roaming across networks T2.1.1, T2.1.9
39 Gateway capabilities T1.1.2, T2.1.1, T2.1.2
45 Connectivity not based on HW identifiers T2.1.1, T2.1.2, T2.1.9
78 Automatic and dynamic selection of communication protocol T1.1.1, T1.1.2, T2.1.2

231 Network function virtualization T2.1.1, T2.1.2, T2.1.9,
232 Fault tolerance T1.1.2, T2.1.3, T2.1.4,

T2.1.8, T2.1.9, T3.1.2,
T3.2.2,

233 Flow control and network information tracking T1.1.2, T1.2.1, T2.1.2,
T2.2.1, T2.2.2,

Functionality
11 Addressability and reachability T1.1.2

179 IoT Platform Semantic Mediator supports platform to platform
communication and communication between platforms and an
external actor

 T1.1.1, T1.1.2,

Interoperability
4 Alignment with other IoT architectures, especially with AIOTI T2.1.1

13 Extensibility T2.1.1
Middleware
234 Provide connectors to middleware standards T2.1.1, T2.1.2, T2.1.9
Security
95 Robustness, resilience and availability T2.1.3, T2.1.4, T2.1.8,

T3.1.2, T3.2.2,
Virtualization
242 Object/Device virtualization T2.1.1,

Table 94: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the test(s)
that validate their implementation.

ID Scenario name Covered by

2 IoT support for transport planning and execution Scenarios 1,2, 3

5 Monitoring of containers carrying sensitive goods Scenarios 1, 2, 3

9 Accident at the port area Scenarios 1, 2, 3

13 IoT interoperability for Vessel Arrivals Scenarios 1, 2, 3

19 Transport on truck breaks down or is hijacked Scenarios 1, 2, 3

29 Reliable control of robotic cranes and trucks in port terminals Scenarios 1, 2, 3

30 IoT access control, traffic and operational assistance Scenarios 1, 2, 3

Table 95: Scenario vs test mapping

 D6.2: Factory Acceptance Test Plan

262

3.3.9.2 Test Environment

Introduction

This document outlines a very first overview of our testing environment for INTER-HINC within
Inter-IoT. Since INTER-HINC is still just at the beginning of its design (mainly about “Models
and Approaches for Slice Interoperability” activities at the writing of this document), the report
here mostly sets the overview of the test environment and scenarios. Detailed and concrete
FAT can be done only after having detailed design, implementation and integration.

3.3.9.3 Test environment

For testing environment, it is important to understand components of INTER-HINC. Figure 117
gives the overview of INTER-HINC. The key principle of INTER-HINC is to make resources for
clients into manageable slices; a slice consists of IoT resources, network function resources
and cloud resources. Important layers to be tested are:

 INTER-HINC Local Services and Resource (IoT, Network Functions, and Cloud)
Providers: they are instances of Local Services, distributed in the cloud or the edge,
interfacing to specific Resource Providers.

 INTER-HINC Global Service: it serves clients by communicating with Local Services
via the Cloud Message Broker.

 Resource Slice Management: this includes utilities for clients to manage resources
within slices.

To facilitate services developed in INTER-HINC, we provide Programming API for clients to
query and control resources in slices.

Figure 118: Overview of components in INTER-HINC.

In this view, the system under test (SUT) for Factory Acceptance Testing will consist of

 Infrastructures: several Virtual Machines and containers for hosting INTER-HINC
services (such as for LocalService, Broker, and Global Service). The infrastructures
will be based on typical cloud virtual machines (VM)/dockers (using resources from
public providers, like Google cloud), lightweighted VMs/containers emulated Raspberry

D6.2: Factory Acceptance Test Plan

263

PI, and physical Raspberry PI. The infrastructures also include global cloud brokers
based on existing cloud services (e.g., using cloudamqp.com and cloudmqtt.com).

 INTER-HINC Services: include Local Services, Global Services and other components
to be deployed atop the above-mentioned infrastructures.

The testing environment will be based on data-centered cloud computing infrastructures,
combined with edge resources, reflecting the view of slice resources. An example of the testing
environment is given in Figure 119, described in our current working INTER-HINC paper35. In
principle, we will have similar structures of testing environments with different configurations.

Figure 119: An example of infrastructure configuration for INTER-HINC as the system
under test (SUT)

3.3.9.4 Test setups, tools, hooks and probes

Test setups will require the deployment of SUT described previously. For testing tools,
currently, in our plan we will use tools developed by the INTER-HINC team36 which includes
both model-based testing tools37 for modeling and generating test cases, and a runtime testing
framework38. Especially, we will focus on our current developing tool – T4SINC – and other
testing tools for

 Easy to deploy various components of SUT into virtual environments of VMs/dockers
 Run test cases for FAT
 Collect test data from various places and sources
 Test analytics (including machine learning based techniques)

One important aspect is to create/obtain suitable IoT dataset for testing. In this case, we will
work with other partners to obtain datasets and components from Inter-IoT use cases.

TS_01 Test setup Mixed Local and Cloud Resources with Real IoT providers

35 Hong-Linh Truong, Duc-Hung Le, Nanjangud Narendra, Provisioning and Managing Interoperable Resource
Slice, Across IoT, Network Functions and Clouds, Nov 2017. Working paper.

36 http://github.com/rdsea
37 https://github.com/rdsea/T4UME
38 https://github.com/rdsea/T4SINC

 D6.2: Factory Acceptance Test Plan

264

In this TS_01 setup, we will use existing IoT providers (and their infrastructures) from Inter-IoT
for IoT providers, we use cloud resources for INTER-HINC Local Services and Global Services,
for Network functions Providers, and Cloud Providers. This test setup is used to test real
providers.

Infrastructures: The real IoT providers from Inter-IoT are still being determined and the
infrastructures of these providers depend the existing ones. For Local Services we will use
containers and lightweighted VMs (with similar configurations like Raspberry Pi). For the
Global Services and other components, we will use typical VMs and containers.

Scale: In this setup, we will only scale the Global Services and number of clients as the IoT
providers will be fixed (based on real deployment of Inter-IoT).

Data and software for IoT providers: this is dependent on the existing providers (to be
identified)

Testing goal: we will test performance, data compatibility, conformance, and installation

TS_02 Test setup Mixed Local and Cloud Resources

In this TS_02 setup, in overall, we will use Local/Edge infrastructures and cloud infrastructures

Infrastructures: Various local/edge resources/services running in RaspberryPI and private
clouds will be used for HINC Local Services, IoT Providers and Network Function Providers
whereas global and other resources running in public clouds are used for the Global Service,
Cloud Services and possible Network Function Providers. We will use our own Raspberry PI
and private cloud resources as well as existing IoT Providers offered by Inter-IoT partners. We
will use Google Cloud and Amazon EC resources.

Scale: In this setup, we will change number of VMs/containers, number of providers, size of
data to be tested, number of local/edge sites, individual services/units, subsystems and the
entire system.

Data and Software for IoT: In this setup, we will use datasets and software from Inter-IoT and
other examples for the test. Currently, we are still investigating available datasets and software
from Inter-IoT. We already have datasets and (emulated) software for electricity, alarms,
camera, and GPS from various sources representing different types of IoT providers.

Testing goal: we will test performance, data compatibility, conformance, and installation

TS_03 Test setup Cloud Only

In this setup, we will use entirely cloud resources for testing using public and private Cloud
infrastructures (local/edge resources are emulated by cloud resources).

Infrastructures: Various local resources/services running in the cloud using different data
centers; global services running in the public cloud

Scale: We will scale number of VMs/containers, number of providers, size of data to be tested,
individual services/units, subsystems and the entire system

Data and Software for IoT: In this setup, we will use datasets and software from Inter-IoT and
other examples for the test as described in TS_02.

Testing goals: Performance, data compatibility, conformance, installation.

TS_04 Test setup Cloud Federation

D6.2: Factory Acceptance Test Plan

265

In this setup, we will use entirely cloud resources for testing using public and private cloud
infrastructures (local/edge resources are emulated by cloud resources), but differently from the
previous setup, herein we will adjust a setup from different cloud providers, in order to setup a
cloud federation.

Infrastructures: Various local resources/services running in the federated cloud using different
data centers; global services running in the public cloud federation.

Scale: We will scale number of VMs/containers, number of providers, size of data to be tested,
individual services/units, subsystems and the entire system.

Data and Software for IoT: In this setup, we will use datasets and software from Inter-IoT and
other examples for the test as described in previous test setups.

Testing goals: availability, reliability, resource scheduling, resource efficiency, data
compatibility, conformance, installation.

TS_05 Test setup Simulation

In this setup, we will adjust an entire simulation environment, where the existing providers,
infrastructures, resources and services are completely controlled, by having a certain [min,
max] interval. This is a crucial point of the test phase, because it enables a clear comparison
between an entirely simulated environment with partial or total real environments.

Scale: Due to the simulation environment facilities, the scaling can be done on almost all the
parameters from the previous test setups, including global services, client number, IoT
providers, infrastructure type, resource type, data size, services/units, subsystem or entire
system test.

Data and Software for IoT: In this setup, we will use fictional datasets and software, which is
comparable to the Inter-IoT and real life traces.

Testing goals: availability, reliability, resource scheduling, resource efficiency, data
compatibility and conformance.

3.3.9.5 Test description

In the following, we present different testing scenarios. The list is not exhaustive as we are still
current at the design phase of the INTER-HINC. The details of FAT plan will be provided in the
next reporting period (2018), when we move into the implementation and integration phase.
Note that even before performing FAT, we will also have to detail different unit, integration and
smoke tests for our software components (which are not reported in this deliverable). Here we
just outline possible main scenarios for FAT.

3.3.9.5.1 Scenario 1: Testing Metadata Extraction and Query Interoperability from

different IoT providers

Use case metadata extraction

We have data pipelines to obtain and extract metadata from IoT providers to the INTER-HINC.
In our design, to be scalable and support interoperability, we use the data pipeline concept to
perform metadata extraction. In the pipeline, there will be resource driver, information validator,
capability extractor, etc. for extracting IoT provider data to our resource slice information. For
this test case, we will need to test the pipeline with different types of IoT providers. The test
will examine the interoperability based on APIs of IoT providers and their metadata. Key testing
types for Factory Acceptance Testing (Operational acceptance testing) are:

 D6.2: Factory Acceptance Test Plan

266

T1.1.1 Metadata Exaction Successful Rate

ID T1.1.1

Test Conformance testing w.r.t. metadata extraction

Type Successful rate

Setup TS_01, TS_02

Start IoT services running, all other services running

Req.

Input Various metadata about IoT devices capabilities

Output Events about metadata extraction

Logs All logs will be stored in Google Storage

Outcome Successful Rate

T1.1.2 Software performance testing

ID T1.1.2

Test Software performance testing w.r.t. the execution of the pipeline

Type Performance test

Setup TS_01, TS_02, TS_03

Start IoT services running, all other services running

Req.

Input Various metadata about IoT devices capabilities

Output Performance/time

Logs All logs will be stored in Google Storage

Outcome Execution time

Use case Query Metadata

Clients will query metadata about IoT data provided by different providers before obtaining the
data. In this test, we will test the interoperability of metadata about different types of data to
make sure that the data delivery is feasible. This is involved in checking delivery protocols,
data delivery granularity, interoperability of data broker platforms, data contracts, etc. Key
testing types for Factory Acceptance Testing (Operational acceptance testing) are:

T1.2.1 Performance test

ID T1.2.1

D6.2: Factory Acceptance Test Plan

267

Test Performance testing w.r.t. time for querying data

Type Performance test

Setup TS_01, TS_02, TS_03

Start IoT services running, all other services running

Req.

Input Various metadata about IoT devices capabilities

Output Performance/time

sLogs All logs will be stored in Google Storage

Outcome Execution time

T1.2.1 Compatibility Test

ID T1.2.2

Test Compatibility testing w.r.t. data delivery metadata compatibility

Type Compatibility testing

Setup TS_01, TS_02

Start IoT services running, all other services running

Req.

Input Various metadata about IoT devices capabilities

Output Compatibility degree

Logs All logs will be stored in Google Storage

Outcome Ratio

3.3.9.5.2 Scenario 2: Testing Middleware and Infrastructure

Use case Infrastructure Deployment and Configuration

INTER-HINC and its services are running in virtual environments. IoT providers interfacing
INTER-HINC are also running in distributed sites. One of important tests is to test the
deployment of infrastructures, especially for dealing with metadata and data to be delivered by
IoT providers through INTER-HINC. Furthermore, the configuration of services will be tested
to make sure that the commands for configuration of slides will be reliable and met the
expected performance. In this test, we will test time, failure, loss of messages, etc., for
deployment and configuration. Key testing types for Factory Acceptance Testing (Operational
acceptance testing) are:

 D6.2: Factory Acceptance Test Plan

268

T2.1.1 Installation Test

ID T2.1.1

Test Installation testing w.r.t. deployment of services

Type Installation testing

Setup TS_01, TS_02, TS_03

Start all INTER-HINC services running, cloud services running

Req.

Input Required services to be deployed

Output Number of services deployed, location, deployment time, successful/failed
events

Logs All logs will be stored in Google Storage

Outcome Successful rate

T2.1.2 Performance Test

ID T2.1.2

Test Performance testing w.r.t. deployment and configuration time

Type Performance testing

Setup TS_01, TS_02, TS_03

Start all INTER-HINC services running, cloud services running

Req.

Input Required services to be deployed

Output Number of services deployed, location, deployment time

Logs All logs will be stored in Google Storage

Outcome Performance

T2.1.3 Availability Test

ID T2.1.3

Test Availability testing w.r.t. deployment infrastructure

Type Availability testing

D6.2: Factory Acceptance Test Plan

269

Setup TS_01, TS_02, TS_03, TS_04, TS_05,

Start All INTER-HINC services running, cloud services running

Req.

Input Required services to be deployed

Output Number of services deployed, location, deployment time

Logs All logs will be stored in Google Storage

Outcome Availability improvement

T2.1.4 Reliability Test

ID T2.1.4

Test Reliability testing w.r.t. deployment infrastructure

Type Reliability testing

Setup TS_01, TS_02, TS_03, TS_04, TS_05,

Start All INTER-HINC services running, cloud services running

Req.

Input Required services to be deployed

Output Number of services deployed, location, deployment time

Logs All logs will be stored in Google Storage

Outcome Reliability improvement

T2.1.5 Resource scheduling Test

ID T2.1.5

Test Resource scheduling testing w.r.t. deployment infrastructure

Type Resource scheduling testing

Setup TS_01, TS_02, TS_03, TS_04, TS_05,

Start All INTER-HINC services running, cloud services running

Req.

Input Required services to be deployed

Output Number of services deployed, location, deployment time

Logs All logs will be stored in Google Storage

 D6.2: Factory Acceptance Test Plan

270

Outcome Resource scheduling improvement

T2.1.6 Resource efficiency Test

ID T2.1.6

Test Resource efficiency testing w.r.t. deployment infrastructure

Type Resource efficiency testing

Setup TS_01, TS_02, TS_03, TS_04, TS_05,

Start All INTER-HINC services running, cloud services running

Req.

Input Required services to be deployed

Output Number of services deployed, location, deployment time

Logs All logs will be stored in Google Storage

Outcome Resource efficiency improvement

T2.1.7 Energy efficiency Test

ID T2.1.7

Test Energy efficiency testing w.r.t. deployment infrastructure

Type Energy efficiency testing

Setup TS_01, TS_02, TS_03, TS_04, TS_05,

Start All INTER-HINC services running, cloud services running

Req.

Input Required services to be deployed

Output Number of services deployed, location, deployment time

Logs All logs will be stored in Google Storage

Outcome Energy efficiency improvement

T2.1.8 Single point of failure39 Test

ID T2.1.8

39 This means, we will test all the services, daemons, parts of the infrastructure that represent a potential single
point of failure within a system under test (SUT).

D6.2: Factory Acceptance Test Plan

271

Test Single point of failure testing w.r.t. deployment infrastructure

Type Single point of failure testing

Setup TS_01, TS_02, TS_03, TS_04, TS_05,

Start All INTER-HINC services running, cloud services running

Req.

Input Required services to be deployed

Output Number of services deployed, location, deployment time

Logs All logs will be stored in Google Storage

Outcome Single point of failure improvement

T2.1.9 Maintainability Test

ID T2.1.9

Test Maintainability testing w.r.t. Installation testing and deployment infrastructure

Type Maintainability testing

Setup TS_01, TS_02, TS_03, TS_04, TS_05,

Start All INTER-HINC services running, cloud services running

Req.

Input Required services to be deployed

Output Number of services deployed, location, deployment time

Logs All logs will be stored in Google Storage

Outcome Maintainability improvement

Use case Data Delivery Testing

IoT providers will deliver data directly to the client or via data brokering services configured by
INTER-HINC. In this test, we will test the performance and interoperability of data delivery for
the clients. Key testing types for Factory Acceptance Testing (Operational acceptance testing)
are:

T2.2.1 Performance Test

ID T2.2.1

Test Performance testing w.r.t. data delivery

Type Performance testing

 D6.2: Factory Acceptance Test Plan

272

Setup TS_01, TS_02, TS_03

Start all INTER-HINC services running, cloud services running, data services running

Req.

Input Types of IoT data to be delivered, time windows

Output Amount of data, time

Logs All logs will be stored in Google Storage

Outcome Transfer rate

T2.2.2 Conformance Test

ID T2.2.2

Test Conformance testing w.r.t. data to be obtained

Type Conformance testing

Setup TS_01, TS_02

Start all INTER-HINC services running, cloud services running, data services running

Req.

Input Types of IoT data to be delivered, time windows

Output Events about data received

Logs All logs will be stored in Google Storage

Outcome Compatibility degrees (w.r.t. delivery rate, format)

3.3.9.5.3 Scenario 3: Testing Programming APIs

Use case Slice Creation

In this test, we will test programming APIs for clients to test the slice creation. We will consider
different parameters for slices and check if the creation is successful or not. Key testing types
for Factory Acceptance Testing (Operational acceptance testing) are:

T3.1.1 Performance Test

ID T3.1.1

Test Performance testing w.r.t. slice creation

Type Performance testing

Setup TS_01, TS_02, TS_03

Start all INTER-HINC services running, cloud services running

D6.2: Factory Acceptance Test Plan

273

Req.

Input Slice specification

Output Events about slice creation

Logs All logs will be stored in Google Storage

Outcome Performance

T3.1.2 Performance Test

ID T3.1.2

Test Success/Failure testing w.r.t slice creation parameters

Type Performance testing

Setup TS_01, TS_02, TS_03

Start all INTER-HINC services running, cloud services running

Req.

Input Different slice specifications

Output Events about slice creation

Logs All logs will be stored in Google Storage

Outcome Successful Rate

Use case Slice Reconfiguration

We will test reconfiguration features of slices. During the test, we will change configuration of
INTER-HINC services and will measure the success and performance of reconfiguration. Key
testing types for Factory Acceptance Testing (Operational acceptance testing) are:

T3.2.1 Performance Test

ID T3.2.1

Test Performance testing w.r.t. slice configuration

Type Performance testing

Setup TS_01, TS_02, TS_03

Start all INTER-HINC services running, cloud services running, a slice exists

Req.

Input A configuration for an existing slice

Output Events about slice configuration

 D6.2: Factory Acceptance Test Plan

274

Logs All logs will be stored in Google Storage

Outcome Time to finish the configuration

T3.2.2 Performance Test

ID T3.2.2

Test Success/Failure testing w.r.t slice configuration parameters

Type Performance testing

Setup TS_01, TS_02, TS_03

Start all INTER-HINC services running, cloud services running, slices exist

Req.

Input Different slice configuration parameters

Output Events about slice reconfiguration

Logs All logs will be stored in Google Storage

Outcome Successful Rate

3.3.9.6 Integration ethics and security

INTER-HINC

Currently we do not have any specific ethics and security.

D6.2: Factory Acceptance Test Plan

275

 Third Party: Semantic Middleware

Figure 120 depicts the overall architecture of the Semantic Middleware, focusing on its
semantic information, integration and dispatching capabilities. The diagram outlines the
components in charge of supporting it: Update Manager (UM) and Semantic Broker (SB), on
its turn made up by the Subscription Manager (SM) and the Messaging System (MS) supported
by a multi-agent System. Each sensor, after having gathered the information which oversees,
affects the knowledge base (GOIoTP) hosted on the shared semantic repository (RDF store)
by updating or deleting semantic assertions. This is done through a web service exposed by
UM. On the other hand, information consumers (smart services and sensors) subscribes to the
SB, providing their profile of interest.

SM is the component which is always listening on the queue that manages the new
subscriptions, leveraging the Apache ActiveMQ (ActiveMQ) messaging system. Whenever SM
receives a subscription request from a network client, it activates server-side an agent (the
ClientAgent) which takes care of the client interests. Namely, SM records this interest
activating an agent in charge of signaling emerging new information to the consumer. If such
agent already exists, SM simply notifies the new consumers’ interest. In each moment, the
consumer can unsubscribe by cancelling the request. Each time a sensor authors new
knowledge, the UM informs the SB of the occurred event so that, in a continuous query
processing fashion, the SB can evaluate emerging information and notifies it to the consumer
through the MS.

Figure 120: Overall architecture and its interaction with INTER.IoT.

The client starts the interaction with the server through a subscription message containing the
description of the information of interest (specified in a query) with the minimum refresh rate in
milliseconds, together with a unique identifier of the request (req-id) and a reference (pointer,
address, etc.) of the client (client-ref.) to which forward the discovered information.

The query transmitted from the client is expressed through the SPARQL 1.1 syntax and may
be a SELECT, ASK or CONSTRUCT that refers to semantic model contained in the repository.
The server processes the subscription request and decides whether to accept it. If it is rejected,

 D6.2: Factory Acceptance Test Plan

276

the repository sends to the client the rejection condition ending the interaction. If it is accepted,
at each interval of minimum refresh rate, the server updates the evaluation of the subscribed
queries and transmits an information message (inform-result to the client) containing the result
of the executed query (query-result) if the result is not empty (SELECT or CONSTRUCT query
type) or positive (ASK query type), according to the chosen response format.

The server continues to broadcast type messages (inform-result) as long as one of the
following conditions happen:

1. the client deletes the subscription request by the cancellation request (see next
section);

2. An error occurs for which the server is no longer able to communicate with the client or
to process queries.

All interactions are identified by a unique identifier other than zero (req-id) assigned by the
initiator of the protocol and valid for it (client-ref). This allows stakeholders to manage their
communication strategies and activities. Moreover, since it can be important to preserve the
sequence of the messages, the transport layer has to preserve the order of the messages
(reliable transport layer). Thanks to the oneness of the req-id, each client can participate in
multiple signaling at the same time. Figure 121 reports the overall workflow of the subscription
process.

Figure 121: Subscription and notification workflow.

At any time, the client may cancel a subscription request by transmitting a cancel request to
the server. In such a request, the parameters req-id-ref and client identify the interaction to be
stopped (Figure 122). The server informs then the client if the interruption succeeded (done)
or that it was not possible to break the interaction due to an error (failure).

D6.2: Factory Acceptance Test Plan

277

Figure 122: Workflow of the cancellation of the subscription.

3.3.10.1 Integration of IoT framework

This section explores the integration of the Semantic Middleware with INTER-IoT components.
The idea is implementig a "Semantic Middleware Bridge" which handles the connection of
our Semantic Middleware with all the underlying platforms, with the MW2MW services and with

the INTER-FW. Under these conditions, the Semantic Middleware can be considered as a new
platform. In this way, Semantic Middleware can ask information requests to the the other
underlying platforms. The requests can concern information about specific values. They are
expressed composing a message queue as specified in D3.1 (using Kafka protocol). As soon
as the Semantic Middleware receives the answer, it elaborates the received the received
information. The realization of the platform will be based on "the generic interface which
provides a structured template to easily develop new bridges." (D3.1). In addition, the Semantic
Middleware will expose its functionalities according to the structure provided by the "generic
interface".

In addition to Bridge, another INTER-IoT components that Semantic Middleware will use is
GOIoTP. Indeed, Semantic Middleware is agnostic to the meta-model (TBOX) of the IoT
platform ontology, i.e. the behavior of the Semantic Middleware does not depend on a specific
semantic structure of the ontology. Under these conditions, the Semantic Middleware uses the
GOIoTP, which is taken as global common semantic model that all the devices share. GOIoTP
will be used to represent general concepts of our scenario and thus a link between our
application ontology and GOIoTP will be studied and implemented. The ontology model will be
stored into the RDF store provided by INTER-IoT infrastructure through the SPARQL engine
also provided by the same infrastructure.

In addition, since it is essential to reconcile and mediate the domain ontologies handled by
applications and devices and the core ontology shared within the whole platform, it should be
evaluated the integration of Semantic Middleware with Inter Platform Semantic Mediator
(IPSM) component proposed in INTER-IoT.In particular, the latter allows the alignment of the
commonalities (overlapping concepts) between the domain ontology (RDF model) used in a
specific IoT platform and the core ontology (RDF model) defined within the INTER-IoT. It will
be necessary to define the rules of the mapping for each domain ontology that has to be
aligned with the core ontology. Thus, IPSM will be exploited to translate and link the meta-
model (TBOX) of our application ontology with GOIoTP.

 D6.2: Factory Acceptance Test Plan

278

Regarding the middleware protocol used to implement Semantic Middleware, the idea is
leveraging MQTT among the protocols already supported by INTER-IoT; a proper connection
with the Dispatcher will be investigated.

Components
Interface overview of the used
IoT components

Tests

Bridge
The generic common interface as
a structured template to easily
develop new bridges (D3.1)

GOIoTP
 Various entities defined in the

Semantic Model
 All

IPSM
 The integration of this component

is still under analysis
 All

MQTT \ Dispatcher
 The integration of this component

is still under analysis
 All

Table 96. Table containing the components and interface overview of the used IoT
components and the tests that will test these IoT components

Figure 123. Integration of the Semantic Middleware with the IoT framework

3.3.10.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the Semantic Middleware components
2 Validation and Test reports of the Pilot system components

Hardware

D6.2: Factory Acceptance Test Plan

279

4 Workstation server \ Cloud (server which hosts Semantic Middleware server +
database)

5 PC client (PC which hosts Semantic Middleware client)
Tools

7 Semantic Middleware

Table 97: Deliverable checklist

The following table shows the software components and version of which the system release
version consists of.

ID Description Version Check

IoT Physical Gateway

1 MQTT (integration is under analysis)
IoT Virtual Gateway

2 Bridge

3 GOIoTP
4 IPSM
5 Platform Request Manager (Deliverable D3.1)
6 Data Flow Manager (Deliverable D3.1)

Semantic Middleware

7 Semantic Broker
8 Update Manager
9 Client Semantic Middleware Library

 10 RDF store (Stardog40 free version)
11 Publish-Subscribe middleware (ActiveMQ41)
12 Semantic data model

Table 98: Component version overview

3.3.10.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

42 Heterogeneous information representation T34.62.7
75 The interaction between IoT endpoints may follow M2M

concept
T34.62.1, T34.62.2,
T34.62.3, T34.62.4

96 Enable (automated or semi-automated) linking of relevant
data models

T34.62.7

163 Design support for semantic interoperability
(this requirement has been deleted in the new template)

T34.62.1, T34.62.2,
T34.62.3, T34.62.4

178 Inter Platform Semantic Mediator provides data and
semantic interoperability functionality

T34.62.6

179 Inter Platform Semantic Mediator supports platform
communication

T34.62.6

180 Syntactic and semantics interoperability - Data format and
semantics translation

T34.62.6

237 API Middleware for interoperability between different
platforms

T34.62.5

40 https://www.stardog.com/
41 http://activemq.apache.org/

 D6.2: Factory Acceptance Test Plan

280

270 API allows subscription to data streams/queues T34.62.1, T34.62.2,
T34.62.3, T34.62.4

282 Map publish/subscription between platforms T34.62.5

Table 99: Requirements vs test mapping

The following table provides an overview of the relation between the scenarios and the test(s)
that validate their implementation.

ID Scenario name Covered by

32 Third party developer using INTER-FW to access data from
two different platforms

T34.62.5 T34.62.6 T34.62.7

33 Heterogeneous Platforms Methodology-driven Integration T34.62.5 T34.62.6 T34.62.7

34 Position and Optimization of the pallets
(New scenario)

T34.62.1, T34.62.2,
T34.62.3, T34.62.4

Table 100: Scenario vs test mapping

3.3.10.4 Test environment

Introduction

To test the functionality of the Pallet scenario within CPPS LAB in combination with the IoT
framework a representative test system is needed. The test system needs to approach the
“real world” as much as possible. The pilot setups must be recreated and proven. This chapter
will describe this environment and the used hardware, software, tools and platforms.

Test environment

A valid business scenario for the pilot of the Semantic Middleware is offered by the Cyber
Physical System (CPS) Lab located at the ITIA-CNR's headquarters in Milan, where recently
a cutting-edge CPS system has been developed in order to monitor and optimize the position
of various pallets along a conveyer belt within an industrial scenario (Figure 124). The idea
behind this system is that processes in a production facility can be optimized with the aid of
indoor localization and route analysis. In addition, an asset tracking solution will make it
possible to retrieve location and nearest available services provided by the servitization of the
factory. The pallets contain hardware components on which operations have to be performed
at different working stations following a specific order. Moreover, the working stations can
perform different operations (e.g. drilling, milling, etc.), and the path of the pallet is optimized
by a simulation application (Optimizer) in order to send it to the closest available working
station.

3.3.10.5 Test setups, tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this document
defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers, packet
sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the needed
functionality.

D6.2: Factory Acceptance Test Plan

281

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 SemanticMiddlewareComponents

The server components, which are Update Manager (UM) and Semantic Broker (SB), are
deployed on a server. The client component (Client Semantic Middleware Library) is deployed
on the client application (typically included in its setup package).

TS_02 IPSM

The IoT IPSM is up and running.

TS_03 GOIoTP

The GOIoTP ontology.

TS_04 MW2MW

The MW2MW layer.

TT_01 RDF store

An RDF store (we propose the version trial of Stardog42, but any other kind of RDF store can
be used).

TT_02 ActiveMQ

A message oriented middleware. We propose ActiveMQ43.

TH_01 Semantic Model

A Semantic Model, reported as owl file, which can be imported by the RDF store. This model
represents the knowledge concerning the scenario environments.

The Semantic model is paired with a list of SPARQL queries to subscribe a change into the
knowledge base and a list of SPARQL queries that updates the knowledge base in
correspondence of the subscription.

In Section 3.3.10.6.1 it is reported some hints about the semantic model used in these FAT
and about involved SPARQL queries (e.g. Query 1, etc.).

TP_01 FeedbackWithinGUI

Feedback of the tests will be shown within the GUI of the client applications.

TP_02 MockUpApplicationCallingBridge

This application sumulates the call to the Semantic Broker Bridge.

TP_03 LogFile

A log file is provided which reports the auditing of some operations.

3.3.10.6 Test description

Test output log file (TP_01 LofFile): Folder “LOG”, prefix TestName_

42 http://www.stardog.com/
43 http://activemq.apache.org/

 D6.2: Factory Acceptance Test Plan

282

3.3.10.6.1 S34: Position and Optimization of the pallets

The sensors monitoring the pallet position will play the role of publisher as they will send the
information concerning the pallet position through the middleware (Step 1); this information is
expressed under the form of a SPARQL UPDATE. Also the working stations will publish their
availability status (Step 2). This information will be then consumed by the simulation tool
(Optimizer) which has previously subscribed to the changes applied to the pallet position (Step
3) and the availability status of the working stations (using a proper SPARQL query) with the
goal to identify the optimized pallet route. In addition, the information concerning the route is
then published (Step 4) and in its turn consumed by the IoT actuators which allow to change
the route of the pallets along the conveyor belt (Step 5).

Figure 124. Workflow of the scenario

The use cases reported in the following sections involve various components integrated with
the Semantic Middleware. The components are the following:

 The Semantic Model. The Semantic model used in these FATs represents knowledge
concerning sensors and their corresponding measures, pallets and their real and
optimized positions.

 An application (Virtual sensor) that mocks and simulates the behavior of an Ebeacon
sensor tracking the position of the pallets. These sensors will publish, through an
UPDATE SPARQL (Query 1), the position of the pallets P1 and P2 within the
knowledge base, according to a proper domain ontology.
To support the FAT, Virtual Sensor provides a GUI that allows to set a position for a
specific pallet, thus generating the corresponding UPDATE SPARQL query.

 Optimizer, a simulation tool which uses the pallet position and the availability status of
the working stations with the goal to identify the optimized pallet route. It consumes
data published by the various tracking sensors, while it publishes optimized routes for
the pallets.
To support the FAT, Optimizer is virtualized and provides a GUI that allows to start to
listen and consume information concerning position of a specific pallet, thus generating
the corresponding SELECT SPARQL query (Query 2). In addition, Virtual Optimizer
allows to set the new best route for the pallet, simulating the behavior of the real
application.

 Virtual carriages (simulating the real carriages) each one transporting a pallet. They
consume data published by the simulator in order to follow a specific route.

D6.2: Factory Acceptance Test Plan

283

To support the FAT, Virtual carriage provides a GUI that allows to start to listen and
consume information concerning route for a specific pallet, thus generating the
corresponding UPDATE SPARQL query (Query 3).

3.3.10.6.2 U62 – Device (sensor) triggers information

A device, typically a sensor, triggers an event sending determined information to the gateway
in order to be stored on the platform Cloud or server or in order to generate a response for an
actuator (being handled by the rules engine).

This use case involves these requirements: [75], [163] and [270].

T34.62.1 Information published by Virtual Sensor are persisted

Test Virtual Sensor publishes information and this information is persisted into
the RDF store

Type System testing

Setup Need test setup TS_01 SemanticMiddlewareComponents (Query 1, etc.)

Need test tool TT_01 RDF store

Need test tool TT_02 ActiveMQ

Need test hook TH_01 Semantic Model (Query 1, etc.)

Start Information to be published are not yet persisted

Req. [75], [163], [270]

Input Enable the sensor within range of the physical gateway

Output The result of a SPARQL query on the RDF store

Outcome Pass / Fail

Test output:

 Access the RDF store and verify through a SPARQL query (SELECT) if the information
has been stored

T34.62.2 Information updated by Virtual Sensor are received by the subscribed clients

Test Information updates are received by the subscribed clients

Type System testing

Setup Need test setup TS_01 SemanticMiddlewareComponents

Need test tool TT_01 RDF store

Need test tool TT_02 ActiveMQ

Need test hook TH_01 Semantic Model (Query 1, etc.)

 D6.2: Factory Acceptance Test Plan

284

Start Information to be published are not yet persisted

A client (Optimizer) is subscribed to the updated information

Req. [75], [163], [270]

Input Information published by Virtual Sensor. It concerns the position of the pallet.

Output Check if the subscriber (Optimizer) receives the information updates
(postion of the pallet). It has to receive the information updated by the Virtual
Sensor.

 Check if other subscribers (Virtual Carriage), which are not subscribed to
the updated information, does not receive the updated information.

Outcome Pass / Fail

Test output:

 Feedback of the tests will be shown within the GUI of the client applications (TP_01
FeedbackWithinGUI).

 Also a log file can be provided (TP_03 LofFile)

T34.62.3 Information updated by Optimizer are received by Virtual Carriage

Test Information updates are received by the subscribed clients

Type System testing

Setup Need test setup TS_01 SemanticMiddlewareComponents

Need test tool TT_01 RDF store

Need test tool TT_02 ActiveMQ

Need test hook TH_01 Semantic Model (Query 2 and Query 3)

Start Information to be published are not yet persisted

A client (Virtual carriage) is subscribed to the updated information

Req. [75], [163], [270]

Input Information published by Optimizer (new route of the pallet).

Output Check if the subscriber (Virtual carriage) receives the information updates.
The have to receive the updates triggered by the Optimizer changes.

Outcome Pass / Fail

Test output:

 Feedback of the tests will be shown within the GUI of the client applications (TP_01
FeedbackWithinGUI).

 Also a log file can be provided (TP_03 LofFile)

T34.62.4 Updates concerning information on which no client is subscribed

D6.2: Factory Acceptance Test Plan

285

Test Updates concerning information on which no client is subscribed

Type System testing

Setup Need test setup TS_01 SemanticMiddlewareComponents

Need test tool TT_01 RDF store

Need test tool TT_02 ActiveMQ

Need test hook TH_01 Semantic Model (Query 1, etc.)

Start Information to be published are not yet persisted

A couple of clients (Virtual carriage and Optimizer) are subscribed to various
information. The latter are not linked with the updated information

Req. [75], [163], [270]

Input Information published by Optimizer

Output Check if the subscribers (Virtual carriage) receives or not the information
updates: They do not have to receive the updates.

Outcome Pass / Fail

Test output:

 Feedback of the tests will be shown within the GUI of the client applications (TP_01
FeedbackWithinGUI).

 Also a log file can be provided (TP_03 LofFile)

T34.62.5 The connection with the Semantic Middleware Bridge

This is the TEST of INTEGRATION with IoT components.

Test Connection with the Platform Request Manager

Type TEST of INTEGRATION with IoT components

Setup Need TS_04 MW2MW
Need TP_02 MockUpApplicationCallingBridge

Start A request of information to the IoT underlying platforms is sent.

Req. [237], [282]

Input The request to

Output Check if the request is succeful

Outcome Pass / Fail

Test output:

 Feedback of the tests will be shown within the GUI of the client applications (TP_02
MockUpApplicationCallingBridge).

 D6.2: Factory Acceptance Test Plan

286

T34.62.6 The ontology alignment test through IPSM

This is the TEST of INTEGRATION with IoT components.

Test The ontology alignment test between our Application Ontology (AO) and the
GOIoTP ontology will be performed according to the general structure of the
INTER-IoT alignment format (also called IPSM alignment format)44. The
alignment element describes a uni-directional set of translation rules
comprised of independent mapping cells, each of which has an “input” and
“output” entity descriptions. Elements <onto1> and <onto2> describe
respectively the AO ontology and the GOIoTP ontology of the alignment, by
giving their URIs and specifying the formalism used for their definition (in our
case AO adopt the OWL Lite formalism). The following listing shows an
example of the alignment passed to the IPSM Aligner service within the InterIoT
platform:

<Alignment name="align_name" version=" align_version" creator="align_creator"
description="align_desc">

<onto1> {AO Ontology info} </onto1>

<onto2> { GoIoTP ontology info } </onto2>

<steps>

<step order="1" cell="cell_1"/>

<step order="2" cell="cell_2"/>

…

<step order="N" cell="cell_N"/>

</steps>

<map>

<Cell id="cell_id">

<entity1> { AO RDF pattern } </entity1>

<entity2> { GOIoTP RDF pattern } </entity2>

<transformation>

{ functional constraints }

</transformation>

<filters> { datatype constraints } </filters>

<typings> { typing info } </typings>

</Cell>

{…}

</map>

</Alignment>

Each cell will represent a match from <entity1> within our Application ontology
into <entity2> from GOIoTP. Both entities are valid RDF graphs (presented in
the RDF/XML serialization). We do not plan to use any transformation and
function, as we perform simple syntactical and conceptual matching between
the entities.

Type TEST of INTEGRATION with IoT components

44 Maria Ganzha et al., “Alignment-based semantic translation of geospatial data”

D6.2: Factory Acceptance Test Plan

287

Setup Need test setup TS_02 IPSM

Need test hook TH_01 Semantic Model (a subset of this model must be aligned)

Start Invoking the proper function of IPMS Aligner and passing it the mapping in the form
presented above

Req. [178], [179], [180]

Input An alignment element

Output We expect to obtain a result similar to the following from IPMS in order to accept the
alignment test:

<map><Cell>

<entity1 rdf:resource="http://www.opengis.net/gml/Point"/>

<entity2 rdf:resource="http://www.w3.org/2003/01/geo/wgs84_pos#Point"/>

<measure rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.99</measure>

<relation>=</relation>

</Cell></map>

The correct response returns the URI of the entities that have been aligned and two
fundamental information: the logical relation existing between them (<relation>) and
the relative confidence of such relation (<measure>).

Outcome Pass / Fail

Test output:

 The result is reported in the GUI of the proper API provided by IPSM

T34.62.7 Ontology import Text

This is the TEST of INTEGRATION with IoT components.

Test GOIoTP ontology are imported within the Application Ontology used to
represent knowledge for the scenario S34.

Type TEST of INTEGRATION with IoT components

Setup Need test setup TS_03 GOIoTP

Need test tool TT_01 RDF store

Need test hook TH_01 Semantic Model

Start The following subsequent steps will be carried out:

Add the import directive in the AO ontology directed to the GOIoTP ontology, so that
all the statements of the latter are imported in the former ontology;

After the concept alignment has been executed between AO and GoIoTP, the
alignment results are used in order to create logical relation axioms within the
integrated ontology (e.g., equivalentClass axioms, subClassOf, etc.).

Req. [42], [96]

 D6.2: Factory Acceptance Test Plan

288

Input Instantiate an ontological individual as an instance of a specific class of the AO
ontology, which is equivalent to a class imported from the GoIoTP ontology.

Output Test if ontological individual inherits the features of the equivalent class.

Outcome Pass / Fail

3.3.10.7 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Test Description Outcome

T31.62.1 Information published by Virtual Sensor are persisted Pass / Fail

T31.62.2 Information updated by Virtual Sensor are received by the
subscribed clients

Pass / Fail

T31.62.3 Information updated by Optimizer are received by Virtual Carriage Pass / Fail

T31.62.4 Updates concerning information on which no client is subscribed Pass / Fail

T31.62.5 (TEST of INTEGRATION with IoT components) Connection with the
Bridge

Pass / Fail

T31.62.6 (TEST of INTEGRATION with IoT components) The ontology
alignment test through IPSM

Pass / Fail

T31.62.7 (TEST of INTEGRATION with IoT components) Ontology import
Text

Pass / Fail

FAT Outcome Pass / Fail

Table 101: Test outcome overview

3.3.10.8 Integration ethics and security

Introduction

During the Ethical Review it was requested that ethics had to be included within the project
scope. This section addresses recommendations and proposed solutions to the ethical and
security points of the integration.

For each pilot the ethics is discussed in paragraphs 8.2 until 8.5. The security aspects of each
layer is discussed in paragraph 8.7 and 8.8.

The information for the pilots for both ethics and security comes from the partners and may be
included in other documents as well.

Semantic Middleware

The various steps needed for the execution of these FAT are not connected with major ethical
concerns. In particular, the components that make up the proposed semantic middleware and

D6.2: Factory Acceptance Test Plan

289

data sets managed in these tests do not deal with sensitive personal data. Therefore, just a
limited attention should be given to the drawn of a code of ethics.

Under a generic perspective, Semantic Middleware allows a new way of combining and
integrating different data streams. As analyzing and acting on insights from these data can
introduce new classes of risks of unethical or even illegal use of insights, it is necessary to
tackle ethical challenges that can emerge, analyzing a proper risk mitigation.The idea is
creating a code of data ethics leveraging the Universal principles for data ethics—Guidelines
introduced in 45

Concerning the security, no particular attention is required. RDF STORE and Semantic
Middleware expose an authenticated access and for this reason test credentials will be
provided to access RDF store and to access Semantic Middleware.

45 Accenture Labs: OnLine "Building digital trust: The role of data ethics in the digital age",Available at:
https://www.accenture.com/t20160613T024441Z__w__/us-en/_acnmedia/PDF-22/Accenture-Data-Ethics-POV-
WEB.pdf

 D6.2: Factory Acceptance Test Plan

290

 Third Party: SecurIoTy

Concerns about information security are one of the main reason for companies and private
individuals not to adopt cloud services and to be sceptical about IoT systems. On top of
concerns regarding physical- and cyber-attacks, international corporations additionally carry
legal attacks in their threat model. However, cloud services are essential in improving efficiency
and cost structures.

SecurIoTy adresses that gap. SecurIoTy combines a number of security mechanisms to
protect data and to address all relevant security dimension such as confidentiality, integrity and
availability. We use CloudRAID, fragmentation and encryption. CloudRAID means that data is
fragmented, the fragments are encrypted and the encrypted fragments are redundantly
distributed to multiple independent storages. SecurIoTy is storage agnostic, i.e. the data
fragments may be distributed across multiple jurisdictions adding additional security.

SecurIoTy solves security and compliance issues when sending and sharing data via public
networks like the internet and when storing data in cloud services, thus enabling companies to
use cloud based IoT services, which they would not use without SecurIoTy protection.

SecurIoTy is crypto proxy technology and as such won’t interfere with the user experience or
with processes. SecurIoTy users will get to keep their established usage pattern and processes
and also keep their legacy infrastructure. SecurIoTy aims to integrate seamlessly. SecurIoTy
can be operated off-premise, on-premise or hybrid.

SecurIoTy is based on DocRAID® - a storage system which offers distributed, secured storage
and data transfer. To operate SecurIoTy we maintain a geo-redundant high availability
computing cluster. We operate storage capacities spread among different European
computing centres, among others in Germany and France. SecurIoTy provides highly secure
storage based on the principles of fragmentation and encryption. This means no one (1)
storage knows all the information to recompile a document.

Within the INTER-IoT framework we identify

(1) technical,
(2) legal and
(3) organizational

challenges. In the technical category, we can further identify challenges at the

(1) networking,
(2) middleware,
(3) application,
(4) interoperability and
(5) security issues.

In the current version of SecurIoTy we focus on and test requirements from these categories:

Category Tested in current version

Technical networking Yes

 middleware No

 application Yes

D6.2: Factory Acceptance Test Plan

291

 interoperability No

 security Yes

Table 102: Test categories.

SecurIoTy offers HTTP(S) interfaces and offers interfaces to connect to cloud storage services
which are operated by AvailabilityPlus (DocRAID® CloudRAID).

From the architecture point of view, we have established and tested these components:

Category Tested in current version

Distributed
storage

Storage 1 Yes

 Storage 2 Yes

 Storage 3 Yes

Key Storage Local storage Yes

 HSM – hardware security
module

No

Controller One controller at one site Yes

 Multiple distributed controllers at
multiple sites

No

Frontend HTML No

Secure Gateway Gate Keeper Yes

 Load Balancer No

 Firewall No

Frontend access HTTPS Yes

 WebDAV No

Table 103: Tested components.

The following paragraph gives a brief introduction of the implemented security measures and
potential vulnerabilities.

Security
Level

Use
Case

Measures / Best Practice Potential Vulnerability

Low to

very high

All Files are encrypted by
AES256

weak password, security is
directly related to the strength
of the password

Very high All Two different random number
generators are used. The

It was reported that the random
number generator

 D6.2: Factory Acceptance Test Plan

292

random number generator is
modularized; upon request
customer specific modules
can be used.

Dual_EC_DRBG contains a
potential backdoor.

Medium Single
User

Strong user generated
password and Keyfiles

weak password, keyfiles stored
on local machine

High Single
User

User generated strong
password and Keyfiles;
Keyfiles stored on external
device

weak password, social
engineering

Low to

very high

Multi
User

Admin generated password
and Keyfiles

weak password, keyfiles stored
on local machine

Low to

very high

Multi
User

Master Key File must be
stored in safe place

Master Key File in an unsecure
place

Medium Multi
User

Secret keys to access files are
stored by default in the
Windows key container

Windows key container can
potentially be hacked or contain
backdoors

Very high Multi
User

Secret keys to access files are
stored on an external
protected device, e.g. crypto
stick

social engineering

Very high Multi
User

Secret keys to access files in
a workspace are exchanged
based on the Diffi-Hellman
key exchange, i.e. perfect
forward secrecy

Currently no backdoor known to
hack Diffi-Hellman

Medium Multi
User

User is activated by admin
after request. For very high
security user verification is
required.

Workspace file could be
intercepted, e.g. if sent by
email. User verification by
digital handshake supports user
verification.

Very high Multi
User

Digital handshake for user
verification.

A man-in-the-middle attack
would generate an additional
request visible to the admin

Table 104: Security measures.

3.3.11.1 Integration of IoT framework

The proposed approach will complement the INTER-IoT Architecture and will provide industry
standard interfaces to integrate security as necessitated by the respective application. A high
degree of interoperability is achieved by adhering to standard protocols (HTTPS(S), WebDAV,
REST, TCP) and by integration of widely used cloud services. In contrast to current
approaches to IoT security which mainly focus on single aspects of IoT security, SecurIoTy

D6.2: Factory Acceptance Test Plan

293

provides a single framework to cover scalable security from the device level to the application
level and which covers all dimensions of security such as confidentiality, integrity and
availability (CIA). Put to work in the logistics use case (INTER-logP), SecurIoTy will push the
envelope of IoT security well beyond the state of the art.

Figure 125: SecurIoTy overview.

The DocRAID® CloudRAID (seeFigure 125) proxy can be deployed as a sensor hub, collecting
data from sensors directly or alternatively can be set up as a gateway receiving data from
sensor hubs and deliver that data to a data storage. In this project we will assume that
DocRAID will be set up as a gateway.

Figure 126: SecurIoTy architecture with the DocRAID crypto proxy

The DocRAID crypto proxy works in three phases:

1. Fragmentation

Data is sent through a shredder and fragmented to pieces.

2. Encryption

Each fragment is encrypted using AES256. Key exchange optionally via Diffi-Hellman.

3. RAID distribution

 D6.2: Factory Acceptance Test Plan

294

Encrypted fragments are redundantly distributed by the DocRAID® algorithm, no one (1)
storage knows all fragments. Distribution across geographies and jurisdictions, keep legacy
infrastructure.

For discussion: at this stage of the project it is to determine what components will communicate
with SecurIoTy and when.

3.3.11.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components
2 Validation and Test reports of the Pilot system components

Tools
7 Burp Suite

Table 105: Deliverable checklist

The following table shows the software components and version of which the system release
version SecurIoTy 17.11.0201 consists of.

ID Description Version Check

Distributed storage
10 Storage Provider 1 17.09.1102
20 Storage Provider 2 17.09.1102
30 Storage Provider 3 17.09.1102

Key Storage
40 Local Storage Provider 17.09.1102

Controller
50 DocRAID controller 17.11.0201

Secure Gateway
60 Gate Keeper 17.01.3008

Frontend provider
70 HTTPS 15.04.269
80 WebDAV 15.04.269

Table 106: Component version overview

3.3.11.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

API
243 Gateway access API TC200010, TC200020

TC200030, TC200040
264 API allows create/update/remove users TC200090, TC200100
Interoperability
56 Secure synchronization TC300000, TC300010

Performance

D6.2: Factory Acceptance Test Plan

295

72 Communication should be done using protocols that are
efficient in terms of amount of exchanged information over
message size

tbd

Security
27
30

System security TC401010, TC401020
TC401030, TC401040
TC401050, TC401060
TC401070

28
37

System privacy TC401000

95 Robustness, resilience and availability TC403000, TC403010
98 Data provenance

261 A user knows its permissions TC409000, TC409005
263 Access to personal data needs to be previously authorized TC409010, TC409020

TC409030, TC409040
TC409050, TC409060
TC409070, TC409080
TC409090, TC409100
TC409110

Non-functional requirements
47 API for third-party developers TC200050, TC200060
58 Auditability and Accountability TC500010, TC409060

TC500030, TC500040
60 AutoLogin TC200070, TC200080
63 Provision of authentication credentials TC406000, TC406010

TC406020, TC406030
TC406040

68 Logging TC500050
69 Confidentiality, Avoid data falsification or disclosure TC404000, TC403000

TC401000

94 Supports multiplatform TC300020
Architecture
36 Scalability. Computing resources TC100010, TC100020

TC100030, TC405000
TC405010, TC405020

Table 107: Requirements vs test mapping

3.3.11.4 Test environment

Introduction

To test the functionality of SecurIoTy in combination with the IoT framework, a representative
test system is needed. The test system needs to approach the “real world” as much as
possible. The pilot setups must be recreated and proven. This chapter will describe this
environment and the used hardware, software, tools and platforms.

Test environment

This paragraph describes the test environment and the complete system setup used during
this FAT. The test system contains these elements:

(1) DocRAID controller
(2) Secure gateway
(3) Keystore
(4) 3 storages

 D6.2: Factory Acceptance Test Plan

296

Figure 127: test architecture.

In the test scenarios the controller and the three (3) storages reside on one (1) physical server.
The test environment is set up using these components: The secure gateway resides on a
separate server.

The server side:

 CPU: 4x Intel Xeon E5-26xx (Sandy Bridge) @ 2.1 GHz

 RAM: 16 GB

 Ethernet: Red Hat VirtIO Ethernet Adapter

 Operating systems:

o Windows 2012 R2 Server x64

The secure gateway:

 CPU: 4x Intel Xeon E5-26xx (Sandy Bridge) @ 2.1 GHz

 RAM: 16 GB

 Operating systems:

o Debian 9.2

o Nginx community edition

Libraries

 Microsoft .net environment 4.51

No additional libraries necessary.

The bug reporting process is defined in the following chart:

D6.2: Factory Acceptance Test Plan

297

Figure 128: Bug reporting process

3.3.11.5 Test setups, tools, hooks and probes

This paragraph describes the test setups, tools, hooks and probes used in the by this document
defined tests.

A test setup defines a setup used for a test, and describe the used system parts, interface etc.

Tools define the used COTS tooling that will be used during testing e.g. Logic analyzers, packet
sniffer like e.g. Whireshark, developed scripts, etc.

Hooks are used to inject data or control parts of the system used to get the system to handle
a needed scenario. This can be hidden, debug or service interfaces which contain the needed
functionality.

Probes are used to gather logging from parts of the system under test to provide system
feedback and to prove that the system is handling the scenario as it should.

 D6.2: Factory Acceptance Test Plan

298

The following paragraphs will define the used setups, tools, hooks and probes which will be
referred to by the test descriptions.

TS_01 Test setup

SecurIoTy acceptance test includes sections covering

(1) Acceptance criteria
(2) Severity and priority of bugs
(3) Reporting process of bugs (covered in 7.2)
(4) Test Environment (covered in 7.2)
(5) Test cases (covered in 8.)

SecurIoTy relevant test cases are classified into these test type:

Test type Acronym

Manual MN

Automated AU

To be done tbd

Table 108: Requirements vs test mapping

We refer to the requirements given in D2.3_INTER-IoT_Requirements-and-business_v1.2

Acceptance criteria

During this project we will deliver prototypical developer (dev) implementations. We define
Alpha-, Beta-and release-Versions in the following paragraphs. The quality standards are
defined as given in the following tables based on a maximum of allowable errors and severity
levels.

Developer Version (Dev)

Developer versions are snap shots of the current developer process. A number of tests should
have been passed and documented in test cases. However, there are no formal release criteria
defined.

Alpha Version

An alpha version delivers the number of features required for this state. It is feature complete.
In the following table the acceptance criteria are defined for the release.

Criticality Maximum number of Test Cases

Critical 5

Important 10

Low 30

Trivial 60

Table 109: Alpha version quality criteria

Beta Version

D6.2: Factory Acceptance Test Plan

299

A beta version delivers the number of features required for this state. It is feature complete. In
the following table the acceptance criteria are defined for the release. Features will not be
added anymore. Quality is in the focus now.

Criticality Maximum number of Test Cases

Critical 0

Important 5

Low 20

Trivial 40

Table 110: Beta version quality criteria

Release Version

A release version delivers is fully featured and complies with the quality standards defined.
Quality is defined in the following table.

Criticality Maximum number of Test Cases

Critical 0

Important 0

Low 15

Trivial 30

Table 111: Release version quality criteria

The software is delivered if all acceptance criteria are met during the tests. Per iteration only
those features will be test which are relevant for the current iteration and delivery plan.

3.3.11.6 Criticality and Priority

Bugs found during testing will be reported in the internal sprint-log (bug tracking). Bugs are
classified into criticality and priority. The classification system is given in the following table.

Criticality Description

Critical
The application, major parts of the application or major features are not

available or will crash the system The testcases have not been met.

Important
Important parts of the application are not available or have not passed

the tests. There is a workaround to provide the same/similar
functionality.

 D6.2: Factory Acceptance Test Plan

300

Low
Some functions and features do not work according to the

specification. There is a workaround. There is no major disadvantage
in using existing workarounds.

Trivial
The application runs smoothly. Changes are made for improved

efficiency or for cosmetic reasons.

Feature request
This not a bug rather a new request. Here requirements are

reformulated, changed or added.

Table 112: Criticality description

Feature requests have been added to include a way to specify useful extensions. A decision
has to be made if this is handled as a change request.

In addition to criticality a bug can be given a priority. Bugs with higher priority will be handled
earlier.

Priority Description

Urgent
Bug handling must be initiated immediately. A patch should be

provided asap.

High
Bug handling must be pursued with high priority. The bug can be

addressed during the next release.

Medium Bug can be adressed in one oft he next releases.

Low Bug can be adressed as soon as there are ressources available.

Table 113: Priority description

Nonfunctional test

Please note that nonfunctional tests are included for completeness. However, they do not
manifest test cases but rather are descriptions of how to use the system and what to look for,
e.g. security, usability, compatibility.

TT_01 Test tool Burp

For external security testing we use: Burp Suite Scanner | PortSwigger

Test description

Test descriptions are given in the following sections. Test results are based on beta release
requirements.

D6.2: Factory Acceptance Test Plan

301

Architecture

ID Name Description Reference Status

TC10xxxx Architecture

TC100010 Scalability. Computing
resources

Use load generator to retrieve data

(1) Test with 50 clients (response time < 1000 msec)
(2) Test with 250 clients (response time < 1000 msec)
(3) Test with 500 clients (response time < 2000 msec)

REQ3 AU/PASS

TC100020 Add storage to system / hot spare while system is operational. AU/PASS

TC100030 Remove storage from system / hot spare while system is
operational.

 AU/PASS

API

ID Name Description Reference Status

TC20xxxx API

TC200010 Gateway access API A list of exposed functions can be found in the technical
documentations. All exposed functions can be accessed and
are covered by the security gateway. Non-allowed, non-
exposed and non-existing function calls are blocked

REQ243 MN / PASS

TC200020 Send unlisted commands to systems, gateway must not send
data to controller and will show an error message

 MN / PASS

TC200030 Send listed commands to systems, gateway must send data
to controller and will show content

 MN / PASS

 D6.2: Factory Acceptance Test Plan

302

TC200040 Send listed commands to system with non-plausible added
parameters, gateway must not send data to controller and will
show an error message

 MN / PASS

TC200050 API for third-party
developers

A list of exposed functions can be found in the technical
documentations. HTML frontend is available.

REQ47 MN / PASS

TC200060 Have a third party integrate the API Tbd

TC200070 AutoLogin A list of exposed functions can be found in the technical
documentations. Autologin is one of the exposed functions.
Alternative implementations are available. User can assign
rights and expiration dates.

REQ60 MN / PASS

TC200080 Have a third party integrate the API Tbd

TC200090 API allows
create/update/remove
users

A list of exposed functions can be found in the technical
documentations. Create/update/remove is part of the
exposed functions.

REQ264 MN / PASS

TC200100 Have a third party integrate the API Tbd

Interoperability

ID Name Description Reference Status

TC30xxxx Interoperability

TC300000 Secure synchronization Synchronization is handled by publicly available time servers,
here: ptbtime1.ptb.de

REQ56 MN / PASS

TC300010 Time server on OS level must be set, check in best practice

D6.2: Factory Acceptance Test Plan

303

TC300020 Supports multiplatform Needs clarification. SecurIoTy runs natively on Windows
Server 2012 R2. Virtualized it runs on any Host including
Linux. Clients can be operated from any OS.

REQ94 tbd

Privacy/Security

ID Name Description Reference Status

TC40xxxx Privacy / Security (CIA – confidentiality, integrity, availability)

TC401000 Sensitive data is stored
according to national
and EU policies

Third parties can not access private data or unauthorized data
within the SecurIoTy system. Data protection meets the
national and European policies.

Data security has been tested against German PersDat, §203
StGB, AO.

Zero- knowledge data storage: admins and other personal
with access to the physical storage have no access to clear
text information.

Separation of content and operations: admins and other
personal with access to the physical storage have no access
to clear text information.

Fragmentation of content: content is fragmented and
distributed across multiple storages. No one storage has all
knowledge to recompile a document.

Cryptography: fragments are encrypted by AES 256

Resilience: RAID 5-3 concepts protects against failure of a
storage and against manipulation of content. Default is that 1
of 3 storages may fail.

REQ30

REQ27

MN / PASS

 D6.2: Factory Acceptance Test Plan

304

House many clients on one system. Each client has got its
own key material.

TC401010 Read backend data from storage and verify it is encrypted MN / PASS

TC401020 Send encrypted fragments though a decryption tool and test
if it be broken

 Tbd

TC401030 Remove storage while system is active, system must keep
running

 MN / PASS

TC401040 Add storage while system is active, system must add
fragments and re-initiate the original state

 MN / PASS

TC401050 Remove keys from keystore, system must not deliver any files
anymore

 MN / PASS

TC401060 Alter content of keyfiles in keystore, system must not deliver
any files anymore

 MN / PASS

TC401070 reinstall keyfiles in keystore, system must deliver files MN / PASS

TC402000 Privacy See TC401000 REQ37

REQ28

TC403000 Robustness, resilience
and availability

See TC401000

Failure of storage will be compensated by RAID principle;
redundant storages will cover and provide fall back.

No one (1) storage knows all the fragments to recover a
document, if a storage is compromised, the attacker will not
gain access to the content even if the attacker is capable of
breaking the encryption.

REQ95 AU / PASS

D6.2: Factory Acceptance Test Plan

305

The architecture component “security gateway” will shield the
controller from non-conform traffic. security gateway will filter
requests and will only let exposed function-calls pass.

Optionally to increase availability and performance controllers
may be duplicated and spread across a controller farm. The
secure gateway will act as a load distributor. If a controller fails
or is attacked, spare controller can take over.

TC403010 Attack the system with an automated attack tool which is fed
with current vulnerabilities, result must not show any
vulnerability

 AU / PASS

TC404000 Confidentiality TC401000

TC403000

REQ69

TC405000 Avoid data falsification
or disclosure

Detailed rights on a user level grant access to specific data
only.

Data manipulation at the backend will be detected by the
DocRAID parity checks.

Multitenant capable.

REQ36

TC405010 Run multiple tenants on same system and verify that data
from one tenant cannot be seen by another tenant from the
frontend.

 MN / PASS

TC405020 Run multiple tenants on same system and verify that data
from one tenant is different than from another tenant. Use
same date entry from front end and verify that backend
fragments show different content.

 MN / PASS

 D6.2: Factory Acceptance Test Plan

306

TC406000 Provision of
authentication
credentials

authentication credentials consisting of a User ID and an
authentication device, e.g. Password must be given to gain
access. Additionally, a second access code may be required,
a second factor, this can be a SMS or an Email.

REQ63

TC406010 Try to login with false credentials, system must deny access MN / PASS

TC406020 Try to login with no credentials, system must deny access MN / PASS

TC406030 Try to login with correct credentials, system must grant access MN / PASS

TC406040 Leave session open but unattended for > timeframe set at
controller, system must deny access, session has ended, user
must logon again.

 MN / PASS

TC409000 A user knows its
permissions

User may retrieve permissions REQ261 MN / PASS

TC409005 Login and retrieve user permissions at the user terminal MN / PASS

TC409010 Access to personal data
needs to be previously
authorized

User may retrieve data by permissions only. Permission can
be set to invalidate automatically after a certain time.

REQ263

TC409020 Admin grants / denies management right, user can/cannot
manage the system

 MN / PASS

TC409030 Admin grants / denies file access rights, user can/cannot
read/write files

 MN / PASS

TC409040 Admin grants / denies file share rights, user can/cannot share
files

 MN / PASS

TC409050 Admin grants / denies history (version) access rights, user
can/cannot read/write files

 MN / PASS

D6.2: Factory Acceptance Test Plan

307

TC409060 Admin grants / denies report access rights, user can/cannot
access reports

 MN / PASS

TC409070 Admin grants / denies WebDAV access rights, user
can/cannot WebDAV

 MN / PASS

TC409080 Share a file, recipient must be able to retrieve file without
credentials

 MN / PASS

TC409090 Share a directory, recipient must be able to retrieve directory
without credentials

 MN / PASS

TC409100 Share a file with an expired date, recipient must not be able
to retrieve file, error message will be shown

 MN / PASS

TC409110 Share a folder with an expired date, recipient must not be able
to retrieve folder, error message will be shown

 MN / PASS

TC410010 Encryption

 Filename encryption Do not encrypt filenames:

The known-plaintext attack (KPA) is an attack model for
cryptanalysis where the attacker has samples of both the
plaintext (called a crib), and its encrypted version (ciphertext).
These can be used to reveal further secret information such
as secret keys and code books.

 D6.2: Factory Acceptance Test Plan

308

Compliance (Usability)

ID Name Description Reference Status

TC50xxxx Compliance

TC500010 Auditability and
Accountability

All user actions are logged into a logfile and can be retrieved
with the appropriate rights.

Log files can be set to autodelete after a certain period of time,
e.g. to be compliant with national law.

REQ58

TC500020 TC409060

TC500030 Set autodelete to 1 (one) day, reports with age > 1 day must
be deleted by the system

 MN / PASS

TC500040 Set autodelete to 1 (one) week, reports with age > 1 week
must be deleted by the system

 MN / PASS

TC500050 Logging See TC500010 REQ68 MN / PASS

D6.2: Factory Acceptance Test Plan

3.3.11.7 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT. Please note that this section provides redundant information given already in the previous
Section 8.

Architecture

ID Name Status

TC10xxxx

TC100010 Scalability. Computing
resources

AU/PASS

TC100020 AU/PASS

TC100030 AU/PASS

API

ID Name Status

TC20xxxx

TC200010 Gateway access API MN / PASS

TC200020 MN / PASS

TC200030 MN / PASS

TC200040 MN / PASS

TC200050 API for third-party
developers

MN / PASS

TC200060 Tbd

TC200070 AutoLogin MN / PASS

TC200080 Tbd

TC200090 API allows
create/update/remove
users

MN / PASS

TC200100 Tbd

 D6.2: Factory Acceptance Test Plan

310

Interoperability

ID Name Status

TC30xxxx

TC300000 Secure synchronization MN / PASS

TC300010

TC300020 Supports multiplatform tbd

Privacy/Security

ID Name Status

TC40xxxx

TC401000 Sensitive data is stored
according to national
and EU policies

MN / PASS

TC401010 MN / PASS

TC401020 Tbd

TC401030 MN / PASS

TC401040 MN / PASS

TC401050 MN / PASS

TC401060 MN / PASS

TC401070 MN / PASS

TC402000 Privacy

TC403000 Robustness, resilience
and availability

AU / PASS

TC403010 AU / PASS

TC404000 Confidentiality

TC405000 Avoid data falsification
or disclosure

TC405010 MN / PASS

TC405020 MN / PASS

TC406000 Provision of
authentication
credentials

D6.2: Factory Acceptance Test Plan

311

TC406010 MN / PASS

TC406020 MN / PASS

TC406030 MN / PASS

TC406040 MN / PASS

TC409000 A user knows its
permissions

MN / PASS

TC409005 MN / PASS

TC409010 Access to personal data
needs to be previously
authorized

TC409020 MN / PASS

TC409030 MN / PASS

TC409040 MN / PASS

TC409050 MN / PASS

TC409060 MN / PASS

TC409070 MN / PASS

TC409080 MN / PASS

TC409090 MN / PASS

TC409100 MN / PASS

TC409110 MN / PASS

Compliance (Usability)

ID Name Status

TC50xxxx

TC500010 Auditability and
Accountability

TC500020

TC500030 MN / PASS

TC500040 MN / PASS

TC500050 Logging MN / PASS

Table 114: Test outcome overview

 D6.2: Factory Acceptance Test Plan

312

3.3.11.8 Integration ethicas and security

Introduction

During the Ethical Review it was requested that ethics had to be included within the project
scope. This section addresses recommendations and proposed solutions to the ethical and
security points of the integration.

For each pilot the ethics is discussed in paragraphs 8.2 until 8.5. The security aspects of each
layer is discussed in paragraph 8.7 and 8.8.

The information for the pilots for both ethics and security comes from the partners and may be
included in other documents as well.

SecurIoTy

A major purpose of SecurIoTy is to mitigate ethical issues and security risks. For example, a
typical requirement in such a scenario would be to separate the operations from the content.
In a typical data storage and/or transport scenario this requirement can hardly be upheld. This
problem is known as the “privileged account problem”, i.e. a privileged person, e.g. an
administrator would typically have access to sensitive data stored and transported by a system.
SecurIoTy solves this problem and would thus be a solution for potential ethical issues arising
in the context of IoT.

D6.2: Factory Acceptance Test Plan

313

 Third Party: E3City

This project integrates E3Tcity devices with the Device Layer of INTER-IoT Inter Layer
Platform. E3city has his own platform, this platform is in production stage that is being used in
more than 20 towns in Spain. This development will provide INTER-IoT with a whole
device/cloud/app vertical solution to be applied to the Smart Port pilot and any project in
general.

These are main objectives:

 Connect E3Tcity devices to the Device layer of INTER-IoT, so that cross interaction can
be used in further stages.

 Use E3Tcity devices to provide Smart Lighting features to Valencia Port, such as lighting
control, power consumption, climatic sensors, movement detection and lightness level.

Figure 129: System e3tcity description.

The system consists of three elements:

 E3Tcity drivers
All smart city controllers have a MAC address and they communicate with the cloud via
Wi-Fi or cellular networks. They are also endowed with intelligence that allows to
monitor continuously energy parameters. With this info they can also control their
power consumption and detect faults and cable theft alarms.

 Cloud platform
Drivers exchange information in real time with the cloud platform to provide information
on their sensors measures and to be able to interact with the system manager. You
can set the volume of data exchange Generated data are sent to the cloud and store
for a time in the device memory, ensuring their integrity even in case of failure or
sabotage.

 Users applications
User applications are available for PC and Smartphone. They allow users to know the
state of offered services in real time and from anywhere.

This system is in production phase and ready to implant.

3.3.12.1 Integration of IoT framework

The following table provides a description of the components of the IoT framework will be
integrated in this pilot and witch interfaces are used.

 D6.2: Factory Acceptance Test Plan

314

Components Interfaces Test

LC_10
(This device
will control
the sensing

part)

Protocol Modbus + INTER-Middleware If possible, activate the AC OUT 110-230
V from the application?

 The device executes the orders of
regulation 0-10 V from the application?

 The device connects to the router
configured in the application?

 The device connects correctly with
e3tcity cloud?

Platform e3tcity + INTER-Middleware

LS_10
 (This device
will control

the lights on
and off)

Protocol Modbus + INTER-Middleware If possible, activate the AC OUT 110-230
V from the application?

 The device executes the orders of
regulation 0-10 V from the application?

 The device connects to the router
configured in the application?

 The device connects correctly with
e3tcity cloud?

 The six relay control outputs work by
activating them from the application?

 Are the TOTAL POWER ACTIVE (W)
measurements monitored correctly from
the application?

 Are the TOTAL POWER REACTIVE
(VAr) measurements monitored
correctly from the application?

 Are the Voltage (V) and Intensity(A)
measurements monitored correctly from
the application e3tapp.com?

Platform e3tcity + INTER-Middleware

Table 115: Description of the components.

3.3.12.2 Deliverables and version overview

The following table contains a deliverable list which need to be signed of before FAT testing
commences.

ID Description Check

Documents

1 Validation and Test reports of the IoT system components
2 Validation and Test reports of the Pilot system components

Hardware

4 E3t city Devices
Tools

7 Electronic testing tools.
8 E3t City Platform

Table 116: Deliverable checklist

The following table shows the software components and version of which the system release
version 1.0 consists of.

ID Description Version Check

D6.2: Factory Acceptance Test Plan

315

IoT Physical Gateway

1 E3t city devices V3.14
IoT Virtual Gateway

4 E3t city platform V2.3.4
Universaal container

7 UniversAAL REST API V3.2.1

Table 117: Component version overview

3.3.12.3 Requirements, scenarios and use cases

The following table provides an overview of the relation between the requirements and the
test(s) that validate their implementation.

ID Description Covered by

Functionality
11 Addressability and reachability T_03
20 Real time support T_03
21 Real time output T_03
25 Remote programming of devices T_02
26 Remote device control T_02

API
243 Gateway access API T_02
Interoperability
226 API for network services T_02
Operational
96 Enable (automated or semi-automated) linking of relevant data

sources
 T_03

204 Support smart network resources allocation in heterogeneous
wireless sensor networks

 T_03

Security
98 Data provenance T_03
27 System security T_01
95 Robustness, resilience and availability T_01

Table 118: Requirements vs test mapping

3.3.12.4 Test environment

Introduction

In this report we describe the test environment and tools with which we check the correct
functioning of our devices, here we detail the 3-main test carried out by e3tcity.

Test environment

To understand our test, it is necessary to understand how solution works.

We provide control and management through our devices. These devices are controlled by
users through our platform implemented in the cloud, and they can control them and receive
information through web or mobile apps.

Also, we have an API/REST to offer our clients, where they can implement their own platform
or connect our devices to yours.

 D6.2: Factory Acceptance Test Plan

316

In the next figures we can see a diagram of how the e3tsolution works:

Our testing phase it consists of the three parts:

 Test power and electrical connectivity.
 Test connectivity to our platform.
 Test the correct reception of data and control our devices through the platform.

The tests are done in our laboratory and it is necessary that 2 technicians verify the device to
validate it.

3.3.12.5 Test setups, tools, hooks and probes

TS_01 Test setup electrical

We must connect an antenna and a battery to the device to start the test.

TT_01 Test tool electrical

In relation with the tools necessary for the hardware test, we use the usual electronic testing
tool, like Multimeter or oscilloscope.

TH_01 Test hook electrical

This test is to check the correct manufacture of the equipment. To do it, we connect an auxiliary
battery on the device. We use the tools to check several points in the device.

For this test, we follow the next checklist.

1 Is the equipment powered correctly by the AC IN 110-230V? ☐ Yes ☐ No ☐ N/A

2 The 6 analog/digital inputs for the sensors works? ☐ Yes ☐ No ☐ N/A

3 If possible, connect and auxiliary battery in the auxiliary BAT
input?

☐ Yes ☐ No ☐ N/A

4 The equipment has Modbus RS485 port for connect three-
phase network analyzers and work?

☐ Yes ☐ No ☐ N/A

Figure 130: Diagram of solution e3t.

D6.2: Factory Acceptance Test Plan

317

5 The inputs 3,3V and 12 V Dc works? ☐ Yes ☐ No ☐ N/A

6 The equipment has input for the clamp Amp meter and
works?

☐ Yes ☐ No ☐ N/A

TH_01 Test probe electrical

The device is designed internally to self-test, once it has been fed and later when it has been
connected to our platform, we will receive the data of this test.

TS_02 Test setup connectivity.

Here we test the connectivity between the devices with the cloud, we need an internet
connection and the only thing that must be sure that the equipment is connected to the
platform, for it the blue led must be fixed.

TT_02 Test tool connectivity.

The only tool is our platform.

TH_02 Test hook connectivity.

In the second test we probe the connection with de cloud. Physically the device has two led
with 2 different colors, white and blue. The led blue indicates the connection with the cloud,
first the led blink and when the connection is established the light of led is fixed.

For continue the test we follow the next steps:

1. We go to the run device test tab and we have to push de button Run TEST

2. We verify that appear the message OK: TEST. This confirms that the message has been
sent correctly.

Six relay control outputs work by activating them from the app.

3. When the test finish correctly we go to the next tab Fail Device TEST

 D6.2: Factory Acceptance Test Plan

318

4. When this text finish, the number MAC of the device disappears. The reason is that the
device has been register in Produced Devices.

5. The test is finish.

If the test fails, we can see in the console test the description of the fail

TH_02 Test probe connectivity.

The platform shows us a report with the results to review them and establish if the test was
correct.

TS_03 Test setup correct interpretation of commands

For this test the only thing that must be sure that the equipment is connected to the platform,
for I the blue led must be fixed.

TT_03 Test tool correct interpretation of commands

The only tool is our platform.

D6.2: Factory Acceptance Test Plan

319

TH_03 Test hook correct interpretation of commands

In the last test we probe the response of the device, we sent several commands to the device
through the platform, and we check that the device sends measurements correctly.

We follow the next checklist in the verification:

1 If possible, activate the AC OUT 110-230 V from the
application (e3tapp.com)?

☐ Yes ☐ No ☐ N/A

2 The device executes the orders of regulation 0-10 V from
the application (e3tapp.com)?

☐ Yes ☐ No ☐ N/A

3 The six inputs analog/digital for the sensors works? ☐ Yes ☐ No ☐ N/A

4 The six relay control outputs work by activating them from
the application (e3tapp.com)?

☐ Yes ☐ No ☐ N/A

COMUNICATION WIFI 802.11 B/G/N 2.4 GHZ

1 The device connects to the router configured in the
application e3tapp.com?

☐ Yes ☐ No ☐ N/A

2 The device connects correctly with e3tcity cloud? ☐ Yes ☐ No ☐ N/A

SINGLE-PHASE CONSUMPTION MEASURES

1 Are the TOTAL POWER ACTIVE (W) measurements
monitored correctly from the application e3tapp.com?

☐ Yes ☐ No ☐ N/A

2 Are the TOTAL POWER REACTIVE (VAr) measurements
monitored correctly from the application e3tapp.com?

☐ Yes ☒ No ☐ N/A

3 Are the Voltage (V) and Intensity (A) measurements
monitored correctly from the application e3tapp.com?

☐ Yes ☐ No ☐ N/A

THREE-PHASE CONSUMPTION MEASURES

1 Are the TOTAL POWER ACTIVE (W) in PHASE1
measurements monitored correctly from the application
e3tapp.com?

☐ Yes ☐ No ☐ N/A

2 Are the TOTAL POWER ACTIVE (W) in PHASE2
measurements monitored correctly from the application
e3tapp.com?

☐ Yes ☐ No ☐ N/A

3 Are the TOTAL POWER ACTIVE (W) PHASE3
measurements monitored correctly from the application
e3tapp.com?

☐ Yes ☐ No ☐ N/A

4 Are the TOTAL POWER REACTIVE (VAr) PHASE1
measurements monitored correctly from the application
e3tapp.com?

☐ Yes ☐ No ☐ N/A

5 Are the TOTAL POWER REACTIVE (VAr) PHASE2
measurements monitored correctly from the application
e3tapp.com?

☐ Yes ☐ No ☐ N/A

6 Are the TOTAL POWER REACTIVE (VAr) PHASE3
measurements monitored correctly from the application
e3tapp.com?

☐ Yes ☐ No ☐ N/A

7 Are the POWER FACTOR PHASE1 measurements
monitored correctly from the application e3tapp.com?

☐ Yes ☐ No ☐ N/A

8 Are the POWER FACTOR PHASE2 measurements
monitored correctly from the application e3tapp.com?

☐ Yes ☐ No ☐ N/A

 D6.2: Factory Acceptance Test Plan

320

9 Are the POWER FACTOR PHASE measurements
monitored correctly from the application e3tapp.com?

☐ Yes ☐ No ☐ N/A

10 Are the TOTAL POWER ACTIVE (W) TOTAL
measurements monitored correctly from the application
e3tapp.com?

☐ Yes ☐ No ☐ N/A

11 Are the TOTAL POWER REACTIVE (VAr) in TOTAL
measurements monitored correctly from the application
e3tapp.com?

☐ Yes ☐ No ☐ N/A

12 Are the POWER FACTOR TOTAL measurements
monitored correctly from the application e3tapp.com?

☐ Yes ☐ No ☐ N/A

13 Are the Voltage (V) and Intensity (A) PHASES
measurements monitored correctly from the application
e3tapp.com?

☐ Yes ☐ No ☐ N/A

TH_03 Test probe correct interpretation of commands

The platform shows us in real time if our commands are being interpreted correctly in real time.

3.3.12.6 Test description

3.3.12.6.1 Scenario: Testing power-on, power-off and reception of measurements of

a luminaire.

Use case Testing device.

In the following, we detail a scenario where we will check the operation of a system that must
control the lighting of luminaire and receive measures from it.

Test probe electrical

T1.1.1 Test electrical

ID T1.1.1

Test This test is to check the correct manufacture of the equipment

Type Physical

Setup TS_01

Start Connected to a battery

Req. Battery and tools

Input

Output

Logs Our database

Outcome Fail/Pass

T1.1.2 Test connectivity

ID T1.1.2

D6.2: Factory Acceptance Test Plan

321

Test Probe the connection with de cloud

Type Cloud

Setup TS_02

Start Connected to the platform

Req.

Input Commands from the platform

Output Error report

Logs Our database

Outcome Fail/Pass

T1.1.3 Test correct interpretation of commands

ID T1.1.3

Test Probe the response of the device

Type Cloud

Setup TS_03

Start Connected to the platform

Req.

Input Commands from the platform

Output Correct response to commands

Logs Our database

Outcome Fail/Pass

3.3.12.7 Test outcome overview

Test outcome

The following table will provide an overview of the test result of all the performed tests in this
FAT.

Test Description Outcome

T.01 Test electrical Fail/Pass

T.02 Test connectivity. Fail/Pass

 D6.2: Factory Acceptance Test Plan

322

T.03 Test correct interpretation of commands Fail/Pass

FAT Outcome Fail/Pass

Table 119: Test outcome overview

3.3.12.8 Integration ethics and security

Introduction

During the Ethical Review it was requested that ethics had to be included within the project
scope. This section addresses recommendations and proposed solutions to the ethical and
security points of the integration.

E3T-PDI

In terms of security, we are able to detect if our equipment has been manipulated, since from
our platform we can read internal parameters of the devices and detect errors.

Furthermore, all our communication between devices and the platform is secure, since the
connection is encrypted, also all our control commands have a token generated by us, to avoid
external manipulations.

In the ethical part, this project by its design is completely ethical, with the demonstration that
the connection between platforms is possible, many possibilities open up to be able to
interconnect many parts of a city.

With our system, to be able to control the consumption, luminosity and a better management
of on and off we can have a lower energy consumption and therefore contaminate less.

D6.2: Factory Acceptance Test Plan

323

4 Open Call Third Parties Evaluation

 Introduction

The main objective of the open call has been testing the INTER-IoT proposed components
and methodology through new scenarios, platforms and components to achieve
interoperability between IoT platforms. The proposals are providing support to validate INTER-
IoT components in scenarios deployed in different application domains. Allowing the evolution
of the INTER-IoT products or parts of them (i.e. INTER-LAYER and INTER-FW) as a whole to
match the needs of proposers, but at the same time evolve their products in order to add new
interoperability features.

The participation of the third parties within INTER-IoT project has been designed as a
collaboration between the individual entities and the consortium. However, as this process has
been considered and treated as the seed of the INTER-IoT ecosystem, collaboration between
different third parties has been encouraged.

Third parties currently participating in INTER-IoT are two large contributions and ten small
contributions:

 Large contributions:
o Integrating sensiNact platform with INTER-IoT Framework, CEA -

Commissariat à l'énergie atomique et aux énergies alternative, (France).
o INTER-OM2M, Vrije Universiteit Brussel, (Belgium).

 Small contributions:
o INTER-HARE platform: Integration of multiband IoT technologies, Universitat

Pompeu Fabra (Spain).
o Mission Critical operations based on IoT analytics (MiCrOBIoTA), Nemergent

Solutions S.R.L., (Spain).
o Interoperable Situation-Aware IoT-Based Early Warning System, University of

Twente, (The Netherlands).
o SENSHOOK, Irideon SL, (Spain).
o SOFOS: A software-defined end-to-end IoT gateway with virtualization

capabilities, INFOLYSIS P.C., (Greece).
o E3Tcity Smart City Platform and Devices Integration, E3TCity, (Spain).
o ACHILLES: Access Control and autHenticatIon deLegation for interoperabLE

IoT applicationS, Athens University of Economics and Business – Research
Center (AUEB), (Greece).

o INTER-HINC: Interoperability through Harmonizing IoT, Network Functions and
Clouds, TU Wien - Vienna University of Technology, (Austria).

o A Semantic Middleware for the information synchronization of the IoT devices,
Institute of Industrial Technologies and Automation - National Research Council
(ITIA-CNR), (Italy)

o SecurIoTy - security for the IoT, AvailabilityPlus GmbH, (Germany).

The relationship between the different small contributions and the INTER-IoT architecture is
presented in Figure 131. Different contributions are related with a specific aspect of the INTER-
IoT architecture. However, three contributions (i.e. ITIA-CNR, E3TCITY and U. Twente) are
addressing more than one element of the architecture:

 D6.2: Factory Acceptance Test Plan

324

o ITIA-CNR is dealing with the middleware and semantics as the semantic
interoperability solution proposed uses semantics but also a cloud based solution that
can be incorporated as a bridge to the MW2MW component.

o E3TCITY with device and also middleware, as their smart light devices can be
connected using MQTT with the INTER-IoT gateway and with the middleware using
their cloud solution.

o U- Twente contribution initially dealt with the integration of and Early Warning System
application with INTER-IoT, however during the execution of the collaboration
semantics and the SAREF based ontology turned to be a very relevant contribution to
IPSM and GoIoTP, working also in this aspect of the architecture.

Figure 131: INTER-IoT areas covered by the Small Contribution third parties.

First evaluation of the small collaboration of the open call was held on 29th -30th May. During
the presentation the third parties presented the work done so far, presented a potential
business model individual and joint with INTER-IoT and project progress report. The ten small
contributions made the presentation and received the pre-financing.

D6.2: Factory Acceptance Test Plan

325

Figure 132: INTER-IoT areas covered by the Large Contribution third parties.

Large contributions made their first review presentation in M19 during the 6th plenary meeting
in Eindhoven. VuB and CEA presented their preliminary work and the plans to achieve a
successful integration of their devices, platforms and applications. VuB was including OM2M
and CEA sensiNact, which in February 2017 become an Eclipse funded project.

 Second Evaluation

Second evaluation of the third parties collaboration was scheduled in 17th/18th January 2018.
The process to be followed by the third parties to participate in the review, show their progress
and access the second leg of funding was specified in the collaboration agreement:

 Submission of a detailed PPR with the different planned deliverables as annexes of
the document.

 Submit annex 5.2 and annex 3 of the collaboration agreement, corresponding to the
request of the midterm funding and providing a lump sum justification for the 30% of
the budget. (18.000€ for small contributions and 37.500€ for large contributions).

 Attend a workshop, present the current work and future progress and attend the
questions of INTER-IoT PCC.

 Obtain consortium approval of the corresponding contribution.

 D6.2: Factory Acceptance Test Plan

326

In order to exchange information and find potential synergies the evaluation was carried out
with an open workshop structure, in which the different third parties could interact. The
evaluation included a poster session to have a different way of exchanging ideas between the
third parties and the consortium, following one of the approaches discussed during ecosystem
building sessions of IoT-EPI.

The following sections detail the evaluation details and progress of the twelve third parties.

 Large contributions

25 - INTER-OM2M

Vrije Universiteit Brussel (VUB)

Description

This work concerns the contribution of the research team of the ETRO department of
Vrije Universiteit Brussel to the logistic application in the port of Valencia. The main
goal is to provide easy to use data to workers in the site. In particular, the Stickntrack
GPSs, which are IoT devices using the Sigfox network for the communication, are
used. These devices are endowed with an accelerometer and a GPS module to
provide activity and location information about the specific asset with which they are
stuck. The Stickntrack GPSs have been stuck with trucks and equipment in the port
and are currently under test.

The communication between the OM2M platform and a non-oneM2M entity, which can
be any kind of IoT device, is only possible with the inclusion of a custom Interworking
Proxy Entity (IPE) in the OM2M Infrastructure Node (IN). Since the Stickntrack GPSs
are programmed to send measurements to the Sensolus cloud periodically (every 20
minutes), the OM2M platform should communicate with the Sensolus cloud to retrieve
this information. This is now possible through our custom IPE that provides two
services: the periodic retrieval of data managed by a timer and the provision of a
friendly Graphical User Interface (GUI) with which the user can interact.

The Stickntrack GPSs are unable to provide location information whenever they lose
the GPS signal. However, this problem was solved with the inclusion of Stickntrack
geobeacons that can be deployed indoors and fixing their positions for locating the
assets. The Stickntrack geobeacons are very simple devices, which do not have any
network connectivity, and they just broadcast a Bluetooth Low Energy (BLE) signal
over the air. The estimated range of such signal depends on the environment and can
be between 20 meters and 70 meters. A Stickntrack GPS can detect a maximum of
two signals at the same time but it only considers the strongest one estimated its
position with the position of the correspondent Stickntrack geobeacon.

To complement the measurements serving the logistics applications of the port, VUB
will include some environment/logistics related measurements, featuring Sigfox/Lora
as underlying radio technologies. These measurements will be made available through
the oneM2M framework, maintained at VUB. The open source OM2M-based
implementation will be deployed as common service layer to allow the use of different
application protocols such as MQTT and CoAP in the devices. A gateway (e.g.

D6.2: Factory Acceptance Test Plan

327

Raspberry Pi) will play a central role in forwarding the gathered data to the OM2M
server.

On top of that, environmental measurements and measurements of the city of
Valencia, available under the FIWARE framework will also be made available under
the oneM2M VUB platform to complement the measurements made by VUB itself.
Basic security considerations will be taken care of. The applications of the city of
Valencia will be able to access and exploit the extra measurements produced by the
equipment installed by VUB at the port. To this end, an INTER-IoT – oneM2M bridge
will be developed by VUB.

An OM2M bridge is in the process of being implemented to allow the communication
between the OM2M platform and the Middleware-to-Middleware (MW2MW)
framework. Important preliminary steps have been taken make it possible to retrieve
IoT sensor data from a different platform such as Fiware and vice versa.

Another important future work will be the inclusion of an authentication mechanism to
provide some basic security feature and avoid illegal access to the IoT sensor data
stored in the OM2M platform. Some first steps have been taken.

Figure 133: OM2M bridge integration in INTER-IoT architecture.

The methodology and lessons learned from this contribution and its integration in
Inter-IoT will be provided to a group of Belgian SMEs under the format of tutorials,
workshops and demonstrations. Thanks to the embedding of this project in several
national projects involving many Dutch and Belgian companies and 4 ICT network
organizations, some supported by major national telecom operators, the results of

this project will have immediate industrial impact.

Progress

The large contribution is progressing as expected and the interaction with the different
development teams is very fluent. The scheduled activities have been executed as
planned:

• Integration and storing of the measurements of the trackers in the university
oneM2M framework.

• Provision of a user-friendly interface to interact and retrieve data from the
university oneM2M framework.

• Bridge (including syntactic translator), this is work in progress.
• Demo 1, subscription and notification through the bridge, this is work in

progress.

 D6.2: Factory Acceptance Test Plan

328

The research team has performed different dissemination actions:

 Standardization activity: ETSI OneM2M week that took place in October 2017
in Sophia Antipolis.

 Article in journal: S.Thielemans, D. Di Zenobio, A. Touhafi, P. Lataire and K.
Steenhaut, “DC Grids for Smart LED-Based Lighting”, Energies, vol 10, no 10,
pp 1-26, 2017.

 Workshop presentation: Wireless Community IoT Integration, Leuven
(Belgium) 6 Feb 2018. Joint presentation between INTER-IoT consortium
(Roel Vossen – NEWAYS) and VUB team.

 Cross dissemination: presentation to Flemish companies at PROXIMUS during
Horizontal-IoT TETRA project.

Recommendations

The evaluation panel is highly satisfied with the contribution, some recommendations
regarding the contribution are:

 Provide better documentation of the different interfaces developed and the
preliminary bridge version.

 Test the compatibility of the OM2M bridge with the newly released OpenMTC
platform also based in OneM2M.

 Provide a detailed inventory of sensors and their characteristics.

Table 120: INTER-OM2M Evaluation.

71 - Integrating sensiNact platform with INTER-IoT Framework

CEA - Commissariat à l'énergie atomique et aux énergies alternative

Description

The main goal of this collaboration is to perform the integration of sensiNact platform
into the “INTER-IoT supported platforms” catalogue and to validate INTER-IoT tools
and methodology with an IoT platform already used in real-life deployments, in
particular in the smart city domain in Europe and in Japan. sensiNact is a horizontal
platform dedicated to IoT and in particularly used in various smart city and smart home
applications.

CEA collaboration with the INTER-IoT project is two-fold:

 To take benefit of INTER-IoT interoperability methodology and tools and
include them into the sensiNact platform, so that it can be compatible with other
“INTER-IoT supported” platforms.

 To provide to Inter-IoT the opportunity to validate their framework with the
integration of sensiNact platform and thus access to all compatible data sets
from sensiNact from different domains such as smart cities, smart farming,
smart ski resort, smart building, smart living and well-ageing, etc. is now under
further development and deployment in several other European projects such
as BigClouT, FESTIVAL, OrganiCity, Wise-IoT, IoF2020 and ACTIVAGE.

CEA will test the integration with at least 3 other platforms showing that sensiNact is
working in an interoperable way with other platforms. This is the most relevant

D6.2: Factory Acceptance Test Plan

329

objective since the goal is to be able to interoperate with other platforms to share and
reuse data and functions. The integration will be validated via pilot applications, with
at least 2 cross-domain applications using INTER-IoT APIs seamlessly gathering data
or performing actuations at different underlying platforms. It is an achievable objective
since sensiNact has already performed field trials in various European projects and
has access to several open IoT devices and platforms. Pilot organization is very
relevant in order to effectively validate the integration work, and during the first phase
CEA will interact with the relevant stakeholders in INTER-IoT, specially VPF.

This collaboration will specifically engender closer collaborations between the
sensiNact and INTER-IoT ecosystems. CEA and its partners are currently building a
working group about open smart urban environments within the Eclipse Foundation,
which is a well-known and active community of developers. sensiNact will form the
core of this ecosystem to which different partners will participate with additional
building blocks and tools (security, communication protocols, data analytics, etc.). We
will join the forces with the INTER -IoT ecosystem and co-organise at least 2 joint
events (workshop, hackathon, etc.) to disseminate. It will be achieved by taking benefit
of available IoT related events such as IoT week, IoT-EPI meetups or Eclipse
community events on IoT. Ecosystem enlargement is certainly relevant objective for
both INTER -IoT and sensiNact.

As shown in the Figure below, sensiNact will be inserted to the INTER-IoT framework
at the middleware layer. sensiNact will implement the APIs provide by the INTER-IoT
Framework and build the necessary adapters for data model adaptation and
transformation. sensiNact’s middleware layer services such as resource discovery and
lookup, security, data processing, etc., will be adapted to be compliant with the Inter-
Framework.

Figure 134. sensiNact bridge integration in INTER-IoT architecture.

Progress

 D6.2: Factory Acceptance Test Plan

330

The open call contribution is advancing as expected and this period goal was to gather
the state of the art of the actual INTER-IoT framework exploring the deliverables 4.1
(Initial Reference IoT Platform Meta-Architecture and Meta Model) and 3.1 (Methods
for Interoperability and Integration). Those reference documents state the base
concept and the architecture of the INTER-IoT framework. The content was updated
with D3.2, D4.3 and D4.5. The 2nd period work has mainly been conducted within the
Work Package 2. Its main activity has been to provide the inputs necessary to evaluate
the future integration of InterIoT with sensiNact platform through a Factory Acceptance
Test (FAT) plan (Deliverable 6.2).Thus, the main contributions have been:

 Getting familiar with the INTER-IoT framework at inner INTER-IoT MW2MW
component level

 Exploring Deliverable 4.1 and understanding the main concept and meta-
architecture and data model of INTER-IoT

 Exploring Deliverable 3.1 and understanding the interoperability and
Integration methodology of the INTER-IoT

 Access to the project
o Code source repository
o artifact repositories
o documentation repository

 Provide first version of Factory Acceptance Test Plan document
 Provide feedback about the documentation validity
 Initial identification of the data sources to be integrated for interoperability, so

as the different end user applications.
 Ongoing development of the bridge.

Recommendations

The evaluation panel is satisfied with the contribution, some recommendations
regarding the contribution are:

 Provide better documentation of the different interfaces developed and the
preliminary bridge version.

 Identify components for semantic interoperability.
 Provide a detailed inventory of sensors and their characteristics.
 Provide more dissemination activities linked to the collaboration.

Table 121: sensiNact platform Evaluation.

 Small contributions

27 - INTER-HINC: Interoperability through Harmonizing IoT, Network Functions
and Clouds

TU Wien - Vienna University of Technology

Description

IoT applications require various resources from Internet of Things (IoT), Network
Function Virtualization (NFV), and cloud systems. Such resources will be provided on-
demand, based on IoT-as-a-service models. They must be interoperable for the
application use. In this project, we address IoT interoperability together with its
counterparts of network function and cloud.

D6.2: Factory Acceptance Test Plan

331

The interoperability is addressed within a context of resource slices, which can be
provisioned and customized, on the demand, for different applications. Our approach
“resource slice interoperability” not only leverages existing layered interoperability
solutions but also builds cross-layered interoperability and cross-system
interoperability solutions for a system of IoT, network function and cloud resources.
Interoperability is addressed dynamically for application specific requirements, solving
interoperability from the bottom up: we cannot enforce the same models for complex
IoT providers; instead we devise dynamic interoperability solutions using metadata
and provider-specific APIs. This enables us to provide slice-aware programming APIs
for making IoT interoperability (through controlling IoT and IoT data pipelines).

The collaboration contemplates the development of a framework called INTER-HINC
(Interoperability through Harmonizing IoT, Network Functions and Clouds) will be
developed and validated with scenarios in INTER-DOMAIN covering both logistics and
health care situations.

Figure 135: INTER-HINC architecture.

Progress

The contribution is advancing as expected and during this period, main activities have
been associated with:

 Definition of the use cases.
 INTER-HINC architecture design and preliminary integration with INTER-IoT.

Specifically, a conceptual architecture of Resource Slice Interoperability Hub
(rsiHub) and its key elements. rsiHub presents a broad-view on our conceptual
Resource Slice Interoperability, covering also important aspects of
interoperability, such as recommendation of Interoperability bridges at runtime.

 Definition of information, interaction and integration models; programming
APIs, testing services and Factory Acceptance Test.

During this reporting period, TU Wien has also disseminated ideas of INTER-HINC to
various places, including:

 Hong-Linh Truong, "Managing and Testing Ensembles of IoT, Network
functions, and Clouds", Center for Cyber-Physical Systems and Internet of
Things, University of Southern California, 21 Sep, 2017

 D6.2: Factory Acceptance Test Plan

332

 Hong-Linh Truong, "Modeling and Testing Uncertainties in Application-oriented
Slices of IoT, Network functions, and Clouds", Ericsson R & D, 13 June, 2017,
Bangalore, India

Scientific papers relevant to INTER-HINC are on submission:

 Hong-Linh Truong, Duc-Hung Le, Hong-Linh Truong, Duc-Hung Le,
Nanjangud Narendra, Interoperable Resource Slices for IoT Applications, Jan
2018. On submission.

 Hong-Linh Truong, Enabling Edge Analytics of IoT Data: The Case of
LoRaWAN, Jan 2018. On Submission.

Recommendations

The project is advancing as expected, however some corrective actions have to be
performed in the work for the following period:

 The research team has to focus in order to reduce the scope of data gathering,
as current proposal creates an execution risk due to its size.

 Identification of a potential simplification if the interoperability is performed with
INTER-FW instead at individual layers.

 The research team has to improve documentation sent to the consortium.
 With the incorporation of the additional researcher in the team activity has

improved, however the activity needs to be maintained.
Table 122: INTER-HINC Evaluation.

39 - SOFOS: A software-defined end-to-end IoT gateway with virtualization
capabilities

INFOLYSIS P.C.

Description

The imminent arrival of the Internet of Things (IoT), which consists of a vast variety of
devices with heterogeneous characteristics, means that future networks need a new
architecture to accommodate end-to-end IoT networking, dealing with: i) the expected
increase in data generation, ii) the problems related to the end-to-end IP networking
of the resource-constrained IoT devices, iii) the capacity mismatch between devices,
and iv) the rapid interaction between services and infrastructure.

Software defined networking (SDN) and network function virtualization (NFV) are two
technologies that promise to cost-effectively provide the scale and versatility
necessary for IoT services in order to address efficiently the aforementioned
challenges. Moreover, given that SDN and NFV are considered a fundamental
component in the 5G landscape, since it is widely recognized that 5G networks will be
software-driven and most components of future heterogeneous 5G architectures
should be capable to support software-network technologies, both SDN and NFV are
promising candidate technologies for a Software Defined Approach of end-to-end IoT
Networking.

D6.2: Factory Acceptance Test Plan

333

Figure 136: SOFOS proposed SDN/NFV end-to-end IoT Gateway.

SOFOS aims at advancing the existing INTER-IoT framework with SDN and NFV
functionalities towards a Software-defined end-to-end IoT infrastructure with IoT
service chaining support. The main objective of the proposed SDN/NFV-enabled
framework is to enhance the interoperability of the INTER-IoT framework in order to
facilitate the interoperable management of a large number of diverse smart objects
that currently operate utilizing a variety of different IoT protocols.

The proposed software-defined end-to-end IoT addition with SDN/NFV capabilities on
the INTER-IoT GW contributes positively beyond the current SoTA regarding the
INTER-IoT objectives to the following aspects:

 By integrating SOFOS to the INTER-IoT infrastructure, the set of tools,
components, mediators of INTER-IoT are extended in order to enhance the
interoperability of different underlying IoT platforms via appropriate VNFs, such
as mapping functions.

 Contributes to the design, implementation and integration of interoperable
networking layer components (in the form of VNFs) for INTER-FW. The
proposed SDN/NFV extension facilitates the deployment of virtual mapping
functions and other networking layer components (such as virtual SDN
switches), which are based on different standards higher-level communication
standards (e.g. TCP/IP, HTTP, CoAP, etc).

 Implements an NFV-based virtualization mechanism for smart objects and
platform of smart objects for INTER-FW, including orchestration mechanism
for transferring VNFs (i.e. virtual objects/functions) between cloud platforms
(i.e. NFVI PoPs).

 Implements NFV orchestration and cloud support mechanisms, which are
integrated in INTER-FW, including support for different services, inter-cloud
(inter-NFVI PoP) mechanisms applied to IoT and support for virtualization.

Progress

The collaboration is advancing as expected, more specifically the activities include the
definition of business model, its financial aspects analysis, as well as the description
of the use case/pilot & the requirements of the architecture in relation with INTER-IOT
platform. Towards this direction, INFOLYSiS has analyzed and demonstrated:

 The business analysis and business model of SOFOS solution, including the
business canvas component.

 D6.2: Factory Acceptance Test Plan

334

 The financial and cost benefit analysis of SOFOS solution, including
reasonable assumptions and analysis constraints under different financial
conditions and metrics

 The SOFOS platform architecture and integration to INTER-IoT platform: (i)
Presentation and analysis of enabling technologies; (ii) SOFOS integration
setup and architecture; (iii) Integration environment; (iv) Test setup for
integration; (v) SOFOS integration to INTER-IoT platform

 Integration of the SOFOS components in the INTER-IoT GW and link with N2N
INTER-IoT component.

Recommendations

The evaluation panel is highly satisfied with the contribution, some recommendations
regarding the contribution are:

 Clear definition of the link between OpenDayLight used by SOFOS and RYU
used by INTER-IoT, compatibility issue has to be demonstrated.

 Definition of the use case that currently is in a preliminary stage.

Table 123: SOFOS Evaluation.

42 - INTER-HARE platform: Integration of multiband IoT technologies

Universitat Pompeu Fabra

Description

The continuous emergence of new technologies based on the IoT paradigm has
resulted in a heterogeneous ecosystem. The proposed INTER-HARE platform will
create synergies between LPLANs and LPWANs, by building and testing an IoT
platform easily scalable (both in coverage range and devices) and flexible (both in the
considered use cases and the frequency bands from employed devices). The
proposed work has a starting point in the HARE communication system previously
developed in a research project.

Interoperability is provided by a hierarchical two-tier network, where dual-band devices
simultaneously interact with end devices and the INTER-IoT gateway. INTER-HARE
platform will allow in the mid-long term the deployment of advanced services based
on sensor networks, from a wide range of everyday life applications, at reasonable
costs, and low time-to-market.

The proposed approach splits the INTER-HARE platform into two networks with
different purposes:

 Transport network: It involves all internal infrastructure responsible for
gathering and transporting information from the end-devices to the physical
gateway. Description of all communication layers (physical, link, network,
transport, and application) is provided in the aforementioned document. First
developments of these communication protocols and early simulations have
been already conducted.

 Integration network: It is responsible for ensuring the communication between
the physical gateway and the rest of the INTER-IoT system (or more
specifically, with the virtual gateway). Integration tasks between a virtual

D6.2: Factory Acceptance Test Plan

335

machine containing a first version of the virtual gateway and the physical
gateway have already started.

Consequently, it is redefined the INTER-IoT gateway, which is considered the brain of
the INTER-HARE platform and the single point of contact between the physical
network and the rest of the INTER-IoT system. Due to its dual conception, it is easy to
split its internal architecture into:

 Physical gateway: A combination of a wireless frontend (responsible for the
communication with the rest of the transport network) and a controller
(responsible for the communication with the virtual gateway). Both elements
are connected through a serial link.

 Virtual gateway: A virtual entity which can be executed in a remote location,
based in the Docker platform; i.e., a virtual container that provides an additional
layer of abstraction and automation of operating-system-level virtualization on
Windows and Linux.

Figure 137: D2D interoperability in INTER-HARE.

Progress

INTER-HARE project is advancing as expected and the main contributions of the
collaboration are:

 Analysis of the existing INTER-IoT system, and definition of the INTER-HARE
requirements.

 D6.2: Factory Acceptance Test Plan

336

 Design and development of INTER-HARE system, including the conceptual
design of the INTER-HARE architecture and communication protocols and
selection and validation of hardware components.

 Definition of test setups for the FAT (Factory Acceptance Tests), providing a
very detailed document that will provide a very good background for the SAT
process.

 First stages of the technical development (both in terms of internal
communication within the INTERHARE network and integration with the
already existing INTER-IoT system). The development is directly linked with
the INTER-GW component.

 Definition of the use case to develop the pilot, testing and evaluation.

Regarding dissemination the UPF team participated in two brokerage events in which
they presented the results of the collaboration and discussed the relevance of IoT
interoperability associated to INTER-HARE:

 Smart City Expo World Congress 2017 - (14-16 November 2017, Barcelona).
 IoT Solutions World Congress 2017 - (3-5 October 2017, Barcelona).

Recommendations

The evaluation panel is very satisfied with the contribution, especially with the real
demonstration of the hardware devices during the evaluation and the preliminary
integration with the gateways, some recommendations regarding the contribution are:

 Find a suitable, realistic use case in order to use INTER-HARE.
 Define and analyse the scalability issues of the radio technology, the density

of devices could be an issue in an environment like the port.
 Identify licensing problems due to the proprietary nature of the HARE product.

Table 124: INTER-HARE Evaluation.

43 - Mission Critical operations based on IoT analytics (MiCrOBIoTA)

Nemergent Solutions S.R.L.

Description

Although Mission Critical (MC) communications have been traditionally supported over
private radio technologies, the current trend is to foster interoperability and a more
competitive marketplace based on open standards and mobile broadband radio
technologies. In the last two years, the 3GPP has significantly advanced in the
normative work concerning MC-PushToTalk (MCPTT) in Release 13 and MC-Video
and MC-Data communications (such as file transfer or short data messaging) in
Release 14. These technologies have been initially designed for covering the needs
of the Public Safety community. Yet, new study items are now launched to extend the
scope of this type of technologies to other mission critical scenarios such as railway
and maritime control communications in the future Release 15.

In parallel, the 3GPP has also progressed in the definition of Internet of Things (IoT)
technologies based on mobile broadband networks, resulting on Cell-IoT (C-IoT) and
Narrowband IoT (NB-IoT). However, the adoption of IoT communications for mission
critical operations is not mature enough to provide a reliable framework for converged

D6.2: Factory Acceptance Test Plan

337

and interoperable mission-critical operations. First, C-IoT and NB-IoT technologies
have not reached the deployment level of other IoT technologies. Second, the
adoption of IoT in MC communications has not received yet the required consideration
in the standardisation process.

The anticipated benefits of interoperable “Mission Critical operations based on IoT
analytics” (MiCrOBIoTa) are related with the previous technological proposals. MC
organisations worldwide are looking at the technology as a driver for enhanced life-
saving operations, but they are facing the traditional problems of segmented markets
and non-interoperable technologies. In this sense, the objectives and proposals of the
INTER-IoT architecture and components provide a perfect framework for advancing
mission critical systems towards the adoption of interoperable IoT platforms with the
required privacy, security and QoS requirements.

Figure 138: MiCrOBIoTa integration in INTER-IoT architecture.

MiCrOBIoTa contribution, aims at exploiting the INTER-IoT platform as a mean to
gather information from heterogeneous sensors in a converged way. As a result,
Nemergent will be able to integrate a new “IoT monitoring and analytics” component
in its mission critical product portfolio, and especially into the Nemergent Control Room
application. Specifically the proposed results and goals of MiCrOBIoTa are:

 To define (in collaboration with the INTER-IoT team) a cross-domain IoT
scenario in the scope of mission critical operations, where different IoT devices
related to port logistics and mobile on-body health sensors can provide
valuable field information to mission critical operators.

 To contribute to INTER-IoT activities related to the definition of the common
semantics and ontology regarding the specific mission critical scenarios.

 To develop the “Nemergent MC-IoT monitoring and analytics” component,
which will interface with the INTER-IoT platform and with the Nemergent
Control Room application.

 To adapt the Nemergent Control Room application to perform basic IoT-related
operations, such as displaying the relevant events information and enabling

 D6.2: Factory Acceptance Test Plan

338

mission critical actuations through the rest of the Nemergent framework
components.

 To actively support the INTER-IoT INTER-DOMAIN pilot and validation
activities through the use of the evolved Nemergent Control Room.

 To provide the required feedback to the INTER-IoT consortium.
 To perform the proper dissemination and communication activities.

From the Business scenarios and Scenario use cases identified in INTER-IoT, his
contribution will be mainly related to “INTER-LogP/Health scenarios: Accident at the
port area”. The overall idea is that the different Nemergent technologies are able to
provide an enhanced emergency management framework to coordinate the port
authority with other first responders.

Nemergent aims at contributing to this use case by developing an external application
which will be able to interface with the different IoT platforms involved. The external
application will gather accident alarms and will be able to identify possible sources of
information related to the incident. The GUI will enable the CCE staff to send the most
relevant information (guided route, health monitoring and location of actuators) to the
different emergency units (e.g., an ambulance) connected to the integral system.

Progress

MiCrOBIoTa collaboration is advanced as expected, main contributions provided are
related with:

 Review of the state of the art concerning the inclusion of IoT sources into the
world of emergency management.

 Initial external discussions with partner companies, such as RKL INTEGRAL
and ETELM SAS, related to the digitalisation process of companies’ protection
plans and the potential inclusion of IoT sources in them. Initial joint discussions
concerning the proposed trial scenario with the rest of the INTER-IoT
consortium (coordinator, stakeholders and other Third Parties).

 Design of the overall MC-IoT system and associated documentation.
 Analysis of the required extensions to the Nemergent Control Room system:

modifications to the backend and front-end components, extensions to the
connectors and design of new message formats.

 Analysis of the required extensions to the Nemergent MCPTT system:
integration of talk group membership management and INTER-IoT players.

 Definition of the Nemergent Factory Acceptance Tests (FAT) and creation of
the FAT document templates.

 Deployment of the required tools for component development and for FAT.
 Deployment and adaptation of an MQTT server as input to the MC-IoT system.
 Analysis of EDXL language format to be used in the MC-IoT system (in a future

potential integration with other open caller’s outcomes).
 Initial implementation activities at the Nemergent backend and front end so as

initial tailored configuration at the Nemergent MCPTT system.

Nemergent has performed different dissemination actions:

 PSCE conference 2017 (28-29 November 2017) in Madrid Spain. Where
presented the Nemergent activities (including cite to INTER-IoT project) and
discussed the applicability of IoT to Public Safety.

 MILIPOL Paris 2017 event (Paris, 21-24 November 2017), where discussed
the applicability of IoT to Public Safety and other sectors

D6.2: Factory Acceptance Test Plan

339

 At local scope, “Jornadas de Gerencia de Riesgos y Emergencias” (18-19 May
2017).

Recommendations

The evaluation panel is very satisfied with the contribution, especially with the
industrial dissemination actions and the standardization window that could be opened
in the security and safety market for interoperability. Some recommendations for the
improvement of the collaboration:

 Although the integration of MiCrOBIoTa is planned through INTER-API,
Nemergent is encouraged to develop a NodeRed node, in order to facilitate
integration of their solution in a seamless way through AS2AS component.

 The definition of the use case needs some refinement, mainly in the wearables
and workers tracking.

 Collaboration with U Twente and the ontology for safety and security will be
highly appreciated.

Table 125:MiCrOBIoTA Evaluation.

49 - SENSHOOK

Irideon SL

Description

Many companies want to develop IoT products, however lack the necessary financial
and human resources using existing methods. To address this need, IRIDEON has
developed Senscape®, a disruptive, standards based platform which enables fast
time-to-market development of IoT sensor-server applications and information
services. To date, we have focused on the development of IoT devices using our own
hardware and embedded operating system - SENSOS. Now, we wish to contribute to
the INTER-IoT project with a new open tool called SENSHOOK, to enable full
interoperability of our Senscape® IoT platform with other IoT platforms and services,
and fully exploit the unique selling points of our existing technology. This will allow us
to address a wider range of customers and applications, and to grow our revenue and
the company, via more customer projects, via licensing of Senscape®, and exploitation
of SENSHOOK as an open-source tool compliant with the INTER-IoT framework.

Hardware devices to be integrated in the pilot have been developed by the company
and use standard interfaces. Two products: tuatara and flyingdragon boards. The
baseboards use SENSOS embedded operating system. SENSOS delivers best in
class performance vs. power consumption and supports a set of advanced features
including: remote device smart energy management; remote auto-check, remote data
preview; multi-device time synchronization; remote updates; and secure
communications.

 D6.2: Factory Acceptance Test Plan

340

Figure 139: SENSHOOK Block Diagram.

Summary of SENSHOOK specifications:

 Senscape Interoperability with INTER-IoT will be done at device level.
 Senscape IoT devices will be accessed/controlled through a unifying interface

and integrated into one of the following IoT platforms: FIWARE, OPENIOT,
OM2M and/or MW2MW.

 This interoperability solution at device level will be achieved through a Device
to Device Gateway (D2D Gateway).

 Senscape devices will approach for the implementation of a virtual Gateway.
 This Gateway will be developed in JAVA using the OSGi framework.
 All components of the Gateway will be packaged as OSGi bundles.
 IEEE1451 standard specification as basis of the gateway dispatcher.

Implementation of the IEEE1451 specification as basis of the SENSHOOK gateway
dispatcher and additional system blocks like the API, configuration and measure
storage. The driver with the standard protocol will be included in INTER-IoT gateway
as an OSGi component.

The use case is related with the deployment of Zikka mosquito traps. The collaboration
will include the manufacturing of 3 mosquito trap devices to be tested with SENSHOOK
tool. These devices have been programmed to communicate with the tool via 3G using
the IEEE1451 specification. The application developed by IRIDEON uses machine
learning components to identify mosquito species, to map and model the distribution
of vectors of disease and to plan surveillance control programs.

Figure 140: SENSHOOK use case.

D6.2: Factory Acceptance Test Plan

341

Progress

IRIDEON contribution is advancing as expected, main contributions have been
developed in line with the proposed workplan:

 Study of INTER-IoT project. The information, deliverables and supporting
documentation provided by the consortium were studied to gain an enhanced
understanding of the project needs and scope.

 First specifications regarding the implementation of the SENSHOOK tool in the
Senscape® IoT platform defined preliminarily.

 Partial implementation of SENSHOOK according to INTER-IoT requirements
using IEEE1451 standard specification as basis of the system dispatcher.

 Preliminary tests of SENSHOOK performed in IRIDEON’s facilities to evaluate
the performance and benefits of the tool.

 Draft Business models and Exploitation plans for Senscape® + SENSHOOK
and the Smart Mosquito Trap to be piloted in the port of Valencia.

 Specification of the data model and OSGi bundle to be integrated in the
architecture.

IRIDEON adapts one of the major international standards for the control and reading
of smart transducers: IEEE1451, and makes it compatible with existing lightweight data
communication protocols and data formats used in IoT applications. With a sensor-
centric approach, in which each sensor or actuator can be discoverable, accessible,
and usable via TEDs described in the standard, and sensor data can be automatic and
correctly transformed before being processed and analyzed for an upper application
layer.

IRIDEON has had a very active dissemination activity of its own products and the
collaboration with the INTER-IoT project. Participation in events to disseminate
Senscape® and SENSHOOK:

 Healthio Congress 2017.
 Open EUREKA Innovation Week 2017.
 Barcelona INNOVA 2017
 Construmat 2017
 BizBarcelona 2017
 IoT Solutions World Congress 2017
 Smart City Expo World Congress 2017.

Recommendations

The evaluation panel is very satisfied with the contribution, however some
recommendations and improvements are required:

 Clarification of the licensing issues and open source components to be used
within the collaboration and how they will affect INTER-IoT.

 IRIDEON has developed a virtual gateway following INTER-IoT architecture,
analysis of the potential integration at virtual level instead than at physical level
has to be further evaluated.

 Definition of the interface between Senscape boards and physical gateway
have to be revisited in order to avoid communication errors.

 A UPV developer will join IRIDEON and UPF in a code camp in order to define
different tips for development in Barcelona, other interested partners related
with D2D integration may join.

Table 126: SENSHOOK Evaluation.

 D6.2: Factory Acceptance Test Plan

342

52 - ACHILLES: Access Control and autHenticatIon deLegation for
interoperabLE IoT applicationS

Athens University of Economics and Business – Research Center (AUEB)

Description

Nowadays, “smart” Things have become an integral component of many systems.
Industrial production, health services, traffic monitoring, and many other fields have
been greatly improved by the widespread adoption of sensors, actuators, embedded
systems, identification technologies, and mobile devices. With the pervasiveness of
and advances in networking technologies and the mass production of smart(er)
Things, we are on the verge of breaking the currently existing vertical application silos
and move towards a horizontal Internet of Things (IoT). The IoT will enable the creation
of general purpose applications that will harvest the full potential of the unique features
of smart Things.

This vision of the IoT raises significant security and privacy concerns. With
applications impacting not only the virtual world, but now directly the real world,
concerns are widespread and justified. Things can be intrusive, have access to
sensitive information, can be easily tampered with and at the same time Things might
not have enough computational, storage, or energy capacity, and in general they have
significant limitations.

ACHILLES will provide a solution to the problem of access control and Thing
authentication for the IoT. Access control and endpoint authentication in the IoT is a
challenging problem. Things are usually small devices with limited storage capacity,
power, energy, and processing capabilities, in order to be inexpensive and practical.
In many cases Things are “exposed” to tampering, whereas in many application
scenarios, after Things are deployed, it is not easy to access them. Things usually are
not able to perform “heavy'” tasks, such as complex cryptographic operations. Storing
user credentials or any other sensitive information in a Thing creates security risks,
adds storage overhead, and makes security management an impossible task. When
it comes to interoperable applications, Things (or even gateways) cannot interpret
complex business roles and processes. Moreover, companies are not willing to share
sensitive information about their users with a Thing (or a gateway), even if this
information is required by an access control mechanism, neither do they want to invest
in yet another security system.

The ACHILLES project will overcome these limitations by allowing the delegation of
security operations to a third party, referred to as the Access Control Provider (ACP),
which can be implemented by a trusted separate entity, or even the service provider
itself. The ACHILLES concept is depicted in the following figure.

D6.2: Factory Acceptance Test Plan

343

Figure 141: ACHILLES concept architecture

The main idea of the ACHILLES concept is that IoT service providers store access
control policies in ACPs and in return ACPs generate secret keys which are stored in
Things. These keys are generated, during a setup phase, using a secure hash with
input the Thing identifier. Additionally, Things are configured with pointers (e.g., a URL
that points to an ACP and a particular file) to the access control policies that protect
sensitive resources. Every time a client requests access to a protected resource the
Thing uses a secure hash function to generate a session key. The secret key used by
that function is the key generated by the ACP and the hash inputs are: (a) the pointer
to the policy that protects the resource and (b) a random nonce. The Thing transmits
the nonce and the pointer to the client and the client requests authorization from the
appropriate ACP (over a secure channel). The ACP has all the necessary information
required to calculate the session key: if the client is authorized, the ACP calculates the
session key and transmits it back to the client. Provided that: (i) the Thing has not lied
about its identity and (ii) the messages exchanged between the client and the Thing
have not been modified, the Thing and the client end up sharing a secret key. This key
can be used for securing subsequent communications (e.g., by using DTLS).

Figure 142: ACHILLES integration in INTER-IoT Gateway

ACHILLES component will be installed in the gateway as an independent bundle, and
will provide access control to the architecture.

Progress

ACHILLES contribution is advancing as expected, main contributions have been
developed in line with the proposed workplan:

 Development of an open protocol to allow existing user management systems
to be used for access control, by all layers of the INTER-IoT platform. Policies

 D6.2: Factory Acceptance Test Plan

344

will be built and managed in these systems and Things and gateways will be
oblivious to them.

 Definition of the exploitation plan and business models to facilitate
interoperability, innovation, and B2B services, by allowing the use of (pointers
to) policies (e.g., https://companyA/customers) without needing to have access
to the policy implementation details (e.g., who the customers of Company A
are).

 Definition of the security management framework, by enabling access control
policy modifications without communicating with the Things (or gateways).
Service providers will be able to modify security policies even after Things and
gateways have been deployed.

 Definition of tools for things gateway mutual authentication and appropriate
APIs for the INTER-FW, which will allow end-users to create and access
protected resources.

 Preparation of the integration plan that was included in D6.1, so as the Factory
Acceptance Testing specific to the contribution.

 Preliminary integration in the gateway with the definition of the interfaces and
the structure of the software artifact. Main premise is that things and gateways
will only have to follow a simple communication protocol and will not have
access to any information related to end-users.

No dissemination or communication action has been identified by the research group.

Recommendations

The evaluation panel is very satisfied with the contribution, however some
improvements are recommended:

 Security definition has to be in line with INTER-IoT IdM proposal, so it is
recommended to modify the architecture accordingly.

 Consider the possibility of extending the Access Control mechanism to other
layers like middleware and AS2AS if needed.

 Contribute to dissemination actions, mainly in the industrial area.
 Identify potential standardization paths for the contribution in order to increase

visibility.
Table 127: ACHILLES Evaluation.

53 - A Semantic Middleware for the information synchronization of the IoT
devices

University of Twente

Description

An Early Warning System (EWS) is an integrated emergency system that provides
services to monitor, detect and alert emergency risks. The core idea of INTER-IoT-
EWS project is to develop an interoperable EWS on top of INTER-IoT application layer
(AS2AS, NodeRed) to detect and alert accidents and risks of accidents in the Valencia
port area, interoperating with IoT platforms, medical wearable devices (Shimmer ECG)
and Emergency Management Systems (open call partner Nemergent solutions).

Besides the EWS, the INTER-IoT-EWS collaboration offers bi-directional semantic
translations between the Smart Appliances REFerence ontology (SAREF) and the

D6.2: Factory Acceptance Test Plan

345

W3C Semantic Sensor Network Ontology (SSN), to be configured within the Inter-
Platform Semantic Mediator (IPSM). This also includes the investigation of existing
ontologies and possible alignments and extensions. For example, the extension of
SAREF for e-Health (based on HL7) and logistics (based on LogiCO).

In accordance with the INTER-IoT challenges, the collaboration supports the
achievement of semantic and syntactic interoperability among IoT platforms, i.e.
enable data to be understandable for both sender and receiver platforms. In particular,
we focus on coordinating emergency services based on IoT devices, alerting the
involved parties, e.g. emergency command control, haulier, terminal operator, first
responders and employees, when an accident occurs.

The objective is to use and contribute to the semantic interoperability capabilities of
the INTER-IoT framework through the IoT-based EWS, enabling data exchange
among heterogeneous IoT platforms by developing emergency application services
that require IoT semantic translations from IPSM.

The innovation capacity of the solution is leveraged by stressing the role of the OASIS
Emergency Data Exchange Language (EDXL) for emergency services, applied in
cross-domain scenarios in logistics/transportation (INTER-LogP) and healthcare
(INTER-Health). The collaboration exploits standards, ontologies and data models for
the description of decision rules to detect emergency situations, e.g. W3C SSN,
SAREF, OASIS EDXL (CAP, SitRep, TEP, HAVE, DE, RM) and, if necessary, consider
parts of standards/ontologies related to e/m-Health and logistics.

INTER-IoT-EWS project is based on U. Twente current research in semantic
interoperability of EWSs for disaster management, which combines our recent
research in e-Health standards, context-awareness and logistics. The potential impact
of this project on the IoT solutions industry is innovation regarding data exchange of
these different data formats to detect and alert emergencies. In particular, a side-effect
benefiting INTER-IoT will be the enablement of interoperability between the most
notable ontologies in the IoT context, namely SSN and SAREF. Furthermore, it
proposes a low-cost business model for logistics, healthcare and insurance
companies. For example, in the port of Valencia (transportation use case),
transportation companies, haulers, terminal operators and insurance companies can
benefit from the IoT EWS by reducing disaster risks involving the involved employees
(e.g. trucks’ drivers) and the goods being transported.

 D6.2: Factory Acceptance Test Plan

346

Figure 143: Conceptual architecture of semantic brokering for context-aware decision
support

Figure 144: Integration in INTER-IoT

Progress

The collaboration is advancing as expected, and the main developments associated
with it are:

 Exploitation of ontologies and standards that can be applied within INTER-
DOMAIN use cases. Ontologies include SSN, SAREF, LogiCO, EDXL, incident
management ontology. This development is included in deliverable D1.1.

 Configuration of SAREF - SSN translation and deploy in IPSM – this activity is
in progress. Samples generated and initial tests performed over IPSM (INTER-
IoT test environment).

D6.2: Factory Acceptance Test Plan

347

 Description of decision rules for emergency services, framing the situations
identified for each use case, this is included in deliverable D2.1.

 Definition of 5 use cases conceived and described in D2.1.
 Design EWS and integration plan: architecture, components and initial tests

performed (e.g. MyDriving application). INTER-IoT D6.1 and D6.2 contain the
U. Twente contribution.

 Preliminary integration of components of the EWS and integration with INTER-
IoT components (IPSM and INTER-MW).

 Business model, exploitation plan and economic evaluation. Business model
extended with cost estimative of the IoT EWS and the responsible
(stakeholders) for each component.

The research group has participated in different scientific dissemination activities:

 João Moreira, Laura Daniele, Luis Ferreira Pires, Marten van Sinderen,
Katarzyna Wasielewska, Pawel Szmeja, Wiesław Pawłowski, Maria Ganzha,
Marcin Paprzycki “Towards IoT platforms’ integration: Semantic Translations
between W3C SSN and ETSI SAREF”, Semantics. Workshop Semantic
Interoperability and Standardization in the IoT (SIS-IoT), Amsterdam, 2017.

 João Moreira, Luís Ferreira Pires, Marten van Sinderen, Roel Wieringa,
“Semantic Model-Driven Development of Interoperable IoT-based Emergency
Services: the INTER-IoTcase study”, CTIT, Enschede, 2017.

 João Moreira, Luís Ferreira Pires, Marten van Sinderen, Roel Wieringa, Prince
Singh and Patrícia Dockhorn Costa , “Improving the semantic interoperability
of IoT Early Warning Systems: the Port of Valencia use case”, I-ESA 2018:
"Enterprise Interoperability VIII (2018)", 2018

Recommendations

The evaluation panel is highly satisfied with the contribution, specifically with the
improvement in the ontology and the use of IPSM. U. Twente is recommended to:

 Continue integration with IPSM and improvement of the emergency ontology.
 Participate in standardization forums like ETSI or W3C as the contribution to

semantics is very relevant and there are no other related work.
 Enlarge collaboration with Nemergent use case, as the semantic component

can be of use.
 As it is a small contribution, there is a risk if the third party does not focus on a

specific use case.
Table 128: INTER-EWS evaluation.

66 - A Semantic Middleware for the information synchronization of the IoT
devices

Institute of Industrial Technologies and Automation - National Research Council
(ITIA-CNR)

Description

The collaboration proposes the development of a new component, called Semantic
Middleware, to be added within the set of middleware modules supported by the
INTER-IoT approach. The new component aims to enable near real-time signaling
capabilities to all the devices connected the IoT platform, also thanks to the interaction
with various modules provided by of the INTER-IoT approach.

 D6.2: Factory Acceptance Test Plan

348

The current state of the art points out that many solutions available in literature enable
the data exchanges among the devices. However, as the content meaning of the
exchanged data expressions is left to the interpretation of the receivers, these
solutions do not support the information synchronization, thus limiting the semantic
interoperability of the involved devices. In order to contribute to bridge this gap,
Semantic Middleware allows to express all the exchanged information (included the
synchronization requests) under the form of semantic model. This way, it allows a
more flexible and adaptable characterization of the data subscribers' needs and of the
data providers' capabilities, while it enhances the interoperability between all the
involved devices.

The Semantic Middleware allows to express both the synchronization requests and all
the exchanged information under the form of semantic model. Such a semantic-
enabled solution enable a more accurate, flexible and adaptable characterization of
the subscribers' needs and of the providers' capabilities, while it contributes to
enhance the interoperability between all the involved devices.

The motivation behind the proposal of the Semantic Middleware is in line with the
overall goal of the INTER-IoT project (“providing an interoperable and open IoT
framework, for seamless integration of heterogeneous IoT platforms, regardless of the
application domains”). Specifically the Semantic Middleware can mainly contribute to
the INTER-IoT objective of defining techniques and tools for interoperability at the
different IoT Platform layers. In fact, acting as a central point which dispatches
information between devices and applications, it addresses the interoperability
objectives of INTER-IoT at a semantical level. Thus, it supports the INTER-FW module
in the role of facilitating the creation of an ecosystem of interoperable and open IoT
platforms. Thus, development time of novel IoT services and applications can be
shortened, and these services can be provided a top interoperable IoT platform
maturing the IoT interoperability.

Moreover, the activities performed to develop the Semantic Middleware can be
gathered into the activities to design and implement smart IoT application service
gateway and virtualization, which are considered essential actions to implement the
above mentioned objective of the INTER-IoT project.

D6.2: Factory Acceptance Test Plan

349

Figure 145: Integration in INTER-IoT

Progress

The progress is advancing as scheduled main contributions are:

 Definition of the implementation of the “SM Bridge" which handles the
connection of SM with all the underlying platforms, with the MW2MW services
and with the INTER-FW.

 As SM is agnostic to the metamodel of the IoT platform ontology, SM uses the
GOIoTP defined in INTER-IoT, paired with an application ontology specific of
the analyzed scenario. A link between application ontology and GOIoTP is
under implementation process.

 Definition of the use case related with the pallet position.
 Preparation of the integration plan that was included in D6.1, so as the

Factory Acceptance Testing specific to the contribution.
 Definition of initial business model and exploitation

Recommendations

The evaluation panel is satisfied with the contribution, some recommendations for the
collaboration:

 Clear definition and specification of the ontology in order to be aligned not only
with GoIoTP but with the other extensions developed by third parties.

 Identification of the main features of the Semantic Middleware in order to align
it with the development of the bridge.

 Clarification of the use case in order to align it with the needs of the different
stakeholders.

Table 129: Semantic Middleware Evaluation.

70 - SecurIoTy - security for the IoT

AvailabilityPlus GmbH

Description

Security is paramount for the safe and reliable operation of IoT connected devices.
Currently there is consensus that in order for IoT to become widespread, security
issues have to be resolved. There is less consensus on how to best implement security
in IoT. In our approach SecurIoTy, we address all IoT security dimension such as
confidentiality, integrity and availability for data in transit and at rest.

SecurIoTy is a smart cyber security solution to secure the internet of things using
crypto proxy technology. SecurIoTy provides an important building block for the
establishment of safe, reliable and large scale IoT systems. SecurIoTy protects data
at rest and in transit with a zero-knowledge policy. SecurIoTy integrates at the
application or middleware layer of Inter-IoT.

SecurIoTy employs the Rational Unified Process (RUP), an iterative software
development process framework originally developed by IBM. RUP gives a detailed
canvas for software development and integration projects. Besides implementing the

 D6.2: Factory Acceptance Test Plan

350

RUP framework, the research team has implemented these components that are
documented in the provided deliverables:

 Software requirements specification: Description of the functional and non-
functional requirements

 Use cases: Definition of the use cases.
 Test cases: Definition of the test cases, test plan and acceptance criteria

according to global project specifications, implemented automated and semi-
automated tests

 Data model: Description of the SecurIoT data model
 Software architecture: Definition of the software architecture
 GUI design: Definition of the user interface as far as necessary given machine

to machine communication
 Implementation: Iteration 1 of adapting the SecurIoT system to INTER-IoT

layers.

Currently, it has set up server infrastructure in hardware and software including
multiple storage sites at multiple physical locations. Also a security gateway to
securely expose our services through the internet. As a result, standalone SecurIoTy
services can now be used at this web site: https://interiot.docraid.com.

Preliminary integration with INTER-IoT has been performed through AS2AS and the
team has set up the Node-red environment to hook up SecurIoTy.

As detailed in the INTER-IoT Architecture, security is the cross layer between
applications, middleware, network and devices. The proposed SecurIoTy cross layer
will provide security mechanism such that devices will be enabled to secure data while
in transit as well as at rest.

SecurIoTy will provide communication mechanisms which allow devices to be shielded
and to communicate via protected channels as well as store data in protected
storages. As such our proposed collaboration will interact and provide interaction
mechanisms on the device level, the network level, the middleware level and the
application layer.

The application service layer component offers primarily HTTP(S) and potentially also
REST interfaces to service the INTER-FW parts of the INTER-IoT Architecture. At the
middleware layer, we will initially offer interfaces to connect to cloud storage services
which are operated by AvailabilityPlus (DocRAID® CloudRAID), and optionally other
storage providers. On the network and device level it provides interfaces to shield
devices and let devices communicate via protected channels.

SecurIoTy will thus provide a security framework which:
 serves all INTER-IoT Architecture layers (application, middleware, network,

devices)
 enables scalable security to address the security needs of a particular

application, with a particular focus on logistics use cases.
 (3) addresses all security dimensions.

D6.2: Factory Acceptance Test Plan

351

Figure 146: SecurIoTy Integration in INTER-IoT

Progress

The collaboration is advancing as scheduled, main progress is related with the
following lines:

 Software requirements specification, the Use cases, Test cases, Data model
and Software architecture. Adaptation of test cases from iteration 1 to the
INTER-IoT requirements. Set up of automated and semi-automated tests for
the software. Alignment of the test cases with requirements from INTER-IoT.
Results are delivered in the document
“D6.2_Factory_Acceptance_Test_Plan_securIoTy_version5”.

 Extension of the GUI design to interface design to reflect requirements from
INTER-IoT. Initial integration scenarios of SecurIoTy and INTER-IoT are: a)
authentication, b) sensor hub, c) reporting, storing/retrieving, logging and
documentation, provided this, SecurIoTy will need access to the respective
services of INTER-IoT. Given the current architecture of INTER-IoT, SecurIoTy
will be useful for gathering data from sensors and storing the reports in
SecurIoTy. Node-red is used to manage sensor nodes, SecurIoTy will be used
as a building block to store/retrieve data. As a result, AvailabilityPlus has set
up interfaces to connect and integrate with the Node-red architecture.

 Given the integration scenarios iteration 1 was finished of implementing
interfaces and to adapt the architecture of our solution to reflect this concrete
application scenario and to set it up tangibly. AvailabilityPlus has set up server
infrastructure in hardware and software including multiple storage sites at
multiple physical locations and a security gateway to expose services through
the internet. The security gateway supports these protocols: http, https,
WebDAV.

Recommendations

The evaluation panel is satisfied with the contribution, however some
recommendations are issued:

 D6.2: Factory Acceptance Test Plan

352

 Licensing has to be clarified as DocRaid is a proprietary system. The connector
needs to be open source and has to be perfectly documented.

 Devices for the piloting have to be identified.
 Further connection to the INTER-IoT architecture, e.g. INTER-FW has to be

defined.
 Collaboration with other third parties in order to find points of agreement (e.g.

ACHILLES) is advised.
Table 130: SecurIoTy Evaluation.

74 - E3Tcity Smart City Platform and Devices Integration

E3TCity S. L.

Description

This project is aimed to integrate E3Tcity vertical platform with the Middleware Layer
of INTER-IoT Inter Layer Platform. This development will provide INTER-IoT with a
whole device/cloud/app vertical solution to be applied in the Smart Port pilot. E3Tcity
Smart City platform allows control and monitoring of different types of installation,
which include lighting, irrigation, HVAC, energy measurement, sensing, and generally
any system to be controlled remotely.

The platform is currently being deployed in more than 20 towns in Spain, with services
spanning from public lighting control to mobility control solutions such as traffic,
parking, crowd, traffic lights, irrigation and water quality, and heating, ventilation and
air conditioning control.

Several interoperability options have been reviewed, choosing two of them as the most
suitable for the project:

 Device to Device Interoperability
 Platform to platform Interoperability.

Figure 147: E3TCITY D2D interoperability

D6.2: Factory Acceptance Test Plan

353

Figure 148: E3TCITY MW2MW interoperability

The collaboration will include the platform and the developed components in the smart
lighting pilot in the port premises, connecting some of the nodes to the INTER-IoT GW
and others to the MW2MW interoperability components. Both IoT platforms NPV and
VPF will be used to demonstrate the feasibility of the proposal.

Progress

The collaboration is progressing as expected, main advances:

• E3Tcity is working on a driver for INTER-IoT gateway that will allow the device
to communicate with e3tcity controllers. Driver will be ready according
InterLogP pilot.

• E3Tcity is working on platform to platform integration with INTER-IoT MW2MW
layer. Integration will be tested in InterLogP pilot.

• Definition of the FAT for the collaboration, included in D6.2
• Definition of the integration in the smart lighting pilot.
• Start of deployment of lights, nodes and PIRs

Recommendations

The evaluation panel is very satisfied with the contribution some recommendations:

• Provide better documentation for the testing and evaluation, checking the
documentation provided by other third parties.

• Identify the connection mechanism of the PIR.
• Interact with other third parties, mainly those working with semantics as the

smart lighting use case will be of interest.
• Participate in some dissemination events related with smat cities.

Table 131: E3TCity Evaluation.

 D6.2: Factory Acceptance Test Plan

354

5 Conclusions

The document has described the Factory Acceptance Test and initial integration plans from
the two pilots included in the proposal, i.e. INTER-LogP and INTER-Health. The first pilot due
to its extension and needs has been split in different use cases. Additionally, for INTER-
DOMAIN pilot, INTER-IoT consortium introduced twelve third parties, ten small and two large
contributions that are bringing different technologies to INTER-IoT so as different use cases.

Following an industrial approach the integration has been structured in three steps, first one
was included in D6.1, in which the pilots, use cases and technologies to be used were
described; D6.2 provides FAT documents and D6.3 will provide Site Acceptance Test (SAT)
documents. Once integration is provided and testing of the integration validated, the different
pilots and use cases will go through evaluation process defined in WP7 and will validate the
different KPIs specified.

The FAT documents provided by the internal pilots and by the third party collaborators, have
followed a common template in which they provided the information related with the pilot and
use cases. The information is maintained in a separate document per pilot, so the working
documents are fourteen separate files that for commodity have been integrated and adapted
in a single document.

The goal of this process is that the different systems will then undergo their own defined FAT
to test the readiness of the system. This is done in a LAB setup which approaches the actual
field deployment as much as possible. When the FAT has been successfully executed and has
been approved the system can advance to field integration and undergo the SAT. The different
contributions are advancing in this process, and it is reflected in the midterm evaluation carried
out in M25 (January 2018), and reflected in section 4 of the document.

The FAT documents describe all aspects of the FAT, form defining the versions of the used
components and deliverable checklist up, test setup, tooling, test description, etc. to be able
to test the readiness of the system under test. The document from each pilot contains the
working documents of each pilot and use cases (where needed). The FAT documents will
evolve as the pilot responsible carry out the testing. Currently all of them are involved in this
process and integration is under execution.

The template of the FAT document is structured in eight sections: (i) System description; (ii)
Use case oriented pilots; (iii) Deliverables and version overview; (iv) Requirements and
scenarios; (v) Test environment; (vi) Test description; (vii) Test outcome overview; and (viii)
Integration ethics and security.

The two internal pilot of the project, have advanced the integration activity before the start of
WP6, so activity is more advanced and in lab testing is more advanced, and in the case of
INTER-HEALTH, SAT has already been performed and it has been deployed in the field and
the pilot has already been its exploitation because due to the requirements of the
experimentation. Regarding INTER-LogP FAT has been performed and SAT is under
evaluation.

Third parties have their own schedule and as indicated in the individual evaluation, all of them
are executing FAT, and will be finished before March in order to run SAT and after that the
evaluation of their use cases in the field as indicated by WP7 methodology.

Section 4 of this deliverable included the outcome of the midterm evaluation of the open call
third parties. First evaluation was conducted in June 2017 for the small contributions and in

D6.2: Factory Acceptance Test Plan

355

July 2017 for the large contributions. Preliminary evaluation, set the floor for developments
and established for all the contributions the individual and joint exploitation plans. The midterm
evaluation covered the period till December 2017. All the contributions presented their
advances in terms of integration and Factory Acceptance Testing, both included in D6.1 and
this deliverable (D6.2).

Some hints and conclusions related with the evaluation are:

 All the evaluations were satisfactory and the different third parties are advancing as
scheduled.

 The integration process is ongoing, preliminary results were presented, however some
aspects of the documentation from INTER-IoT have to be polished and improved in
order to make the process seamless.

 Use cases for the third parties are now aligned with the requirements of the
stakeholders, and clarification and improvements requested in the first review were
attended.

 A review of the mentorship over the third parties was revisited and some changes were
done in order that the different third parties have an adequate supervision and access
to the latest releases.

 A joint session with all the third parties, come out with relevant synergies and some
joint evaluation pilots, e.g. U. Twente and Nemergent related to emergency
management.

 No Ethical issues were identified, except for U. Twente use case, however the proper
anonymization techniques and data management policies proposed by the consortium
will be put in place.

 The two large collaborations will integrate two new platforms: OM2M and sensiNact.
Both contributions give access to standardization in ETSI where VUB is very active and
a link with ECLIPSE in which sensiNact has become a sponsored project.

 Next review will be the final one, in October 2018 and will show the final integration of
the open call and the evaluation of the components.

